Introduction to Small Angle Scattering

Heinz Amenitsch
TU-Graz \& Austrian SAXS beamine, ELETTRA

01

PART I: Introduction to SAXS

Introduction to the Theory ("Graz School")
\square From Experiments to Real Space
B Bio-SAXS ("Hamburg School")

PART II: SAXS applications in life science and material science using synchrotron
[Examples: • Chemistry

- Hierarchical Materials
\square Grazing Incidence SAXS ("no school")
- Biomembranes
- In situ Chemistry

Soft Condensed Matter

Length- and Timescales Contrasts

Equilibrium and
Non-Equilibrium States

Characteristic length and time scales

(c) P. Schurtenberger)

Research topics

ZnS NPs growth in a liquid jet

 W. Schmidt, et al., JACS (2010), 132 , 6822-6826

helical domain of the acyl-CoA
Krastanova I et al J. Biol. Chem.
(2012)

CdS nucleation and growth

Viswanatha,R. et al. J. Phys. Chem. Lett. 1, 304 (2010)

Biomechanics

Formation of mesoporous \& crystalline materials

Grosso, D. et.al. Nature Materials 2004, 3, 787-792.

Mesostructured SiO_{2} produced by aerosol reaction

I.Shyjumon, et al., Rev.Scient.Instr., 79 (4), 043905 (2008), Langmuir (2011)

R. Böckmann, University of Nariani et al. Zürich.
amenitsch@tugraz.at \& amenitsch@elettra.trieste.it

SAXS and WAXS

The pioneers of Small Angle Scattering

Small - Angle : Supramolecular Envelope

The Scattered Field $E_{s}(q)$

The scattering amplitudes of all coherently scattered waves have to be added according to their amplitude and relative phase er.

The phase difference depends on the relative location of the scattering centers.

The Phase Difference er and the Scattering Vector q

The path length difference is given by the length difference between the two paths a and b :

$$
a-b=r s_{0}-r s=-r\left(s-s_{0}\right)
$$

The phase difference φ is given by the wave number $(2 \pi / \lambda)$ times the path length difference:

$$
\varphi=-(2 \pi / \lambda) r\left(s-s_{0}\right)
$$

Now we introduce the scattering vector \boldsymbol{q} :

$$
q=(2 \pi / \lambda)\left(s-s_{0}\right) \rightarrow \varphi=-q r
$$

Its magnitude is:
$q=4 \pi / \lambda \sin \theta / 2$

In order to find the total scattered field we have to integrate over the whole illuminated scattering volume V
$E_{s}(\mathbf{q})=\operatorname{const} \int_{V} \rho(\mathbf{r}) e^{-i \mathbf{q r}} d \mathbf{r}$
We can now express the density $\rho(r)$ by its mean $\bar{\rho}$ and its fluctuations $\Delta \rho(r)$:
$\rho(\mathbf{r})=\bar{\rho}+\Delta \rho(\mathbf{r})$
The Fourier integral is linear, so we can rewrite the above equation:
$E_{s}(\mathbf{q})=\operatorname{const}\left[\int_{V} \bar{\rho} \cdot e^{-i \mathbf{q r}} d \mathbf{r}+\int_{V} \Delta \rho(\mathbf{r}) e^{-i \mathbf{q r}} d \mathbf{r}\right]$
Taking into account the large dimension of the scattering volume we get:
$E_{s}(\mathbf{q})=\operatorname{const} \int_{V} \Delta \rho(\mathbf{r}) e^{-i \mathbf{q} \mathbf{r}} d \mathbf{r}$

From Scattering Amplitudes to Scattering Intensitie

For monodisperse dilute systems we can write:
$I_{s}(q)=N<\left|E_{1}(\mathbf{q})\right|^{2}>=N I_{1}(q)$
We have introduced the single particle scattering amplitude $E_{1}(\boldsymbol{q})$ which is the scattered field resulting from integration over the particle volume only.
$E_{1}(\mathbf{q})=\int_{V} \Delta \rho(\mathbf{r}) e^{-i \mathbf{q r}} d \mathbf{r}$
$\left|E_{1}(\mathbf{q})\right|^{2}=E_{1}(\mathbf{q}) \cdot E_{1}^{*}(\mathbf{q})=\int_{V} \int \Delta \rho\left(\mathbf{r}_{1}\right) \Delta \rho\left(\mathbf{r}_{2}\right) e^{-i \mathbf{q}\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)} d \mathbf{r}_{1} d \mathbf{r}_{2}$
We put $\boldsymbol{r}_{1}-\boldsymbol{r}_{2}=\boldsymbol{r}$ and use $\boldsymbol{r}_{2}=\boldsymbol{r}_{1}-\boldsymbol{r}$ and introduce the convolution square of the density fluctuations:
$\gamma(\mathbf{r}) \equiv \Delta \tilde{\jmath} \quad \underset{V}{\sim} \Delta \rho\left(\mathbf{r}_{1}\right) \Delta \rho\left(\mathbf{r}_{1}-\mathbf{r}\right) d \mathbf{r}_{1}$

SAXS and WAXS

SAXS:
peak width (+ shape) \rightarrow particle size

WAXS:

positions \rightarrow lattice (type, spacings, strain) width + shape \rightarrow particle size

+ lattice strain fluctuations

The Convolution Square of the Density Fluctuation

The function $\gamma(r)$ is calculated by shifting the "ghost" particle a vector r and integrating the overlapping volume.

