Interaction between matter and radiation: an introduction

Overview of the basic processes Classical approach Semi-classical approach

Basic elements to follows lectures

Relativistic effects

Main interactions

Indirect effects: decay processes

Scattering: Elastic Scattering: Diffraction, SAXS Inelastic Scattering: Compton, IXS Resonant scattering: RIXS

The cross section σ

 $1 \text{ barn} = 10^{-24} \text{ cm}^2$

Origin of the cross section

Absorption Photons are removed from the beam $\sigma_{abs.}$

Scattering Photons are scattered into a different direction $\sigma_{scatt.}$

Total cross section $\sigma = \sigma_{abs. +} \sigma_{scatt.}$

Differential Cross Section $d\sigma/d\Omega$

Total cross section σ of atoms

1 Barn = 10⁻²⁴ cm²

Absorption cross section σ of atoms

Absorption cross section σ of atoms

Cross section & Probability

Cross Sections: Classical definition

$$\frac{\mathrm{d}\mathbf{I}}{\mathrm{d}\Omega} = \mathbf{I}_{0} \times \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) \times \left(\begin{array}{c}\rho \mathrm{d}\mathbf{X}\\\end{array}\right)$$

Differential cross section: it is the differential power scattered in $d\Omega$ normalized to the incoming power and to the scattering objects

 σ is the intensity lost for absorption normalized to the incoming power and to the absorption object

$$\frac{\mathbf{dI}}{\mathbf{I}_{in}} = -\sigma \rho \mathbf{dx}$$

Matter ←Interaction → Radiation I

Classical approach

Radiation: Electromagnetic waves described by Maxwell equations

Matter:

Macroscopic optical constants

Deeper: microscopic description of the matter as an ensemble of classical oscillator

Plane Wave in vacuum

k is the wavevector; it gives
the direction of the propagation
the wavelength of the radiation

$$\left|\vec{\mathbf{k}}\right| = \frac{2\pi}{\lambda_{0}}$$

$$\vec{\mathbf{k}} = \frac{2\pi}{\lambda_0} \hat{\mathbf{k}} = \frac{\omega}{c} \hat{\mathbf{k}}$$

The radiation moves with a speed equal to c

Associated to the radiation there is an energy density w equal to: $w = \frac{1}{2} \varepsilon_0 E_0^2$

The intensity I of the beam is equal to I = wc = $c \times \frac{1}{2} \varepsilon_0 E_0^2$

Plane Wave in matter

$$\vec{\mathbf{E}} = \vec{\mathbf{E}}_{0} \mathbf{e}^{i\vec{\mathbf{k}}\vec{\mathbf{r}}-\omega t}$$
$$\vec{\mathbf{B}} = \vec{\mathbf{B}}_{0} \mathbf{e}^{i\vec{\mathbf{k}}\vec{\mathbf{r}}-\omega t}$$

$$\vec{\mathbf{k}}$$
 is the wavevector

$$\left| \vec{\mathbf{k}} \right| = \frac{2\pi}{\lambda}$$

$$\mathbf{v} = \frac{1}{\sqrt{\mu \ \varepsilon}} = \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \frac{c}{\sqrt{\mu_r \varepsilon_r}} = \frac{c}{n}$$

Dispersion relation:

$$\mathbf{k}^{2} - \mu \varepsilon \omega^{2} = \mathbf{0} \Longrightarrow \mathbf{k}^{2} - \frac{1}{\mathbf{v}^{2}} \omega^{2} = \mathbf{0} \Longrightarrow \frac{2\pi}{\lambda^{2}} - \frac{\omega^{2}}{\mathbf{v}^{2}} = \mathbf{0}$$

 $\lambda \omega = 2\pi v$

E.M. Waves in matter

$$n=(\epsilon_r \mu_r)^{1/2}$$
refraction index

$$|\vec{\mathbf{v}}| = \frac{1}{\sqrt{\mu_{o}\mu_{r}\epsilon_{o}\epsilon_{r}}} = \frac{c}{\sqrt{\mu_{r}\epsilon_{r}}} = \frac{c}{n}$$

Non magnetic medium: $\mu_r = 1$ Generally: $\varepsilon_r > 1 \rightarrow n > 1$

$$\left| \vec{\mathbf{v}} \right| = \frac{\mathbf{c}}{\mathbf{n}} < \mathbf{c}$$

In the matter the light is slower than in the vacuum

In the matter the wavelength is shorter than in the vacuum

$$\left|\vec{\mathbf{k}}\right| = \frac{2\pi}{\lambda_0} \times \mathbf{n}$$

Origin of the dielectric function (qualitative)

