

FEL experiments at SPARC

Franco Ciocci

ENEA C.R. Frascati

Seeding and Self Seeding at New FEL sources 10 December 2012

The SPARC FEL scientific staff

D. Alesini, M. Anania, A. Bacci, M. Bellaveglia, E. Di Palma, M.
Castellano, E. Chiadroni, A. Cianchi, F. Ciocci, G. Dattoli, M. Del Franco,
D. Di Giovenale, G. Di Pirro, A. Drago, M. Ferrario, A. Gallo, G. Gatti, L.
Giannessi, A. Mostacci, E. Pace, A. Petralia, V. Petrillo, R. Pompili, M.
Quattromini, J.V. Rau, C. Ronsivalle, A. R. Rossi, E. Sabia, I.
Spassovsky, V. Surrenti, C. Vaccarezza, F. Villa

JEN UNFN

Outline

- SPARC FEL device
- Overview on the SPARC LAB projects
- SPARC FEL : past and present experimental activity
- Upgrade of the actual configuration
- A possible layout for self-seeding at SPARC
- Conclusions

Linac modules & Solenoid

RF Gun & Solenoid Solenoid ~3 kG Input Power 14 MW Max Acc. Field @ cathode ~ 130 MV/m

> Photoinjection: 0.5 TW Ti:Sa laser system

UCLA/BNL/SLAC design 1.6 cells RF injector
 Three TW S-band modules

Maximum energy 180 MeV Focusing solenoids on the first two modules (longitudinal compression via velocity bunching)

Undulator sequence

Undulator termination with phase shifter

6 undulator sections (ACCEL Gmbh)
77 periods each
Period 2.8cm / K max ~2.3
Phase shifters between the modules

Overview on the main SPARC LAB projects

THz Radiation

FEL

Coherent Transition (CTR) on a silicon aluminated radiator 100 GHz – 5THz

PWFA_COMB

Particle Wake Field Acceleration

300 TW, < 25 fs Ti:Sa laser

Thomson

LWFA_Ext

Thomson Backscattering 20-550 keV

Laser Wake Field Acceleration in plasma capillary

SPARC FEL: past and present experimental activity

Past FEL experiments

SASE experiments in 2010 ...

SASE*

SINGLE SPIKE** (Combination of e-beam chirp & taper)

Substantial increase of Pulse energy

Energy 140 uJ (max 380 uJ) Rel Linewidth 0.8% rms

TWINS*** (Two simultaneous spikes ~560 fs separation)

+

L.Giannessi et al. Phys. Rev. ST Accel.
 leams 14, 060712 (2011)
 L.G. et al. PRL 106 144801 (2011)
 G. Marcus et al. APL. 101, 134102 (2012);

SPARC Seeded Operation (2010)

• Seed modes:

- Low pulse energy seeding: 266 nm & 160 nm generated in gas
- High pulse energy seeding: 400 nm in BBO crystal

Low intensity seeding

Beam parameters (3-4/6/2010)Transverse emittances ~ 2 mm mrad Peak current 45 A

Wavelength 266 nm (3° harmonic of Ti:Sa in Ar, E~50 nJ (±20nJ)

Seed

Wavelength 160nm (5° harmonic of Ti:Sa in Ar,, E<< 1nJ)

Cascaded FEL seeded with harmonics generated in gas

• Seed @ 266 nm / ~50 nJ

(4/6/2010) Seed @ 400 nm 2 uJ - 1 UM tuned at 400 nm – 5 UM tuned @ 200nm

Seeded SPARC spectral range

	1	2	3	4	5	6	7	8	9
						-	-		
\Rightarrow	400	200	133.3	100	80	66.7	57.1	50	44.4
\Rightarrow	266.7	133.3	88.9	66.7	53.3	44.4	38.1	33.3	29.6
\Rightarrow	160	80	53.3	40	32	26.7	22.9	20	17.8
\Rightarrow	114.3	57.1	38.1	28.6	22.9	19	16.3	14.3	12.7

armonics

Seed/Fundamental

Pulse energy vs. wavelength (~ 50-60A / 178MeV)