This function is also called spatial autocorrelation function (ACF).

The spatially averaged convolution square $\gamma(r)$ results from the same process, the ghost is shifted by a distance $r=|\mathbf{r}|$, but we have to average over all possible directions in space.

$$
\left.\gamma(r)=\tilde{\iota} \quad \sim \quad \sim \quad \underset{V}{j}, \mathbf{r}_{1}\right) \Delta \rho\left(\mathbf{r}_{1}-\mathbf{r}\right) d \mathbf{r}_{1}>
$$

The spatially averaged intensity $I(q)$ is given by:

$$
\begin{aligned}
I(q)=<\left|E_{1}(\mathbf{q})\right|^{2}> & =<\int_{V} \Delta \tilde{r}, d \mathbf{r}> \\
& =4 \pi \int_{0}^{\infty} \gamma(r) r^{2} \frac{\sin q r}{q r} d r
\end{aligned}
$$

by introducing the pair distance distribution function (PDDF) $p(r)$ with $p(r)=\gamma(r) \cdot r^{2}=\Delta_{\mu}$
we finally get

$$
I(q)=4 \pi \int_{0}^{\infty} p(r) \frac{\sin (q r)}{q r} d r
$$

The Scattering Problem and the Inverse Scattering Problem

Scattering Function
Distance Distribution Function

Definition of the Pair Distance Distribution Functio

We can relate the meaning of a distance histogram to the PDDF $p(r)$ if the particles are homogeneous. The height of $p(r)$ is proportional to the number of distances that can be found inside the particle within the interval r and $r+d r$

The $p(r)$ function of inhomogeneous particles is proportional to the product of the difference scattering lengths $n_{i} n_{k}\left[n_{i}=\Delta \rho\left(\mathbf{r}_{i}\right) d V\left(\mathbf{r}_{i}\right)\right]$ of two volume elements i and k with a center-to-center distance between r and $r+d r$ and we sum over all pairs with this distance.

design of the experiment

* "Asterix in Belgium"
associated by Anna Stradner \& Gerhard Fritz

$$
I_{s}(q)=N I_{1}(q)=N I_{1}(0) P(q)
$$

$I_{1}(0)=V^{2} \Delta \rho^{2}$ intensity of single particle at $q=0$
$P(q)$ particle form factor, where

$$
P(q)=\frac{I_{1}(q)}{I_{1}(q \rightarrow 0)}
$$

The normalized form factor $P(q)$ contains information about size and structure of the particle.

Form factor of a homogeneous sphere:

$$
P(q)=\left[\frac{3(\sin q R-q R \cos q R)}{(q R)^{3}}\right]^{2}
$$

The function has minima for $\tan (q R)=q R$, or $q R=4.49,7.73, \ldots$

Comparison of a sphere (full line) an oblate ellipsoid (dashed line) and a prolate ellipsoid with the same volume.

Let us regard a rod of length L and of cross-section $A_{c}=$ The cross-section A_{c} (with maximum dimension d) should be small in comparison to the length of the whole particle $L(d \ll L)$. For $q>1 / L$ we can write

$$
I(q)=\frac{L \pi}{q} \cdot I_{c}(q)
$$

The cross-section scattering function $I_{c}(q)$ is related to the cross-section distance distribution $p_{c}(r)$ by

$$
I_{c}(q)=2 \pi \int_{0}^{\infty} p_{c}(r) J_{0}(q r) d r
$$

where

$$
p_{c}(r)=\gamma_{c}(r) \cdot r=2 \pi r \int_{A c} \Delta \rho_{c}\left(r^{\prime}\right) \Delta \rho_{c}\left(r^{\prime}+r\right) d r
$$

Scattering Function for a Long, Rod-like

The different regimes can be visualized is a $\log (I)$ vs. $\log (q)$ plot of the scattering curve:

The Guinier regime, the q^{-1} regime and the cross-section regime.

$$
p(r)=\frac{2}{4 \pi} \int_{r}^{L} \int_{A} \int_{A} \Delta \rho^{2} d f_{1} d f_{2} d x=\frac{1}{2 \pi} \Delta \rho^{2} A_{c}^{2}(L-r),
$$

PDDF from homogeneous prisms with edge lengths of: (a) 50:50:500, (b) 50:50:250 and (c) 50:50:150

PDDF for three parallel epipeds with constant length L ($400 \AA$) and constant cross-section area A_{c} but varying length of the edges: 40:40, -২-২- 80:20 and ----- 160:10.

Let us now consider a flat particle, with a finite and constant thickness D_{t}, being extremely large in the two other dimensions with an area A. In full analogy to the case of the rod we can separate the scattering amplitude into a planar factor $2 \pi A q^{-2}$ and a thickness-factor $I_{t}(q)$, i.e. the total intensity is given by

$$
I(q)=I_{\text {plane }} \cdot I_{t}(q)=\frac{2 \pi A}{q^{2}} \cdot I_{t}(q)
$$

The thickness-factor is related to the thickness distance distribution $p_{t}(r)$ by

$$
I_{t}(q)=2 \int_{0}^{\infty} p_{t}(r) \cos (q r) d r
$$

where

$$
p_{t}(r)=\gamma_{t}(r)=2 \int_{0}^{\infty} \Delta \rho_{t}\left(r^{\prime}\right) \Delta \rho\left(r^{\prime}+r\right) d r
$$

Scattering Function for a Flat, Lamellar Particle.