The electric field of the radiation cause a motion of the microscopic charges

Electrons and nuclei moves in opposite directions giving rise to fluctuating microscopic electric dipoles

Dipoles generate additional electric fields that adds to the radiation ones

The dielectric function describe the relation between the e.m. field and the induced dipoles: it is a complex quantity Real part → amplitude relation Imaginary part → phase relation

Complex dielectric function

$$\varepsilon = \varepsilon_0 \varepsilon_r = \varepsilon_0 (\varepsilon_1 + i\varepsilon_2)$$

$$n^2 = \varepsilon_r = \varepsilon_1 + i\varepsilon_2$$

n is complex
$$n=n_r+i\beta$$

$$\mathbf{n}_{r} = \left[\frac{\varepsilon_{1} + \left(\varepsilon_{1}^{2} + \varepsilon_{2}^{2}\right)^{\frac{1}{2}}}{2}\right]^{\frac{1}{2}} \cong \sqrt{\varepsilon_{1}}$$

$$\beta = \left[\frac{-\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{\frac{1}{2}}}{2} \right]^{\frac{1}{2}} \cong \frac{1}{2} \frac{\varepsilon_2}{n_r}$$

Complex wavevector

$$\vec{k} = \frac{2\pi}{\lambda} \hat{k} = \frac{2\pi}{\lambda_0} n\hat{k} = \frac{\omega}{c} n\hat{k} \text{ is complex}$$
$$\vec{k} = \vec{k}_r + i\vec{k}_i = (k_r + ik_i)\hat{k}$$
$$\vec{k}_r = \frac{\omega n_r}{c}\hat{k}$$
$$\vec{k}_r = \frac{\omega \beta}{c}\hat{k}$$
$$\vec{k}_r = \frac{\omega \beta}{c}\hat{k}$$
$$\vec{k}_r = \frac{\omega \beta}{c}\hat{k}$$

Wave-damping: Absorption coefficient

$$\vec{\mathbf{k}} = \vec{\mathbf{k}}_{r} + i\vec{\mathbf{k}}_{i} = \frac{\omega}{c} (\mathbf{n}_{r} + i\beta) \hat{\mathbf{k}}$$

$$\vec{\mathbf{E}} = \vec{\mathbf{E}}_{0} e^{i(\vec{\mathbf{k}}\vec{r} - \omega t)} = \vec{\mathbf{E}}_{0} e^{i(\vec{\mathbf{k}}_{r}\vec{r} - \omega t)} e^{-\vec{\mathbf{k}}_{i}\vec{r}}$$
Standard plane wave
as in vacuum with
 $\lambda = \lambda_{0}/n$

$$\vec{\mathbf{k}}_{i} = \frac{\omega\beta}{c} \hat{\mathbf{k}}$$
Amplitude
reduction
$$\vec{\mathbf{k}}_{i} = \frac{\omega\beta}{c} \hat{\mathbf{k}}$$
Intensity $\mathbf{I} \ll \mathbf{E}^{2}$
Absorption coefficient μ

$$\mathbf{I}(\mathbf{r}) = \mathbf{I}_{0} e^{-2\vec{\mathbf{k}}_{i}\vec{r}} = \mathbf{I}_{0} e^{-\mu \mathbf{X}}$$

$$\mu = 2\mathbf{k}_{i} = \frac{2\omega\beta}{c} \cong \frac{\omega\varepsilon_{2}}{2c}$$

Kramers-Kronig Relation

The real and imaginary parts of the dielectric function depend one on the other

$$\varepsilon_{1}(\omega) - 1 = \frac{2}{\pi} \int_{0}^{\infty} \frac{\overline{\omega} \varepsilon_{2}(\overline{\omega})}{\overline{\omega}^{2} - \omega^{2}} d\overline{\omega}$$

$$\varepsilon_{2}(\omega) = \frac{2\omega}{\pi} \int_{0}^{\infty} \frac{\varepsilon_{1}(\overline{\omega}) - 1}{\overline{\omega}^{2} - \omega^{2}} d\overline{\omega}$$

Causality: the dipole moment P(t) at time t is determined only by the values of the electric field at time t'≤ t

Microscopic model

The matter is composed of positive and negative charges

At equilibrium the positive and negative charges do not give rise to any dipole moment

Oscillating negative charge Damped oscillator

$$\frac{d^{2}\vec{r}}{dt^{2}} + \gamma \frac{d\vec{r}}{dt} + \omega_{0}^{2}\vec{r} = \frac{e}{m}E_{0}e^{i\omega t}$$

