

Self-seeding methods at the European XFEL

Gianluca Geloni, Vitali Kocharyan, Evgeni Saldin

- Self-seeding Motivations & principle for HXRSS
- Plans for HXRSS implementation at European XFEL
- Ideas beyond the baseline (under discussion)
- Conclusions

Contents

Motivations for Self-seeding & working principle

SASE pulses, baseline mode of operation: poor longitudinal coherence

Figure 5.2.4 Temporal (top) and spectral (bottom) structure for 12.4 keV XFEL radiation from SASE 1. Smooth lines indicate averaged profiles. Right side plots show enlarged view of the left plots. The magnetic undulator length is 130 m.

Source: The European XFEL TDR - DESY 2006-097 (2006)

$$\frac{\Delta\omega}{\omega} \sim 2\rho \sim 10^{-3}$$
$$\left(\frac{\Delta\omega}{\omega}\right)_{spike} \sim \frac{1}{\sigma_T \omega} \sim 10^{-5}$$

- Hundreds of longitudinal modes
- A lot of room for improvement
- Self-seeding schemes [Method historically introduced for soft xrays in: J. Feldhaus et al., Optics Comm. 140, 341 (1997)] answer the call for increasing longitudinal coherence, but needed major baseline changes

First part: usual SASE FEL process

European

- Weak chicane acts as a tunable delay line, washes out microbunching, creates transverse offset
- The photon pulse from SASE goes through the monochromator
- Photon and electron pulses are recombined

G. Geloni, V. Kocharyan and E. Saldin, J. of Modern Optics 58, 1391 (2011).

The single-crystal monochromator principle: frequency domain

The single-crystal monochromator principle: frequency domain

The single-crystal monochromator principle: frequency domain

The single-crystal monochromator principle: what happens in the time domain?

10

The single-crystal monochromator principle: time domain

11

The single-crystal monochromator principle: time domain

12

The single-crystal monochromator principle: time domain

13

The single-crystal monochromator principle: time domain

G. Geloni, V. Kocharyan, E. Saldin, SSSFEL Workshop, Trieste, 10.12.2012

Experimental verification at the LCLS (Jan 2012)

J. Amann et al., Demonstration of self-seeding in a hard-X-ray free-electron laser, NATURE PHOTONICS DOI: 10.1038/NPHOTON.2012.180 (2012)

Plans for HXRSS implementation at the European XFEL

European

Plans for HXRSS at the European XFEL

European XFEL pulse repetition rate ~ 27000 Hz \rightarrow compromise in the first undulator length (heat loading!)

European Plans for HXRSS at the European XFEL

20

14.0 GeV – 30 pC Working point for HXRSS @ SASE1/2

Plans for HXRSS at the European XFEL

G. Geloni, V. Kocharyan, E. Saldin, SSSFEL Workshop, Trieste, 10.12.2012

Plans for HXRSS at the European XFEL

22

0,0

0,15008

0,15012

0,15010

0,15014

λ[nm]

0,15016

0,15018

0,15020

G. Geloni, V. Kocharyan, E. Saldin, SSSFEL Workshop, Trieste, 10.12.2012

-15

-10

s[µm]

0

-5

0,0-

-25

-20

0,0

-0,002

0,000

θ[mrad]

0,000

0,002

0

50

z[m]

100

150

0,1

0,0

x,y[mm]

0,0

-0.1

Plans for HXRSS at the European XFEL European 24 17.5 GeV – 100 pC -Working point for HXRSS @ SASE1/2 1 Chicane Weak chicane 7 cells 21 cells 7 cells Self-seeded X-ray pulse Single crystal electrons Output undulator Output undulator SASE undulator (uniform) (tapered) 2 Chicanes Weak chicane Weak chicane Self-seeded 3 cells 23 cells 4 cells 5 cells X-ray pulse Single crystal Single crystal electrons Output undulator Output undulator SASE undulator SASE undulator (uniform) (tapered)

Power after 7 cells

Power after 5 cells

26

2 Chicanes **1** Chicane 5x10⁴ 1,0x10⁶ 4x10⁴ 8,0x10⁵ 3x10⁴ P[W] 6,0x10⁵ P[W] 2x10⁴ 4.0x10⁵ 1x10⁴ 2,0x10⁵ 0 -25 -20 -15 -10 -5 -15 -10 -5 -25 -20 2e5W s[µm] s[µm] Seed after 7 cells Seed after 5 cells

G. Geloni, V. Kocharyan, E. Saldin, SSSFEL Workshop, Trieste, 10.12.2012

2 Chicanes

Before the second crystal Power ~ before the first Spectrum has a monochromatic spike, with large background