The different regimes can be visualized is a $\log (I)$ vs. $\log (q)$ plot of the scattering curve:

The Guinier regime, the q^{-2} regime and the thickness regime.

Sketch for the qualitative discussion of the PDDF of a flat particle

PDDFs of lamellar particles with the same basal plane (200 x 200 \AA) and different thickness $D_{t}:\left(\right.$ a) D_{t} $=10 \AA$, (b) $D_{t}=20 \AA$ and (c) $D_{t}=30 \AA$.

Inhomogeneous Particles:

Spherical multilayer models with constant outer diameter of 200 Å. PDDFs in the left part, density profiles in the right part of the figure.

Circular cylinders with a constant length of $480 \AA$ and an outer diameter D_{c} of $48 \AA$ Å. (a) Homogeneous cylinder, (b) hollow cylinder, (c) inhomogeneous cylinder. The PDDFs are shown on the left, the corresponding radial density distributions $\rho(r)$ on the right.

Aggregates - Dimers

PDDFs from dimer models built from prolate ellipsoids. Monomers (full line), dimers (broken line), and difference between dimers and monomers (thick full line).

Scattering curves of Gaussian size distributions of spheres with varying width (see inset).

Radius of Gyration

The radius of gyration is one of the most important parameters in the field of smallangle scattering. In full analogy to the radius of intertia in mechanics it is defined as

$$
R_{g}^{2}=\frac{\int \Delta \rho\left(r_{1}\right) r_{i}^{2} d V_{i}}{\int \Delta \rho\left(r_{i}\right) d V_{i}}
$$

According to the momentum theorem of Fourier transformation the second moment of a function in one space is related to the second derivative (curvature) of its Fourier transform at the origin. This relation is the basis of the so-called Guinier approximation for the description of $I(q)$ for low q derived from a series expansion:

$$
I(q)=I(0) e^{-\frac{q^{2} R g^{2}}{3}}
$$

We can also use another relation for the estimation of the radius of gyration:

$$
R_{g}^{2}=\frac{\int p(r) r^{2} d r}{2 \int p(r) d r}
$$

From the previous equation it is clear that we can calculate the radius of gyration from the PDDF once it is known. Otherwise we can use the Guinier approximation to determine R_{g} directly from the scattering data with a so-called Guinier-plot.

Plotting $I n(I(q))$ vs q^{2} we get a straight line with a slope proportional to $R_{g}{ }^{2}$.

Example for a Guinier plot from scattering data of a protein solution with varying concentration, including an extrapolation to zero concentration.

Radius of Gyration of the Cross-Section

For rod-like particles we can also define a radius of gyration of the cross-section which can be calculated from $p_{c}(r)$ by

$$
R_{c}^{2}=\frac{\int p_{c}(r) r^{2} d r}{2 \int p_{c}(r) d r}
$$

or it can be estimated in reciprocal space form

$$
I_{c}(q)=I_{c}(0) e^{-\frac{q^{2} R_{c}^{2}}{2}}
$$

by a so-called cross section Guinier plot $\left[\log (I(q) q)\right.$ vs. $\left.q^{2}\right]$.

For lamellar particles we can also define a radius of gyration of the thickness function which can be calculated from $p_{t}(r)$ by

$$
R_{t}^{2}=\frac{\int p_{t}(r) r^{2} d r}{2 \int p_{t}(r) d r}
$$

or it can be estimated in reciprocal space form

$$
I_{t}(q)=I_{t}(0) e^{-q^{2} R_{t}^{2}}
$$

by a so-called thickness Guinier plot $\left[\log \left(I(q) q^{2}\right)\right.$ vs. $\left.q^{2}\right]$.

Porod Limit - Porod Plot - Fractals

We proceed now to the discussion of the final slope of the scattering curve at high q-values, we may expect this to depend mainly on the fine structure of the particle.

$$
I(q)_{q \rightarrow \infty}=(\Delta \rho)^{2} \cdot \frac{2 \pi}{q^{4}} \cdot S
$$

For mass fractals, where $1<\mathrm{D}<3$, and $\mathrm{M} \propto \mathrm{R}^{\mathrm{D}}$ it holds, that $\quad \mathrm{p}=\mathrm{D}$
For surface fractals, where it holds, that $2<\mathrm{D}_{\mathrm{s}}<3$ $\mathrm{p}=6-\mathrm{D}_{\mathrm{s}}$

Contrast Variation: Index Match

A mixture of H 2 O and D 2 O allows to match different regions in a sample.

When the monster came, Lola, like the peppered moth and the arctic hare, remained motionless and undetected, Harold, of course, was immediately devoured!

Autrans'94 R. May (found in „Los Alamos Science")

Contrast Variation in SAXS by Anomalous

Typical energy dependence of f ' and $f^{\prime \prime \prime}$ near the absorption edge of an element. Shown here is the nickel K edge at 8333 eV .