Induced dipole moment

$$\frac{d^{2}\vec{r}}{dt^{2}} + \gamma \frac{d\vec{r}}{dt} + \omega_{0}^{2}\vec{r} = \frac{e}{m}\vec{E}_{0}e^{i\omega t}$$
In stationary condition

$$\vec{r} (t) = \vec{r}_{0}e^{i\omega t}$$

$$\left(-\omega^{2} + i\gamma\omega + \omega_{0}^{2}\right)\vec{r}_{0}e^{i\omega t} = \frac{e}{m}\vec{E}_{0}e^{i\omega t}$$

$$\vec{r}_{0} = \frac{e\vec{E}_{0}}{m}\frac{1}{(-\omega^{2} + i\gamma\omega + \omega_{0}^{2})}$$

$$\vec{p}(t) = Ze\vec{r}(t) = \frac{Ze^{2}\vec{E}_{0}}{m}\frac{1}{(-\omega^{2} + i\gamma\omega + \omega_{0}^{2})}e^{i\omega t}$$

Dielectric function

N = number of atoms per unit volume

$$\vec{\mathbf{P}} = \boldsymbol{\varepsilon}_{0} \boldsymbol{\chi} \vec{\mathbf{E}}$$
$$\boldsymbol{\varepsilon}_{r} = \mathbf{1} + \boldsymbol{\chi}$$

$$\vec{\mathbf{P}}(t) = N\vec{\mathbf{p}} = \frac{N\mathbf{Z}e^{2}\vec{\mathbf{E}}_{0}}{\mathbf{m}} \frac{1}{\left(-\omega^{2} + i\gamma\omega + \omega_{0}^{2}\right)}e^{i\omega t}$$

$$\chi = \frac{N \mathbf{Z} \mathbf{e}^{2}}{\mathbf{\varepsilon}_{0} \mathbf{m}} \frac{1}{(-\omega^{2} + \mathbf{i} \gamma \omega + \omega_{0}^{2})}$$

$$\varepsilon_{r} = 1 + \chi = 1 + \frac{NZe^{2}}{\varepsilon_{0}m} \frac{1}{(-\omega^{2} + i\gamma\omega + \omega_{0}^{2})}$$

Real and imaginary part of the dielectric function

$$\varepsilon_{r} = 1 + \chi = 1 + \frac{NZe^{2}}{\varepsilon_{0}m} \frac{1}{(-\omega^{2} + i\gamma\omega + \omega_{0}^{2})}$$

$$\varepsilon_{1} = \mathbf{1} + \frac{N\mathbf{Z}\mathbf{e}^{2}}{\varepsilon_{0}\mathbf{m}} \frac{\omega_{0}^{2} - \omega^{2}}{(\omega_{0}^{2} - \omega^{2})^{2} + (\gamma \omega)^{2}}$$

$$\varepsilon_{2} = \frac{N \mathbf{Z} \mathbf{e}^{2}}{\varepsilon_{0} \mathbf{m}} \frac{\gamma \omega}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \left(\gamma \omega\right)^{2}}$$

General behavior of the real part of the dielectric function

$$\varepsilon_{1} = \mathbf{1} + \frac{N\mathbf{Z}\mathbf{e}^{2}}{\varepsilon_{0}\mathbf{m}} \frac{\omega_{0}^{2} - \omega^{2}}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + (\gamma \omega)^{2}}$$

$$\varepsilon_1(\mathbf{0}) = \mathbf{1} + \frac{N\mathbf{Z}\mathbf{e}^2}{\varepsilon_0\mathbf{m}\omega_0^2} \qquad \varepsilon_2(\omega \gg \omega_0) = \mathbf{1} - \frac{N\mathbf{Z}\mathbf{e}^2}{\varepsilon_0\mathbf{m}\omega^2}$$

Behavior of the real part above ω_0

Behavior of the real part at high energy

$$\varepsilon_1(\omega \gg \omega_0) = 1 - \frac{N Z e^2}{\varepsilon_0 m \omega^2}$$

$$\mathcal{E}_1(\omega >> \omega_0) < 1$$

Refraction index at high energy

$$\mathbf{n}_{r} = \sqrt{1 - \frac{N \mathbf{Z} \mathbf{e}^{2}}{\varepsilon_{0} \mathbf{m} \boldsymbol{\omega}^{2}}} \cong 1 - \frac{1}{2} \frac{N \mathbf{Z} \mathbf{e}^{2}}{\varepsilon_{0} \mathbf{m} \boldsymbol{\omega}^{2}} = 1 - \delta$$

$$\delta = \frac{1}{2} \frac{N Z e^2}{\varepsilon_0 m \omega^2} \cong 10^{-5} - 10^{-6}$$

$$\theta_{c} = \sqrt{2\delta} \cong \text{few } 10^{-3}$$

•X-ray Mirrors •Surface Diffraction •REFLEXAFS
Behavior of the imaginary part

$$\varepsilon_{2} = \frac{N \mathbf{Z} \mathbf{e}^{2}}{\varepsilon_{0} \mathbf{m}} \frac{\gamma \omega}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \left(\gamma \omega\right)^{2}}$$