Mode of operation	SASE	Seeded		
Wavelength	500 nm	200nm	133 nm	66nm*
Energy/pulse (~ 100 fs)	~100 µJ	~10 µJ	~1 µJ	~100 nJ
# photons	2.5 x 10 ¹⁴	1 x 10 ¹³	6 x 10 ¹¹	3 x 10 ¹⁰

SPARC MAX ENERGY 178 MeV

11

36.4

(b) Reconstructed FROG Trace

FEL Seeding

In vacuum spectrometer (Luxor)

Laboratory for UV and X-ray Optical Research

FROG diagnostic

PBPL

Particle Beam Physics Laboratory

Università di Milano

- Matteo D. Alaimo
- Marzio Giglio
- Michele Manfredda
- Marco A.C. Potenza
- Daniele Redoglio

Testing coherence with small spheres

Sample: • Colloidal particles in water suspension

- Polystyrene (n=1,59)
- d= 2,1µm

Laser COMB technique

Comb FEL

A train of laser pulses at the cathode by birefringent crystal

The technique used for this purpose relies on a birefringent crystal, where the input pulse is decomposed in two orthogonally polarized pulses (ordinary, extraordinary) with a time separation proportional to the crystal length. Different crystal thickness are available (10.353 mm in this case). Putting more crystals, one can generate bunch trains (e.g. 4 bunches). The intensity along the pulse train can be modulated $\Delta \tau = (1/v_{go} - 1/v_{ge})L_1$

Comb FEL

1 520

2500

 $\int dt = 14$ The separation is the separation is

ot I =140 fs, σt II =270 fs T_{separation}≈0.8 ps ε_{x,y}(100%) = 6.2.4.4 mm-rad ε_{x,y} (90%) = 5.8,4.0 mm-rad E_{spread} 0.16% and 0.4% Energy separation ≈ 1.2 MeV

Comb FEL now

Interesting operation points:

1- MAX COMPRESSION REGION: two pulses spatially superimposed,

separated in energy

Charge: 160-180 pC (i.e. 80-90 pC/bunch) Energy distance:1.2-1.5MeV (well separated,that means low energy spread in the single bunches) Energy: 85 MeV Almost equal current

2- OVER COMPRESSION REGION: two pulses with the same energy

separated in space

Charge: 160-180 pC (i.e. 80-90 pC/bunch) Same Energy Temporal separation: to be explore Energy: 85 MeV Almost equal current

18 MAY: MAX. COMPRESSION-Q=180pC.Measurements

12h_26m_00s Whole Bunch_CR_8

1- *Two pulses spatially superimposed, separated in energy*

Problems:

What we expect from this experiment? Is the dynamics that of two independent lasers if the energies are sufficiently well separated?

Is the field evolution characterized by interference effects or beating waves during the growth inside the undulator?

Is the SVEA approximation adequate?

A rich phenomenology can be observed as e.g. stimulated beating waves

Electron beam

Parameter	Last Experimental beam (7/12/2012)	Simulated beam
Charge	160 pC	160 pC
Beam energy (total)	MeV	86.1 MeV
Beam 1 energy Beam 2 energy		85.1 MeV 86.9 MeV
Emittance_x	mm mrad	1.5 mm mrad
Emittance_y	mm mrad	1.5 mm mrad
Energy spread beam1 beam2		6.5e-4 4.3e-4
Length separation	ps	0
Total length	ps (?)	0.5 ps
Energy separation		1.4

Simulations with Genesis

Simulations with Perseo

Upgrade of the actual configuration

= 1.4 cm

2 x 1.4 m C-band to be installed

Alternative seed sources Kagomé fibers

1 S-band

to be

Max Planck Institute or the science of light

New short period undulator to be installed (ENEA - Kyma)

SPARC-FEL: future developments

DELTA like undulator (Under measurement at ENEA)

 $\lambda u = 14.0$ mm, gap g = 5mm, Br = 1.22T.

