PAUL SCHERRER INSTITUT

G. Aeppli, C. Bostedt, H. Braun, A. Cavallieri, E. Ferrari, R. Ganter, E. Prat, S. Reiche, A. Trisorio :: Paul Scherrer Institut

Overview of future external seeding plans at SwissFEL

FUSEE workshop, Trieste 10-11.12.2019

SwissFEL Overview

Athos:

Soft X-ray FEL, λ =0.65–5.0 nm Variable polarization, Apple-X undulators First users 2021

Aramis:

Hard X-ray FEL, λ=0.1–0.7 nm Linear polarization, variable gap, in-vacuum undulators First users 2018

Main parameters:

Photon wavelength: 0.1–5 nm Photon energy : 0.2–12.4 keV Pulse duration : 1–20 fs Electron energy : up to 6 GeV Electron bunch charge: 10–200 pC Repetition rate: 100 Hz (2-bunches)

SwissFEL Overview: Aramis and Athos

Multipurpose

pump-probe

Ultrafast biology

and chemistry

Alvra and Bernina

- Pilot experiments in 2018
- Regular user operation since January 2019 Athos stations: first users in 2021 Cristallina @ Aramis: first users in 2022

• Pump-probe

- crystallography
- Ultrafast dynamics in solid matter, strongly correlated systems
- Structural biology (MX – macromolecuar crystallography)

Aramis: FEL Performance

- Pulse energy: routinely few hundred μJ.
 Best: 600 μJ @ 0.1 nm (> CDR design = 150 μJ)
- Pulse duration typically 20-30 fs (RMS). Working on ultra-short pulse generation.
- Bandwidth control from ~0.15% to ~1%
- Frequency. Presently: 50 Hz. Demonstrated: 100 Hz.
- Excellent short-term stability: ~1e-4 energy jitter, ~10 fs timing jitter.
- Gain length for best performance is 2.3m, fitting simulations

Outlook

- Improve FEL performance: higher pulse energy after advanced commissioning (e.g. undulator BBA)
- Improve long-term stability
- Develop new modes:
 - Ultra-short pulse
 - 2 color pulses with adjustable delay

Page 6

Aul scherrer institut Athos beamline

PAUL SCHERRER INSTITUT

Athos (Soft-X-ray Beamline)

Athos U38 undulator concept

Other key components (besides undulator line)

- Custom-designed resonant kicker magnet to distribute bunches separated by 28 ns (installed and successfully tested)
- Passive dechirper (installation in 2019/2020)
- X-band TDC to diagnose electron and photon beam (ready by July 2020)

- 16 Apple-X U38 undulators (originally 20 planned):
 - full polarization control
 - independent control on K, polarization and transverse-gradient (TGU)
- Small interundulator magnetic chicanes to enable
 - Optical klystron mode
 - High-brightness SASE
 - High-power and short pulses
- One large magnetic chicane for two-color operation (delay between –10 fs and +500 fs)

Athos Schedule

- PresentVacuum system completed
2 out of 16 Apple X undulator segments installed
First beam commissioning just started (see below)
2 bunch operation with independent rep. rates for ARAMIS and ATHOS established
- 2020 Gradual installation of all undulator segments during service days Commissioning of ATHOS FEL and photon beamlines simultaneous with ARAMIS operation First beam on endstations Post-undulator X-band deflector for longitudinal phase space diagnostic
- 2021 First users Installation of HERO

December 2nd 2019, first beam on ATHOS beam dump

December 3rd 2019 First spontaneous undulator radiation from Apple X

all segments open / one segment closed / two segments closed

Two bunch operation

Two gun lasers: Jaguar / Mizar 8 Alcor su 8 Fast kicker + DC septum

Two separate ARAMIS

and ATHOS bunches

Two-bunch transport in the same RF macropulse !

Fast kickers & Septum

Fast kicker kicks both bunches !

Beam energy: 3.1 GeV Kicker amplitude stability (pulse to pulse): 3.10⁻⁶ rms

What beam orbit stability after fast kicker?

Courtesy of M. Paraliev

Septum deflects beam at Y=10mm (0.384 T.m at 105.6A)

Slice emittance comparison after compression

Aramis FEL pointing stability with fast kickers

Beam Shift – 11.10.2018

No influence of kicker on FEL pointing stability !