This method, also known as resonant small angle scattering uses another possibility for the variation of the contrast. Near the inner shell absorption edge, the coherent scattering length or atomic scattering factor of an atom is a function of the energy E of the X-ray photon:

$$
f(E)=Z+f^{\prime}(E)+i f^{\prime \prime}
$$

Energy variation is only possible with the "white" X-ray beam of a synchrotron. The main problem for applications in chemistry is the fact that the edges for C, H, N and O are outside the useful energy window at very low energies. In solution experiments this effect might be useful for heavy counter ions $\left(\mathrm{Br}^{+}\right)$in micellar systems.

The Scattering Problem and the Inverse Scattering Problem

For the solution of the inverse Problem it is essential to be able to calculate the PDDF form the experimental scattering curve with minimum termination effect.

All Transformations T1 to T4 are linear and are mathematically well defined, this does not hold for their inverse transformations.

The Principles of the Indirect Fourier Transformatil

 itr Serciom lines. |OEFMIE

Other IFT Applications - Equations

Summary of the different transforms T_{1} used in IFT:
Arbitrary shape:

$$
I(q)=4 \pi \int_{0}^{\infty} p(r) \frac{\sin (q r)}{q r} d r
$$

Cylindrical Symmetry:

$$
I(q)=\frac{2 \pi^{2} L}{q} \int_{0}^{\infty} p_{c}(r) J_{0}(q r) d r
$$

Lamellar Symmetry:

$$
I_{\text {plane }}(q)=\frac{4 \pi A}{q^{2}} \int_{0}^{\infty} p_{t}(r) \cos (q r) d r
$$

The structure is the same for all equations, just the kernels of the integrals differ!

The Magic square of small-angle scattering: The correlations between the radial density $\Delta \rho(r)$ and the PDDF $p(r)$ and their Fourier transforms, the scattering amplitude $F(q)$ and scattering intensity $I(q)$ under the assumption of spherical symmetry.

Deconvolution of the PDDF - Principles I

Here we are facing a similar situation as in the IFT method: for a given density distribution $\rho(r)$ we can calculate the exact $p(r)$-function for all three cases (spherical, cylindrical and lamellar symmetry) by a convolution square operation but we do not have a useful description of the inverse problem, the so-called convolution square root.

As an additional problem we have to keep in mind the fact, that the convolution square operation is a nonlinear transformation which will not allow an inversion by the solution of a simple linear least squares technique like in the case of the indirect Fourier transformation.

We start again with a series expansion of the radial density function $\rho(r)$ in the usual way:

$$
\bar{\rho}(r)=\sum_{i=1}^{N} c_{i} \varphi_{i}(r)
$$

The approximation for the density profile corresponds to an approximation to the PDDF:

$$
\bar{p}(r)=\sum_{i=1}^{N} V_{i i}(r) c_{i}^{2}+2 \sum_{i>k} V_{i k}(r) c_{i} c_{k}
$$

The overlap integrals $V_{i k}(r)$ describe the overlapping of the i-th with the k-th step or shell where one function has been shifted an arbitrary distance r. These overlap or convolution integrals are very simple for the planar case (one-dimensional convolution of two step function leads simply to a triangle) but are a bit more complicated for the cylindrical and spherical case:

Illustration of the five sub-regions for the calculation of the overlap integrals $V_{i k}(r)$.

Deconvolution of the PDDF - Iterative Solution

The above equation for the PDDF is nonlinear in its coefficients c_{i}. The corresponding least squares problem has to be linearized by a series expansion where higher order terms are omitted.
Such linearized systems must be solved iteratively. In addition one needs starting values $c_{i}^{(0)}$ for the first iteration. Here we set all coefficients equal to a constant.

We then calculate the difference function

$$
\Delta p(r)=p(r)-\bar{p}^{(o)}(r)
$$

which would be zero only if we would know the exact coefficients c_{i}.
Now we calculate correction terms Δc_{i} in order to minimize $\Delta p(r)$ in a least square sense.

$$
\sum_{i=1}^{N} V_{i i}(r)\left[\left(c_{i}+\Delta c_{i}\right)^{2}\right]+2 \sum_{i>k} V_{i k}(r)\left[\left(c_{i}+\Delta c_{i}\right)\left(c_{k}+\Delta c_{k}\right)-c_{i} c_{k}\right]=\Delta p(r)
$$

We linearize this equation by omitting the second order terms Δc_{i}^{2} and $\Delta c_{i} \Delta c_{k}$ and we get

$$
2 \sum_{k=1}^{N} \sum_{i=1}^{N} c_{i} V_{i k}\left(r_{j}\right) \Delta c_{k}=\Delta p\left(r_{j}\right)
$$

for $j=1,2,3, \ldots M$ and $M>N$. These equations can be written in matrix notation

$$
A_{j k} \Delta c_{k}=\Delta p_{j} \quad \text { or } \quad \mathbf{A} \Delta \mathbf{c}^{(\mathbf{0})}=\Delta \mathbf{p}^{(0)}
$$

where the matrix elements $A_{j k}$ are given by

$$
A_{j k}=2 \sum_{i=1}^{N} c_{i} V_{i k}\left(r_{j}\right)
$$

This system is solved with a weighted least squares condition considering the standard deviations of the function $\Delta p(r)$ and we get the correction terms $\Delta \mathbf{c}$.