Absorption coefficient

$$\mu = 2k_{\mu} = \frac{2\omega\beta}{c} \approx \frac{\omega\epsilon_{\mu}}{2c}$$
$$I(r) = I_0 e^{-2\vec{k}_i \vec{r}} = I_0 e^{-\mu x}$$

Scattering

Electric field generated by an oscillating point electric charge q The charge is oscillating under the action of the electric field of the incoming radiation

$$\mathbf{x} = -\frac{1}{4\pi\varepsilon_{0}} \frac{\mathbf{qr}_{0}\omega^{2}}{\mathbf{c}^{2}} \frac{\mathbf{e}^{i(\bar{k}_{out}\bar{r}-\omega t)}}{|\mathbf{r}|} \sin\theta$$

The electric field is in the plane (OzP)

Scattering by a free electron

Differential cross section

Differential cross section (normalized differential scattered power)

Electron classical radius

$$\frac{d\sigma}{d\Omega} = \left(\frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2}\right)^2 \sin^2\theta = r_e^2 \sin^2\theta$$

r_e is called the electron classical radius=2.818 10⁻¹⁵ m

$$\frac{1}{4\pi\epsilon_{_0}}\frac{e^2}{r_{_e}}=mc^2$$

In Gauss system
$$\mathbf{r}_{e} = \frac{\mathbf{e}^{2}}{\mathbf{mc}^{2}}$$

Scattering Plane

The plane formed by the direction of the incoming and outcoming radiation is called is scattering angle It is the plane formed by k_{in} and k_{out}

The angle θ_s is called the scattering angle (Sometimes the scattering angle is indicated with 2 θ_s

Incoming Radiation polarized perpendicular to the Scattering Plane

Incoming radiation polarized perpendicular to the scattering plane π_s $\rightarrow \theta = \pi/2 \rightarrow \sin \theta = 1$

Scattering radiation perpendicular to the scattering plane

$$(\hat{\mathbf{e}}_{in} \bullet \hat{\mathbf{e}}_{out}) = \mathbf{1} = \mathbf{sin}\,\mathbf{\theta}$$

$$\frac{d\sigma}{d\Omega} = \sin^2 \theta \ \mathbf{r}_e^2 = \mathbf{r}_e^2 = (\hat{\mathbf{e}}_{in} \bullet \hat{\mathbf{e}}_{out})^2 \mathbf{r}_e^2$$

Incoming radiation polarized in the Scattering Plane

Incoming radiation polarized in the scattering plane π_s It is also perpendicular to k_{in}

Scattering radiation is polarized in the scattering plane

$$\theta + \theta_{s} = \frac{\pi}{2}$$

$$(\hat{\mathbf{e}}_{_{\mathrm{in}}} \bullet \hat{\mathbf{e}}_{_{\mathrm{out}}}) = (\hat{\mathbf{k}}_{_{\mathrm{in}}} \bullet \hat{\mathbf{k}}_{_{\mathrm{out}}}) = \cos \theta_{_{\mathrm{s}}} = \sin \theta$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = (\hat{\mathbf{e}}_{\mathrm{in}} \bullet \hat{\mathbf{e}}_{\mathrm{out}})^2 \mathbf{r}_{\mathrm{e}}^2$$

Differential scattering cross section for un-polarized radiation

At any θ the radiation can be decomposed into two component of equal intensity

The first one is polarized perpendicular to the scattering planeThe second one is polarized in the scattering plane

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} \left[\left(\hat{e}_{in} \bullet \hat{e}_{out} \right)^2 \right]_{\perp} r_e^2 + \frac{1}{2} \left[\left(\hat{e}_{in} \bullet \hat{e}_{out} \right)^2 \right]_{//} r_e^2 \right]$$

$$\frac{d\sigma}{d\Omega} = r_e^2 \frac{1 + \cos^2 \theta_s}{2}$$

Total scattering cross section for un-polarized radiation

$$\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = \int r_e^2 \frac{1 + \cos^2 \theta_s}{2} d\Omega$$

$$\sigma = \frac{1}{2} 4\pi r_e^2 + \frac{r_e^2}{2} \int \cos^2 \theta_s \sin \theta_s d\Omega = 2\pi r_e^2 + \frac{2\pi}{3} r_e^2 = \frac{8\pi}{3} r_e^2 = 6.7 \times 10^{-29} \, \text{m}^2 \, \text{/ electron}$$