Horizontal beam position with / without kickers: 0.29 / 0.31 μm rms

Vertical beam position stability with / without kickers: $0.17\,/\,0.18~\mu\text{m}$ rms

- Shift the FEL pulse to fresh electrons for "superradiant" amplification (with chicanes)
- The fresh bunch slices are derived from a realignment of a tilted beam

[E. Prat, F. Löhl and S. Reiche, PRSTAB 18, 100701 (2015)]

Simulation results for SwissFEL

20 modules, 2 nm, 6 kA, 8 sections

Tilt in offset (mm)	Peak power (TW)	Pulse energy (mJ)	FWHM pulse duration (as)	
1.5	1.62±0.58	1.01±0.24	460±260	
3	1.48±0.20	0.52±0.05	300±10	

Demonstrated at LCLS with 3 sections [A. Lutman et al, PRL 120, 264801, 2018] FEL radiation profile after each undulator section for a tilt of 3 mm

PAUL SCHERRER INSTITUT

Large Bandwidth with TGU

In a TGU there is a dependence of the undulator field on the transverse position

$$\frac{K(x) - K_0}{K_0} = \alpha x$$

 K_0 : on-axis field α : gradient

A tilted beam traveling through a TGU will produce broadband XFEL radiation. Easy to tune!

[E. Prat, M. Calvi, and S. Reiche, JSR 23, 874 (2016)]

- Additional possibilities of the scheme:
 - Multiple colors with slotted foil at the undulator entrance
 - FEL pulse compression (sign of the chirp can be controlled)

XFEL pulses of 20% bandwidth and few GW power can be obtained

Motivation: Time locking to external source; attosecond pulses

*part of ERC synergy project "Hidden, Entangled and Resonating Orders", G. Aeppli, H. Rønnow, N. Spaldin and A. Balatsky

HERO Layout and Machine Side Hardware

- Modulator (about 1.5 m)
- Chicane
 - Identical copy of the two-color chicane with an delay of up to 500 fs (max R_{56} is 300 $\mu m)$
- Vacuum chamber for SATCL01-MBND300 with Laser Incoupling
- 2 Screens (before and after modulator for overlap)
 - Electron beam, Laser beam at fundamental, 2nd and 3rd harmonic
- 1 BPM next to one of the screen
- 1 QFD magnets close to the exit of SATCL01-MBND300 to control beamsize in Modulator

Certain elements after SATDI01-DBCM010 needs to be redistributed to fit in modulator.

- Optimized for resonance between 266 to 800 nm
- Crude definition (needs feedback from ID group):
 - Period Length about 25 cm, 6 periods, maximum K ~ 25
 - Shorter period, higher K would be even better.
 - $-800 \text{ nm} \rightarrow \text{K} = 22.3, 266 \text{ nm} \rightarrow \text{K} = 9.1$

Best energy transfer at 800 nm for w_0 =350 micron $\rightarrow z_R$ = 50 cm

Energy Scaling

- Central wavelength of 800 nm but transport and incoupling should support fundamental, 2nd and 3rd harmonics.
- Maximum pulse length of 100 fs RMS to guarantee "easier" overlap with electron beam, though shorter pulses (down to 10 fs) are also beneficial
- "Coarse" longitudinal overlap (<~50 ps-level) achieved with OTR foil and photodiode + oscilloscope (screen position after the modulator, no COTR suppression geometry).
- Overlap achieved with BPM/Screen combos before and after modulator and longitudinal phase-space measurement with X-band TDS. E-beam feedback signals to preserve overlap are the BPMs and the BAM next to the modulator.

SwissFEL laser system for HERO and EEHG

SwissFEL laser system for HERO and EEHG cont.

Laser system:

- Amplifiers 1 and 2 are existing PSI hardware, a few modifications and upgrade are required
 - ✓ Minimize laser procurement costs
 - ✓ Redundancy given by 2 twins systems
 - ✓ Low time jitter expected on target
- Possible providers for the optical oscillator are being evaluated

Infrastructure:

General 3D design of the laser laboratory, transfer line and launching optics is in progress

Operation Modes with HERO

Each Mode has different specification regarding seed power and wavelength.

R₅₆ [µm]

R₅₆ [µm]

- Model structure can be much more pronounced if an energy modulation is converted into a current distribution before the undulator.
- Requirement for the laser are reduced (example is for 400 MW, 100 μJ for 100 fs pulse length)

Typical characteristics:

- Modal structure much more clearer
- Superradiance growth after saturation over the "in between the current spikes" part of the bunch
- Short pulses (~300 as FWHM) after superradiant narrowing

- Instead of localizing radiation at a current spike, pulse is formed along rising slope in energy modulation
- Towards longer wavelength with stronger slippage an inter-undulator taper is needed (by means of TGU configuration), at 1 nm here a stepwise taper is sufficient.
- As ESASE drive laser period length defines spacing of radiation pulses.