Undulator test in two possible configuration with the actual accelerator:

1)Two stage SASE-FEL cascade: 450nm to 150 nm

2)Three stage seeded FEL cascade: 400nm – 200nm – 100nm

MA undulator

New UN

Two stages SASE-FEL cascade: 450nm - 150nm

Three stages cascade – seed at 400nm – final λ =100nm

Proceedings of FEL2011, Shanghai, China

NEW TUNABLE DUV LIGHT SOURCE FOR SEEDING FREE-ELECTRON LASERS

N.Y. Joly^{2,1}, P. Hölzer¹, J. Nold¹, W. Chang¹, J. C. Travers¹, M. Labat³, M-E. Couprie³ and P. St.J. Russell^{1,2}

Photonic crystal fibre (HC-PCF) filled with argon is able to generate an diffraction-limited DUV pulse of 50 nJ and fs duration, continously tunable from 150 to 320 nm. This source is considered to be very attractive to seed SPARC-FEL.

Table 1: parameters used for Genesis simulation in the				
case of seeding of SPARC-FEL				

E-beam			
Energy	170 MeV		
Current	50 A		
Emittance	1.5 ⊓.mm.rad		
Energy spread	2×10 ⁻⁴		
Undulator			
Period	28 mm		
Nb. periods/section	77		
Nb. of sections	6		
Deflexion parameter	K = 0 to 3.4		
Seeding pulse			
Wavelength	150 nm	300 nm	
Energy/pulse	<10 nJ	<80 nJ	
Pulse duration	10 fs	15 fs	
Peak Power	1 MW	5 MW	

Figure 5: Simulations using the Genesis code with parameters given in Table 1.

Hollow Core Photonic Crystal (Kagome') Fiber

- Propagation of self compressed Solitons
- Emission of resonant dispersive wave at phase matched wavelength in the UV
- Tunable emission with Ar pressure 150-320 nm

2013 FEL Conference

SEEDING OF SPARC-FEL WITH A TUNABLE FIBRE-BASED SOURCE

Nicolas Yann Joly (University of Erlangen-Nuremberg, Erlangen-Nuremberg), Giovanni De Ninno, Benoît Mahieu (ELETTRA, Basovizza), Franco Ciocci, Luca Giannessi, Alberto Petralia, Marcello Quattromini (ENEA C.R. Frascati, Frascati (Roma)), Giancarlo Gatti (INFN/LNF, Frascati (Roma)), Julietta V. Rau (ISM-CNR, Rome), Vittoria Petrillo (Istituto Nazionale di Fisica Nucleare, Milano), Wonkeun Chang, Philipp Hölzer, KaFai Mak, Philip Russell, Francesco Tani, John Colin Travers (Max Planck Institute for the Science of Light, Erlangen), Serge Bielawski (PhLAM/CERCLA, Villeneuve d'Ascq Cedex), Marie-Emmanuelle Couprie, Marie Labat, Takanori Tanikawa (SOLEIL, Gif-sur-Yvette)

Proceedings of FEL2009, Liverpool, UK

SELF SEEDING CONFIGURATION AT SPARC

L. Giannessi, M. Labat, ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati, Italy A. Bacci, INFN Via Celoria 16 20133 Milano, Italy

B. Spataro, INFN LNF Via E. Fermi 40, 00044 Frascati, Italy

Conclusions

Future developments: ENERGY Upgrade to 220 – 245 MeV

- Compressed beam operation with a reduced energy chirp
- Seeding at higher frequencies
- Harmonic cascade and spectral range extended to the EUV

+ FEL physics experiments:

- Wavefront characterization of the FEL beam (Seeded/SASE)
- Developments on short undulators
- Seeding with «alternative» sources in the UV/VUV range
- FEL dynamics pulse length characterization gain & index of refraction

SPARC is a FEL-FACILITY within a different framework, it is indeed operating as a tool for the development of FEL physics and possible new schemes ,open to scientific collaboration to enhance the performance and the perspectives of the present FEL devices as well as to test diagnostics and physical effects on e-beam and FEL source.