Thompson cross section

Charge distributions: Scattering Factor

$$dN_{e} = \rho_{e}dV \qquad \vec{r} - \vec{r}_{e} \qquad P \qquad E_{in} = E_{0}e^{i(\vec{k}_{in}\vec{r}-\omega t)} \\ \vec{r}_{e} \qquad \vec{r}_{e} \qquad \vec{r}_{e} \qquad P \qquad E_{in} = E_{0}e^{i(\vec{k}_{in}\vec{r}-\omega t)} \\ E_{0} = \frac{1}{4\pi\epsilon_{0}}\frac{e^{2}E_{0}}{mc^{2}}\frac{e^{i(\vec{k}_{out}\vec{r}-\omega t)}}{|r|}(\hat{e}_{in} \bullet \hat{e}_{out}) \\ \vec{r} - \vec{r}_{e} \qquad dE_{0} = \frac{1}{4\pi\epsilon_{0}}\frac{e^{2}E_{0}e^{i\vec{k}_{in}\vec{r}_{e}}}{mc^{2}}\frac{e^{i(\vec{k}_{out}(\vec{r}-\vec{r}_{e})-\omega t)}}{|\vec{r} - \vec{r}_{e}|}(\hat{e}_{in} \bullet \hat{e}_{out})\rho_{e}dV$$

Scattering Factor II

$$dE_{\theta} = \frac{1}{4\pi\epsilon_{0}} \frac{e^{2}E_{0}e^{i\vec{k}_{in}\vec{r}_{e}}}{mc^{2}}$$
$$\frac{e^{i(\vec{k}_{out}(\vec{r}-\vec{r}_{e})-\omega t)}}{|\vec{r}-\vec{r}_{e}|} (\hat{e}_{in} \bullet \hat{e}_{out})\rho_{e}dV$$

ř

$$d\mathbf{E}_{\theta} = \frac{1}{4\pi\epsilon_{0}} \frac{e^{2}\mathbf{E}_{0}}{mc^{2}} (\mathbf{\hat{e}}_{in} \bullet \mathbf{\hat{e}}_{out}) \frac{e^{i\vec{k}_{in}\vec{r}_{e}}e^{i(\vec{k}_{out}(\vec{r}-\vec{r}_{e})-\omega t)}}{|\vec{r}-\vec{r}_{e}|} \rho_{e} dV$$

Scattering Factor III

$$\mathbf{d}\mathbf{E}_{\theta} = \mathbf{E}_{\mathrm{SinglePointElectron}} \mathbf{e}^{-\mathbf{i}(\vec{k}_{\mathrm{out}} - \vec{k}_{\mathrm{in}})\vec{r}_{\mathrm{e}}} \rho_{\mathrm{e}} \mathbf{d}\mathbf{V}$$

Scattering Factor IV

$$\vec{r} - \vec{r}_{e}$$

$$dE_{\theta} = E_{\text{Single}} e^{-i(\vec{k}_{\text{out}} - \vec{k}_{\text{in}})\vec{r}_{e}} \rho_{e} dV$$

$$E_{\theta} = \int dE_{\theta} = E_{\text{Single}} \int e^{-i(\vec{k}_{\text{out}} - \vec{k}_{\text{in}})\vec{r}_{e}} \rho_{e} dV$$

$$\vec{q} = \vec{k}_{\text{out}} - \vec{k}_{\text{in}}$$

$$E_{\theta} = \int dE_{\theta} = E_{\text{Single}} \int e^{-i\vec{q}\vec{r}_{e}} \rho_{e} dV = E_{\text{Single}} f(\vec{q})$$

$$f \text{ is called the scattering factor}$$

f is the Fourier Transform of the charge density (in e.u.)