They allow the calculation of improved coefficients $c_{i}{ }^{(1)}$:

$$
c_{i}^{(1)}=c_{i}^{(0)}+\Delta c_{i}
$$

and with these coefficients we start the next iteration, get further improvements and if this iterative procedure converges we have solved the problem.

This problem is, however, again an ill-posed problem so that we have to add again a stabilization criterion and we have to solve the nonlinear problem by iteration for every Lagrange multiplier.

Many applications performed in the meantime have shown that the deconvolution technique works well in combination with the indirect transformation method, also in cases where the conditions of symmetry are not perfectly fulfilled.

SAXS 2.0: Theoretical Background

Assumption of monodisperse globular particles:

$$
I(q)=n \cdot P(q) \cdot S(q)
$$

n ... Particle density
q... Scattering vector
I(q) ... Scattering Intensity
$P(q)$... Form Factor $\quad P(q) \leftrightarrow p(r)$
$S(q)$... Structure Factor $\quad[S(q)-1] \leftrightarrow[g(r)-1]$
Interaction Potential: Hard Spheres Potential
Closure relation: Percus-Yevick-Approximation (analyt. Solution) Kinning \& Thomas, Macromolecules (1984), 17

Fourier Transformation

$$
I(q)=n \cdot P(q) \cdot S(q)
$$

Form Factor $P(q) \leftrightarrow$ Pair Distance Distribution Function $p(r)$

$$
P(q)=4 \pi \int_{0}^{\infty} \frac{\sin (q r)}{q r} d r
$$

Structure Factor $[S(q)-1] \leftrightarrow$ Total Correlation Function $[g(r)-1] r^{2}$

Due to the nearly identical structure of these equations it is obvious that it is not a trivial task to split the scattering intensity into these factors by mathematical means
GIFT (弓General Indirect Fourter Transformation)

Particle Form Factor P(q) - Artists View ${ }^{\text {® }}$

${ }^{\text {© Asterix Legionnaire, associated by Judith Brunner-Popela }}$

Structure factor S(q) - Artists View ${ }^{\odot}$

${ }^{\text {© }}$ Le Grand Fossé
associated by Judith Brunner-Popela

ATSAS Package

D.Svergun Hamburg Group

General principle of SAS modelling

Additional information is ALWAYS required to resolve or reduce ambiguity of interpretation at given resolution

Constraints and Restraints

Target function

- To reduce the ambiguity of data analysis

$$
E(\{X\})=\chi^{2}\left[\left(I(s), I_{\exp }(s)\right]+\sum_{i} \alpha_{i} P_{i}\right.
$$

is minimized

- Penalties describe model-based restraints and/or introduce the available additional information from other methods: MX, NMR, EM etc)
- If the number of free parameters is small, a brute force (grid) search may be applied, otherwise a Monte-Carlo based technique (e.g. simulated annealing) is employed to perform the minimization of $E(\{X\})$

Ab initio shape determination

A sphere of radius $D_{\max }$ is filled by densely packed beads of radius $r_{0} \ll D_{\max }$

Vector of model parameters:
Position $(\boldsymbol{j})=\boldsymbol{X} \boldsymbol{j}=\left\{\begin{array}{l}1 \text { if particle } \\ 0 \text { if solvent }\end{array}\right.$
(phase assignments)

Svergun, D.I. (1999) Biophys. J. 76, 2879-2886
amenitsch@tugraz.at \&

Bead Modelling: DAMMIN

- Scattering intensity is computed using spherical harmonics

$$
\begin{aligned}
& A_{l m}^{(k)}(s)=i^{l} \sqrt{2 / \pi} f(s) \sum_{j=1}^{N_{k}} j_{l}\left(s r_{j}\right) Y_{l m}^{*}\left(\omega_{j}\right) \\
& I(s)=2 \pi^{2} \sum_{l=0}^{\infty} \sum_{m=-l}^{l}\left\{\sum_{k=1}^{K}\left[\Delta \rho_{k} A_{l m}^{(k)}(s)\right]^{2}+2 \sum_{n>k} \Delta \rho_{k} A_{l m}^{(k)}(s) \Delta \rho_{n}\left[A_{l m}^{(n)}(s)\right]^{*}\right\}
\end{aligned}
$$

- Penalty terms ensure compactness and connectivity
compact
loose
disconnected

Svergun, D.I. (1999) Biophys. J. 76, 2879-2886

Scattering on human CDC45 Protein

CDC45 protein conserved in all eukaryotes initiation of DNA replication progression of the replication fork

hCDC45, $1.85 \mathrm{mg} / \mathrm{ml}, 40 \mu \mathrm{l}, 30 \mathrm{~s}$
Kastranova I, Onesti S et al.,J.Biol.Chem. (2012)

helical domain of the acyl-CoA

Multiphase bead modelling

DAMMIN shape determination

- One can differentiate between distinct parts of the particle
- Several curves are fitted assuming the same arrangement of the parts in different samples
amenitsch@tugraz.at \& amenitsch@elettra.trieste.it

How to compute SAS from atomic model

- To obtain scattering from the particles, solvent scattering must be subtracted to yield effective density distribution $\Delta \rho=<\rho(\mathbf{r})-\rho_{\mathrm{s}}>$, where ρ_{s} is the scattering density of the solvent
- Further, the bound solvent density may differ from that of the bulk