28

1 Chicane 2 Chicanes 4x10⁵ 1,0x10⁶ 8,0x10⁵ 3x10⁵ 6,0x10⁵ P[W] 2x10⁵ P[W] 4.0x10⁵ 1x10⁵ · 2,0x10⁵ 0 -15 -10 -5 -25 -20 2e5W -15 -10 -5 -25 -20 s[µm] s[µm] Seed after the second crystal Seed after 7 cells 5 cells + 4 cells

Plans for HXRSS at the European XFEL

17.5 GeV – 100 pC -Working point for HXRSS @ SASE1/2

29

G. Geloni, V. Kocharyan, E. Saldin, SSSFEL Workshop, Trieste, 10.12.2012

30

2 Chicanes 1 Chicane 1,00E+017 1,0x10¹⁷ 8,00E+016 8,0x10¹⁶ P(ג)[A.U.] 6,00E+016 ['N'V](') 4,00E+016 6,0x10¹⁶ 4,0x10¹⁶ 2,0x10¹⁶ 2.00E+016 0,0 0,00E+000 0.1512 0.1510 0.1506 0,1508 0,1508 0,1510 0,1512 0,1506 λ[nm] λ[nm] 1,00 0,4 variance or energy riuctuations 0,0100 0,008 /ariance of energy fluctuations 0,75 0,3 0,0075 0,006 0,50 EIJ 0,2 0,004 0,25 0,1 0,0025 0,002 0.00 0,0000 0,0 0,000 50 100 150 100 50 150 ò 100 Ó 50 100 150 z[m] z[m] z[m] z[m]

G. Geloni, V. Kocharyan, E. Saldin, SSSFEL Workshop, Trieste, 10.12.2012

Present status:

- Supported by MB
 Supported by SAC, MAC
 Supported by Council
- Need to start detailed design

Ideas beyond the baseline

Present status:

An idea by V.K., E.S., G.G.Discussions taking place

Motivation: imaging of interesting biological structures

		NON-VARIABLE	VARIABLE
PERIODIC		Nanocrystals	DNA, microtubules, viral capsides
NON-PERIODIC	;	Viruses, molecular machines	Small cells, organelles
	l F I I	nteresting biostructure size vary: 1 Resolution required ~ 0.3 nm N. Biostructures < 10nm ~ 16 N. Biostructures 10nm-600nm ~ 16 → Focal spot requirements varies v	10nm – 1000nm e5 e9 with size

Source Requirements - Nanocrystallography (LCLS-II New Instruments Workshop rep.):

- TW-level peak power (focused down to 0.3-3 micron diameter)
- Variable energy range between 2keV and 14 keV

Source Requirements - Non-periodic samples (LCLS-II New Instruments Workshop rep.): >1e13 – 1e14 ph/pulse (focused down to 1-3 micron spot) >Variable energy range between 3keV and 5keV; 0.5keV – 2keV for largest objects

- > Sketch is not in scale: (40+4) cells x 6.1 m ~ 270 m (SASE1-2 \rightarrow 35 cells)
- Scheme makes use of SASE3 type undulators (energy tunability)
- ➢ Great flexibility ← → elaborated design: combination of self-seeding, fresh-bunch, undulator-tapering techniques

Full energy range can be covered with two electron beam energies (10.5 GeV – 17.5 GeV ; 100 pC):

- A) e-beam in the 10.5 GeV operation mode:
- i. Water window (C K-edge @ 0.28 keV O K-edge @ 0.54 keV)
- B) e-beam in the 17.5 GeV operation mode:
- i. 2 keV 3 keV (Sulfur K-edge @ 2.472 keV)
- ii. 3 keV 5 keV
- iii. 5 keV 7 keV
- iv. 7 keV 9 keV
- v. 9 keV 13 keV (Selenium K-edge @ 12.66 keV)

Little or no interference with other European XFEL beamlines Dedicated operation for >4000 hours/year

Operation in the water window and beyond (< 1keV)

Operation in the water window and beyond (< 1keV)

Operation in the energy range: 3 keV – 5 keV

Operation in the energy range: 3 keV – 5 keV

Operation in the energy range: 3 keV – 5 keV

Operation in the energy range: 5 keV – 7 keV

Operation in the energy range: 5 keV – 7 keV

Operation in the energy range: 7 keV – 9 keV

Operation in the energy range: 7 keV – 9 keV

Operation in the energy range: 9 keV – 13 keV

Operation in the energy range: 9 keV – 13 keV

Operation in the energy range: 9 keV – 13 keV

European

-After experimental confirmation of HXRSS principle efforts are underway to enable HXRSS at the European XFEL

- Two-chicane setup bears advantage in case of high rep-rate
- Different operation points are under study
- Implementation would yield ~ 1TW with the baseline setup
- -Ideas beyond the baseline are under discussion
- Dreaming big: a recipe for a dedicated bio-imaging source at European XFEL