Scattering Factor V

$$\mathbf{E}_{\theta} = \mathbf{E}_{\text{single}} \mathbf{f}(\mathbf{\vec{q}})$$

$$\mathbf{\vec{q}} = \mathbf{\vec{k}}_{\text{out}} - \mathbf{\vec{k}}_{\text{in}}$$

$$\mathbf{f} \text{ is called the scattering factor}$$

$$\mathbf{f}(\mathbf{\vec{q}}) = \int e^{-i\mathbf{\vec{q}}\cdot\mathbf{\vec{r}}_{\text{e}}} \rho_{\text{e}} dV$$

Number of electrons per unit volume

Scattering amplitude ∝ to: Fourier Transform of the charge density (in electron units) For atoms, molecules, crystals ...

$$\frac{d\sigma}{d\Omega} = \mathbf{r}_{e}^{2} (\hat{\mathbf{e}}_{in} \bullet \hat{\mathbf{e}}_{out})^{2} |\mathbf{f}(\vec{\mathbf{q}})|^{2} \longrightarrow \frac{\text{Phase Problem}}{\text{Phase Problem}}$$

Scattering Factor of electrons

Single electron: quantum case

$$\mathbf{f}(\mathbf{\vec{q}}) = \int e^{-\mathbf{i}\mathbf{\vec{q}}\mathbf{\vec{r}_e}} \rho_{\mathbf{e}} \mathbf{dV}$$

$$\mathbf{f}(\vec{\mathbf{q}}) = \int e^{-i\vec{q}\vec{r}_e} |\psi|^2 d\mathbf{V}$$

Scattering Factor of atoms

Atomic case

$$\rho_{e} = \sum_{j} \left| \psi_{j} \right|^{2} \left| \rho_{e} \left(\vec{r} \right) = \rho_{e} \left(\left| \vec{r} \right| \right) \rightarrow \mathbf{f} \left(\vec{q} \right) = \mathbf{f} \left(\left| \vec{q} \right| \right) = \mathbf{f} \left(q \right)$$

$$f(\vec{q}) = \int e^{-i\vec{q}\cdot\vec{r}} \rho \, dV =$$

$$\int e^{-iqr} \cos \theta \rho \, 2\pi \sin \theta r^2 \, d\vartheta \, dr =$$

$$\frac{2\pi}{iq} \int \left[e^{-iqr} \cos \theta \right]_{0}^{\pi} \rho r \, dr =$$

$$\frac{4\pi}{q} \int \sin(qr) \rho(r) r \, dr$$

Scattering Factor atoms

$$\mathbf{f}(\mathbf{q}) = \frac{4\pi}{\mathbf{q}} \int \rho(\mathbf{r}) \sin(\mathbf{qr}) \mathbf{r} d\mathbf{r}$$

For small q
$$\sin(qr) \cong qr$$

$$\mathbf{f}(\mathbf{q}) \cong \frac{4\pi}{\mathbf{q}} \int \rho(\mathbf{r}) \, (\mathbf{qr}) \, \mathbf{r} d\mathbf{r} \cong 4\pi \int \rho(\mathbf{r}) \, \mathbf{r}^2 d\mathbf{r} = \mathbf{Z}$$

For high q because $\rho(r)$ is a slowly decreasing function $r\rho(r)$ can be assumed as a constant in the integral \rightarrow

$$\mathbf{f}(\mathbf{q}) \rightarrow \mathbf{0}$$

Behavior of the Atomic Scattering Factor

Scattering vector

Anomalous correction

$$\frac{\mathrm{d}^{\,2}\vec{r}}{\mathrm{d}t^{\,2}} + \gamma \,\frac{\mathrm{d}\,\vec{r}}{\mathrm{d}t} + \omega_{_{0}}^{\,2}\vec{r} = \frac{\mathrm{e}}{\mathrm{m}}\mathrm{E}_{_{0}}\mathrm{e}^{\mathrm{i}\omega t}$$

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_{_{0}} \mathbf{e}^{_{\cdot \mathbf{i}\omega t}}$$

$$\vec{\mathbf{r}}_{_{0}} = \left(-\frac{e\vec{\mathbf{E}}_{_{0}}}{m\omega^{^{2}}}\right) \frac{-\omega^{^{2}}}{(\omega_{_{0}}^{^{2}}-\omega^{^{2}})-i\gamma\omega}$$

$$\vec{\mathbf{r}}_{0} = \left(-\frac{e\vec{E}_{0}}{m\omega^{2}}\right)\left[1-\frac{\omega_{0}^{2}-i\gamma\omega}{(\omega_{0}^{2}-\omega^{2})-i\gamma\omega}\right]$$

Anomalous correction

$$\mathbf{f}_{i} = \mathbf{f}_{i}^{\text{free}} \left[1 - \frac{\boldsymbol{\omega}_{0}^{2} - \mathbf{i}\boldsymbol{\gamma}\boldsymbol{\omega}}{\left(\boldsymbol{\omega}_{0}^{2} - \boldsymbol{\omega}^{2}\right) - \mathbf{i}\boldsymbol{\gamma}\boldsymbol{\omega}} \right]$$