Scattering from a macromolecule in solution

$$
\left.\left.\mathrm{I}(\mathrm{~s})=\left.\langle | \mathrm{A}(\mathrm{~s})\right|^{2}\right\rangle_{\Omega}=\langle | \mathrm{A}_{\mathrm{a}}(\mathrm{~s})-\rho_{\mathrm{s}} \mathrm{E}(\mathrm{~s})+\left.\delta \rho_{\mathrm{b}} \mathrm{~B}(\mathrm{~s})\right|^{2}\right\rangle_{\Omega}
$$

- $A_{a}(s)$: atomic scattering in vacuum (total scattering length / number of e^{-})
- $E(s)$: scattering from the excluded volume (normalized)

- $B(s)$: scattering from the hydration shell (normalized)

CRYSOL (X-rays): \quad Svergun et al. (1995). J. Appl. Cryst. 28, 768 CRYSON (neutrons): Svergun et al. (1998) P.N.A.S. USA, 95, 2267

Scattering components (lysozyme)

SAXS applications in life science and material

 science using synchrotronHeinz Amenitsch
TU-Graz \& Austrian SAXS beamine, ELETTRA

Sample Environment

Temperature $-195^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ $20^{\circ} \mathrm{C} / 2 \mathrm{~ms}$

IR-Laser

Chemical Potential $50 \mathrm{~ms} / 70 \mu \mathrm{~s}$

Biologic SFM-4
Simultaneous characterization: IR-Spectroscopy, UV-vis

Characterization of carbon nanotube- polyoxometalate electrocatalytic interfaces
F.Toma, et al., Nature Chemistry, (2010), 10.1038/NCHEM. 761

Double ellipsoid model

 amenitsch@elettra.trieste.it

$$
\begin{gather*}
I_{\text {scat }}=I_{0} \cdot \frac{1}{\pi} \int_{0}^{\pi} d \beta \int_{0}^{\pi / 2} d \alpha \cdot \sin (\alpha) \cdot \frac{1}{4} \cdot F_{2 \text { ellip }}(q, a, b, c, D, \alpha, \beta)^{2} \tag{1}\\
F_{\text {eelip }}(q, a, b, c, R, \alpha, \beta)^{2}=\left(F_{\text {ellip }}\left(R_{1}, q\right)+F_{\text {ellip }}\left(R_{2}, q\right)\right)^{2} \cdot \cos (q \cdot(D / 2+c) \cdot \cos (\alpha))^{2}+ \\
\quad+\left(F_{\text {ellip }}\left(R_{1}, q\right)-F_{\text {ellip }}\left(R_{2}, q\right)\right)^{2} \cdot \sin (q \cdot(D / 2+c) \cdot \cos (\alpha))^{2} \\
R_{1}=\sqrt{\left(a^{2} \cdot \sin (\beta)^{2}+b^{2} \cdot \cos (\beta)^{2}\right) \cdot \sin (\alpha)^{2}+c^{2} \cdot \cos (\alpha)^{2}} \\
F_{\text {ellip }}(R, q)=3 \cdot \frac{\sin (q \cdot R)-q \cdot R \cdot \cos (q \cdot R)}{(q \cdot R)^{3}} \quad R_{2}=\sqrt{\left(b^{2} \cdot \sin (\beta)^{2}+a^{2} \cdot \cos (\beta)^{2}\right) \cdot \sin (\alpha)^{2}+c^{2} \cdot \cos (\alpha)^{2}}
\end{gather*}
$$

Amphiphilic designer-peptides

a phospholipid

an amphiphilic designer-peptide a6yk

Gazit, E. Chem. Soc. ReV. 2007
Cherny, I.; et al., Angew. Chem., Int. Ed. 2008

amenitsch@tugraz.at \&
Anorganische

amenitsch@tugraz.at \& amenitsch@elettra.trieste.it
\mid fAnorganische

The self-assembly process

Scanning SAXS - Biomaterials

Wood

Pic. O.Bunk, et al. New J. Phys. 11 (2009) 123016

Silica-Sponges, Shells, Tooth, Lobster, Worms, Starch, Eyes.......,

P.Fratzl

Tu

Integated Intensity

$$
I=\int_{q \min }^{q \max } \int_{\chi_{1}}^{\chi_{2}} I(q, \chi) q^{2} \mathrm{~d} q \mathrm{~d} \chi .
$$

Porod Invariant

$$
\begin{aligned}
\tilde{I}= & \int I(\mathbf{q}) \mathrm{d}^{3} q=\int_{0}^{\infty} q^{2} \mathrm{~d} q \int_{0}^{\pi} \sin \psi \mathrm{d} \psi \int_{0}^{2 \pi} I(q, \psi, \chi) \mathrm{d} \chi \\
& =2 \pi^{2} \varphi_{1} \varphi_{2}(\Delta \rho)^{2},
\end{aligned}
$$

T-Parameter

$$
T=\frac{4}{\pi P} \int_{0}^{\infty} I(q) q^{2} \mathrm{~d} q=4 \frac{\varphi_{1} \varphi_{2}}{\sigma} \quad \text { Porod }(1951,1952)
$$