Slicing – Pulse Length Control

- Slicing offers a control on pulse duration by overtapering with the cost of reduced output power
- Over-tapering makes the spike slip into absorption phase and gets "eaten" up at its head
- Ideal slippage length for "nearly" single spike" is a quarter seed wavelength for saturation.
- This can be further controlled with artificial delays (CHIC)
 - to enhance slippage at higher photon energies
 - To jump to next modulation at lower photon energies

ESASE vs Slicing

ESASE	Slicing	
Works better at higher photon energies	Works better at lower photon energies	
Needs less energy modulation but requires chicane (CSR + LSC effects)	Needs only energy modulation but larger than ESASE	
Gain length shorter than SASE	Gain length as for SASE or even longer for shorter pulses)	
No control on single spike pulse length	Control on single spike pulse length	
Might work better for Mode-locked lasing	Might work better for pulse length control by using CHIC	
Supports isolated pulses with e-beam slicing (laser heater notch, emittance spoiler foil)	Supports isolated pulses with e-beam slicing (laser heater notch, emittance spoiler foil)	

Mode-coupled and phase-locked pulses

SASE

The temporal output power is noisy, comprising phase-uncorrelated pulses (modes) with average separation $<2\pi I_c$, $I_c = \lambda/4\pi \rho$ the cooperation length)

Mode-coupled pulses

Increase of the cooperation length via chicanes, to couple between different SASE modes

Phase-locked pulses

By introducing an interaction modulation, the modes may become phase locked.

Temporal train of equally spaced, short, high-power pulses phase correlated over long distance

[N.R. Thompson, B. W. J. McNeil, PRL 100, 203901 (2008)]

Summary HERO modes

- 1. Attosecond pulse trains
- 2. Isolated attoseconds pulses with e-beam masking
- 3. Phase-locked pulse trains by either Mode-locked or coherent harmonic generation operation
- 4. Upgrade to EEHG configuration is straightforward.

HERO financed, implementation planned for 2021 EEHG looking for funding, implementation not before 2022

- Six Parameters:
 - Seed wavenumber $k = 2\pi/\lambda_s$
 - Harmonic number h
 - Energy Modulation $A_{1,2} = \Delta E / \sigma_E$
 - Dispersion Strength $B_{1,2} = k R_{56} \sigma_{E}/E$

EEHG at Athos (Case 1 - 1 nm)

FEL sensitive to increasing energy spread:

$$\sigma_E^{FEL} = \sigma_E \sqrt{1 + A_1^2 + A_2^2}$$

Assuming ideal compression (no LH, 500 keV @ 3 kA)

- I = 3 kA \rightarrow A₂ < 1.7
- I = 6 kA \rightarrow A₂ < 1.7
- $I = 2 \text{ kA} \rightarrow A_2 < 0.9 (A_1 = 2)!$

Consequences:

- Limitation in laser power
- Very strong chicanes (B₁=156)

R₅₆ = 40 mm

- Comparable to BC2 (17 m)
- Degradation by IBS + CSR
- Larger spread degrades performance:
 - 1 MeV @ 3 kA: A₁ = 1, A₂ = 1

- Bending angle: 2 degree
- Total length: 4 m
- For second chicane: R56 < 100 μ m (two-color chicane)

Upgrade from ESASE/Slicing configuration:

- About 5 m for first chicane
- About 2 m for second modulator
- Second seed laser (possible split of slicing laser)

<2 nm might be possible (harmonic EEHG) with same hardware

Full compressed 10 pC as-pulse enabled by large chicane

"Standard" EEHG promising for $\lambda{\approx}2\text{-}4nm$

For $\lambda \approx 1$ -2nm required A₂ energy spread too large for acceptable gain length

⇒ EEHG + HGHG stage with fresh bunch under study for 1 nm lasing with external seeding

Photon facility roadmap

time structure with Athos

Fast extraction at 3 GeV allows to serve 2 undulator lines simultaneously at full 100Hz repetition rate

Page 40

time structure with Athos and Porthos

Fast extractions at 3 GeV and 5.8 GeV allow to serve 3 undulator lines simultaneously at full 100Hz repetition rate

Beam Dur

Space for undulatorline available in existing building

HB 700

z = 660 7 = 660 7 = 660

нв 600 (

Im Dumo ATHOS

m 086 = 2 = 1 = 000 Space reservation for

new experimental hall

Porthos option C: "FEL² seeding"

similar photon energy as Aramis but with external seeding from second low energy FEL

Promises full coherent control at shortest wavelength

Key R&D on FEL physics, seed laser and timing tolerances required

ATHOS, the 2nd FEL line of SwissFEL dedicated to soft X-rays, is starting beam commissioning now.

ATHOS capabilities will be augmented in 2021 with the HERO set-up for beam manipulation by a dedicated TiSa laser, a modulator-undulator and a R_{56} chicane.

EEHG is a logical extension of the HERO set-up, pushing the wavelength of EEHG to 1nm. EEHG is presently under consideration for ≥2022.

One option for the long term, \geq 2025, evolution of SwissFEL is a 3rd FEL line PORTHOS with an external seeding scheme.