ω<<ω₀

At low frequency electron do not Contribute to the scattering

$$\mathbf{f}_{i} = \mathbf{f}_{i}^{\text{free}}$$

At high frequency the electron behaves like free electrons

Anomalous correction

$$\mathbf{f}_{i} = \mathbf{f}_{i}^{\text{free}} \left[1 - \frac{\omega_{0}^{2} - \mathbf{i}\gamma\omega}{(\omega_{0}^{2} - \omega^{2}) - \mathbf{i}\gamma\omega} \right] = \mathbf{f}_{i}^{\text{free}} + \delta\mathbf{f}_{i}$$

$$\delta \mathbf{f}_{i}^{'} = -\mathbf{f}_{i}^{\text{free}} \frac{\boldsymbol{\omega}_{0}^{2} \left(\boldsymbol{\omega}_{0}^{2} - \boldsymbol{\omega}^{2}\right) + \gamma^{2} \boldsymbol{\omega}^{2}}{\left(\boldsymbol{\omega}_{0}^{2} - \boldsymbol{\omega}^{2}\right)^{2} + \gamma^{2} \boldsymbol{\omega}^{2}}$$

$$\delta \mathbf{f}_{i}^{"} = \mathbf{f}_{i}^{\text{free}} \frac{\gamma \omega^{3}}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \gamma^{2} \omega^{2}}$$

Anomalous correction for atoms

$$\mathbf{f} = \mathbf{f}^{\text{free}} + \Delta \mathbf{f} = \sum_{j} \mathbf{f}_{j}^{\text{free}} - \sum_{j} \mathbf{f}_{j}^{\text{free}} \frac{\boldsymbol{\omega}_{0j}^{2} - \mathbf{i} \boldsymbol{\gamma} \boldsymbol{\omega}}{\left(\boldsymbol{\omega}_{0j}^{2} - \boldsymbol{\omega}^{2}\right) - \mathbf{i} \boldsymbol{\gamma} \boldsymbol{\omega}}$$

Anomalous correction for atoms: f' and f'' of Ge

Anomalous correction for Au

$$\mathbf{f} = \mathbf{f}^{\text{free}} + \Delta \mathbf{f} = \sum_{j} \mathbf{f}_{j}^{\text{free}} + \sum_{j} \mathbf{f}_{j}^{\text{free}} \frac{\boldsymbol{\omega}_{0j}^{2} - \mathbf{i}\gamma\boldsymbol{\omega}}{\left(\boldsymbol{\omega}_{0j}^{2} - \boldsymbol{\omega}^{2}\right) - \mathbf{i}\gamma\boldsymbol{\omega}}$$

Gold Z=

Anomalous correction: f'' of Ge

Germanium Z=32

Angular dependence of the Anomalous corrections

$$\mathbf{f} = \mathbf{f}^{\text{free}} + \Delta \mathbf{f} = \sum_{j} \mathbf{f}_{j}^{\text{free}} + \sum_{j} \mathbf{f}_{j}^{\text{free}} \frac{\boldsymbol{\omega}_{0j}^{2} - \mathbf{i}\gamma\boldsymbol{\omega}}{\left(\boldsymbol{\omega}_{0j}^{2} - \boldsymbol{\omega}^{2}\right) - \mathbf{i}\gamma\boldsymbol{\omega}}$$

For each electron the anomalous correction has the same q dependence as the free term

In the X-ray regime the only electron to consider are the inner shell electron,which origin a spherically symmetric charge distribution

Anomalous corrections do not depend on the angle

KK & Optical theorem

$$\mathbf{f}'' = \frac{\mathbf{mc}^{2}}{2\mathbf{Ne}^{2}\lambda}\boldsymbol{\mu} \propto \boldsymbol{\mu}$$

$$\mathbf{f}' = \frac{2}{\pi} \int_{0}^{\infty} \overline{\omega} \mathbf{f}''(\overline{\omega}) d\overline{\omega} + \frac{5E_{tot}}{3mc^2}$$

$$\mathbf{f}'' = -\frac{2\omega}{\pi}\int_{0}^{\infty}\frac{\mathbf{f}'(\overline{\omega})}{\omega^{2}-\overline{\omega}^{2}}\mathbf{d}\overline{\omega}$$