Geiser S. et al., Biointerphases Journal for the Quantitative Biological Interface Data, 2012

sily 01

Pathology, Clinics

Characterization of vascular disease
Effects of aging
Identification of therapeutic targets (Balloon
Angioplasty)

Graft design

Biomimetic materials
Functional tissue engineering
Mechanobiology

Cross section of a human artery
amenitsch@tugraz.at \& amenitsch@elettra.trieste.it

Macroscopic

geometric deformation
stress
strain

Nanoscopic

fiber - matrix composite
fiber alignment
fiber strain

Collagen -
The most abundant protein

P. Fratzl, Current Opinion in Colloid and Interface Science, 2003

An artery, cleaned from surrounding tissue

After dissection into its major layers

Band 2, 20. Auflage, S.14, Abb31
The final sample

Nano - Macro Coupling

Bulk: time and assemble averaged properties
Single Particle: local fluctuations μ-shape nanostructure corr. single particle chemistry

Multiple Particle Trapping: local information on interactions single shot experiments

18 silica micro-beads trapped and manipulated to form the vortices of a Diamond cell.
(M. Padgett group @ Univ. St. Andrews UK)

ESRF: ID13
@46 m \& @100 m KB Mirror
Ref. Lenses
Beam size: $\sim 1 \mu \mathrm{~m}$
X-rays: ~ 13.0 keV
($\lambda=\sim 0.94 \AA$)
Detectors:
Mar165
Frelon
DOE = Diffractive Optic
Element
0 - sample cell (capillary connected to μ fluidics)

1 - IR laser@1064 nm
2 - Phase Programmable Modulator (PPM) Hamamatsu
3,4-microscope objectives, Nikon, Olympus

[^0]5,6 - CCDs

SAXD of optically trapped liposomes

Diffraction from single cluster ($10 \mu \mathrm{~m}$)

Diffraction pattern and azimuthally integrated diffraction pattern

Diffraction image: exposure time 5 s
POPE (Palmitoyl-Oleoyl-Phosphatidyl-Ethanolamine) multilamellar vesicle ($1 \mathrm{wt} \%$) in $1 \mathrm{~mol} \mathrm{CaCl}_{2}$, Cluster size: $8-10 \mu \mathrm{~m}$

Liposome size: 1-2 $\mu \mathrm{m}$, Phase: Liquid crystalline L_{a}

SAXD of optically trapped liposomes

Diffraction from single clusters (8$10 \mu \mathrm{~m})$

Step: $2.5 \times 5 \mu^{2}$
,Diffraction image‘ (1st order reflection) of the cluster

Scanning Diffraction from two clusters multiple trapping

$$
\begin{array}{cc}
\text {,diffraction } & \text { Optical image } \\
\text { image }{ }^{‘} & \text { of the clusters + } \\
\text { of two clusters } & \text { laser }
\end{array}
$$

Step: $3 \mathrm{x} 5 \mu^{\boldsymbol{m}}{ }^{2}$
DOPE (hexagonal structure)

New LT set-up

Improved Sample container

 Nugsia, italy / i8-29 septer 92 ○Q $\cap \cap 1$

X-ray Diffraction from Starch

Phase Contrast Image of Potato Starch Granules

Cartoon Amylopectin Structure

WAXD d(100) $=1.5 \mathrm{~nm}$

Waigh T et al., Macromolecules, 1997
Cartoon Starch Ganule

H. Lemke et al., Biomacromolecules 2004, 5, 1316-1324

Scanning diffraction experiment

Scan 1
$1 \mu \mathrm{mx} 1 \mu \mathrm{~m}$ X-ray spot
$4 \mu \mathrm{mx} 4 \mu \mathrm{~m}$ mesh 0.05 s exposure time
\square

SAXS of optically trapped starch granules (from potato)

Integrated Intensity \& I(100) Reflection

Max. exp.
Time: 200 ms !!

Time: 1.5 s !!!

FoV $40 \times 30 \mu \mathrm{~m}$

$2.12 \min \mathrm{x} 4$ accel.

Radiation Damage

Simultaneous Fitting SAXS and WAXS

Porod \& Lorentzian Peak

D.Cojoc, H. Amenitsch et al., APL, 2010

Laser Tweezers Protein Crystals

Insulin Crystal

S.Santucci,
C.Riekel et al.

Biochemistry
2011

Liposomes and SAXS

The boundaries of cells are formed by biological membranes, the barriers that define the inside and the outside of a cell.
Phospholipids are the major components of biological membranes that form the structural matrix into which proteins are imbedded.

In aqueous solution: self assembly into, e.g., unilamellar vesicles

Lyotropic Phases

Small Angle Scattering - Surface Diffraction

94

Small-Angle Scattering (Diffraction)

Grazing Incidence Small-Angle Scattering (GISAS) +

$\left.I(Q)=\left.\langle | \int_{V} d^{3} r \cdot \rho(\vec{r}) \cdot \exp (-i \cdot \vec{Q} \cdot \vec{r})\right|^{2}\right\rangle$

$$
\left.I\left(Q_{z}, Q_{r}\right)=\left.\langle | \int_{V} d^{3} r \cdot \rho(\vec{r}) \cdot \exp (-i \cdot \vec{Q} \cdot \vec{r})\right|^{2}\right\rangle_{r}
$$

\square HEMIE

Distorted Wave Born Approximation

Vineyard (1982), Shinha et.al. (1988)
$\left.I\left(Q_{z}, Q_{r}\right)=\left.\left|T_{i}\left(\alpha_{i}\right)\right|^{2}\langle | \int_{V} d^{3} r \cdot \rho(\vec{r}) \cdot \exp (-i \cdot \vec{Q} \cdot \vec{r})\right|^{2}\right\rangle_{r}\left|T_{f}\left(\alpha_{f}\right)\right|^{2}$

Refraction Effects

Tu

Lazzari R, ISGISAXS: program, J APPL CRYSTALLOGR 35: 406, (2002) http://www.esrf.fr/computing/scientific/joint_projects/IsGISAXS/isgisaxs.htm

M.P.Tate et al., J.Phys.Chem, 2006

Fig. (A) the scattering geometry in reciprocal space. (B) Scattering geometry in real space. The abbreviations are: (ES) Ewald sphere, (DP) diffraction plane, (OPR) out-of plane reflections, (IPR) inplane reflections, (ML) multi-layer, (FZ) forbidden zone, (BS) beam stop.

B

Diffraction Pattern DOPC @ Electron Density Reconstruction: -C DPhPC ($\mathrm{d}_{\mathrm{B}}=44.3 \AA$) $25^{\circ} \mathrm{C}, 35 \%$ rel. humidity $-D \operatorname{DOPC}\left(d_{B}=48.7 \AA\right.$), but $a=67 \AA \AA / 68 \AA$ Rappolt,M, et.al., Adv. Coll. and Interf. Science, 111 (2004) L. Yang, H.W. Huang, Biophys. J. 84 (2003)

What do we learn? Membrane Fusion

The radius of the torus seems to be confined by the head-group size...

Surface diffraction: Formation of aligned mesoporous thin films

C. J. Brinker et al. Adv. Mater., 1999, 11, 579.

Particles made by aerosols

Films and fibres made by liquid deposition

Monoliths made by controlled evaporation

Diblocks $\mathrm{C}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}}$

$\mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{AlCl}_{3}$
$\mathrm{VO}_{2-\mathrm{x}}: \mathrm{VOCl}_{3}$
$\mathrm{Y}_{2} \mathrm{O}_{3}: \mathrm{YCl}_{3}$
$\mathrm{Nb}_{2} \mathrm{O}_{5}: \mathrm{NbCl}_{5}$
And binaries systems
amenitsch@tugraz.at \& amenitsch@elettra.trieste.it

The Self-Assembly of thin films as seen by In- Situ SAXS and interferometry

Film

CTAB / Si $=0,18$
$\mathrm{H}_{2} \mathrm{O} / \mathrm{Si}=5$ $\mathrm{HCl} / \mathrm{Si}=0.15$ Ageing time Relative Humidity

P6m

Grosso D, et.al., CHEMISTRY OF MATERIALS 14, 931,(2002)

The Modulable Steady State

Nanoimprinting and Hybrid Solar Cells

, Nanoimprinted Comb Structures in a Low Bandgap Polymer:
 ${ }_{2}$ Thermal Processing and Their Application in Hybrid Solar Cells

${ }_{3}$ Sebastian Dunst, ${ }^{\dagger,{ }^{\dagger, \hbar}}$ Thomas Rath, ${ }^{*, \dagger}$ Andrea Radivo, ${ }^{\S}$ Enrico Sovernigo, ${ }^{\S}{ }^{\S, \|}$ Massimo Tormen, ${ }^{\S, \|}$
${ }_{4}$ Heinz Amenitsch, ${ }^{\perp}$ Benedetta Marmiroli, ${ }^{\perp}$ Barbara Sartori, ${ }^{\perp}$ Angelika Reichmann, ${ }^{\#}$ Astrid-Caroline Knall, ${ }^{\dagger}$
s and Gregor Trimmel** ${ }^{*}$
${ }_{6}{ }^{\dagger}$ Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
$7{ }^{\dagger}$ Polymer Competence Center Leoben GmbH, Roseggerstraße 12, 8700 Leoben, Austria
$8{ }^{8}$ IOM CNR, Laboratorio TASC Area Science Park—Basovizza, S.S. $14 \mathrm{Km} 163.5,34149$ Trieste, Italy
${ }_{9}$ "ThunderNIL srl, via Ugo Foscolo 8, 35131 Padova, Italy
$10{ }^{1}$ Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
${ }_{11}$ \#Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology \& Centre for Electron Microscopy Graz,
12 Steyrergasse 17, 8010 Graz, Austria

Nanoimprinting and Stability

Making of Hybrid Solar Cells

XIV School on Synchrotron Radiation: Fundamentals, Methods and Applications Muggia, Italy / 18-29 September 2017

Out come:
(i) Improvement up 3 times in PCE
(ii) Lower annealing temperatures better 3 at $160^{\circ} \mathrm{C}$ to 1.5 at $195^{\circ} \mathrm{C}$ Absolute higher T better

Conclusion

www.elettra.eu

[^0]: D. Cojoc et al., Proc. SPIE 6326, 63261M (2006)
 H. Amenitsch, et al., CP879,

 SRI:Ninth International Conference, AIP, 1287 (2007)
 D. Cojoc et al., APL, 91, 234107, (2007)