Anomalous scattering to solve the phase problem

$$\begin{split} \mathbf{E}_{sc.} &\propto \mathbf{E}_{0} e^{i\vec{k}_{in}\vec{r}_{A}} \mathbf{f}_{A} e^{i\vec{k}_{out}(\vec{r}-\vec{r}_{A})} + \mathbf{E}_{0} e^{i\vec{k}_{in}\vec{r}_{B}} \mathbf{f}_{B} e^{i\vec{k}_{out}(\vec{r}-\vec{r}_{B})} \\ &\propto \mathbf{E}_{0} e^{i\vec{k}_{in}\vec{r}_{A}} e^{i\vec{k}_{out}(\vec{r}-\vec{r}_{A})} \Big(\mathbf{f}_{A} + \mathbf{f}_{B} e^{i\vec{k}_{in}(\vec{r}_{B}-\vec{r}_{A})} e^{i\vec{k}_{out}(\vec{r}_{A}-\vec{r}_{B})} \Big) \\ &\qquad \mathbf{E}_{0} e^{i\vec{k}_{in}\vec{r}_{A}} e^{i\vec{k}_{out}(\vec{r}-\vec{r}_{A})} \Big(\mathbf{f}_{A} + \mathbf{f}_{B} e^{i\vec{q}(\vec{r}_{A}-\vec{r}_{B})} \Big) \end{split}$$

$$Friedel law$$

$$When f_A and f_B are complex \rightarrow I(q) \neq I(-q)$$

$$|(f_A + f_B e^{i\vec{q}(\vec{r}_A - \vec{r}_B)})|^2 = (f_A + f_B e^{i\vec{q}(\vec{r}_A - \vec{r}_B)})(f_A^* + f_B^* e^{-i\vec{q}(\vec{r}_A - \vec{r}_B)})$$

$$|(f_A + f_B e^{-i\vec{q}(\vec{r}_A - \vec{r}_B)})|^2 = (f_A + f_B e^{-i\vec{q}(\vec{r}_A - \vec{r}_B)})(f_A^* + f_B^* e^{+i\vec{q}(\vec{r}_A - \vec{r}_B)})$$

$$f_A = |f_A| e^{i\Phi_A} f_B = |f_B| e^{i\Phi_B}$$

$$I(\vec{q}) - I(-\vec{q}) \propto Re \{e^{i\vec{q}(\vec{r}_A - \vec{r}_B)}\}Re \{e^{i(\Phi_A - \Phi_B)}\}$$
Matter ←Interaction → Radiation II

Semi-Classical approach

Radiation: Electromagnetic waves described by Maxwell equations

Matter:

Quantum system obeying Schrodinger equation (oscillators,...)

Matter ←Interaction → Radiation III

Quantum approach

Radiation Quantum system composed of mass less particles (Photons)

Matter Quantum system obeying Schrodinger equation

Semiclassical approach: the radiation

One vector is enough to describe e.m. radiation

$$\vec{\mathbf{E}} = -\frac{1}{c} \frac{\partial \vec{\mathbf{A}}}{\partial t} - \operatorname{gradV}$$
$$\vec{\mathbf{B}} = \operatorname{rot} \vec{\mathbf{A}}$$

$$\nabla^{2} \mathbf{V} = \rho$$
$$-\nabla^{2} \vec{\mathbf{A}} = \frac{\mu}{c} \vec{\mathbf{j}}$$

$$\nabla^{2}\mathbf{V} + \frac{1}{\mathbf{c}^{2}}\frac{\partial^{2}\mathbf{V}}{\partial \mathbf{t}^{2}} = \rho$$
$$-\nabla^{2}\vec{\mathbf{A}} + \frac{1}{\mathbf{c}^{2}}\frac{\partial^{2}\vec{\mathbf{A}}}{\partial \mathbf{t}^{2}} = \frac{\mu}{\mathbf{c}}\vec{\mathbf{j}}$$

$$\nabla^{2}\vec{A} - \frac{1}{c^{2}}\frac{\partial^{2}\vec{A}}{\partial t^{2}} = 0$$

Semiclassical approach: the radiation

$$\vec{\mathbf{A}} = \vec{\mathbf{A}}_{\vec{k}} \mathbf{e}^{i(\vec{k}\vec{r}-\omega t)}$$

$$\vec{\mathbf{E}} = -\frac{1}{c} \frac{\partial \vec{\mathbf{A}}}{\partial t} - \text{gradV}$$
$$\vec{\mathbf{B}} = \text{rot} \vec{\mathbf{A}}$$

$$\vec{\mathbf{E}} = -\vec{\mathbf{A}}_{k} \frac{\mathbf{i}\omega}{\mathbf{c}} \mathbf{e}^{i(\vec{k}\vec{r}-\omega t)}$$
$$\vec{\mathbf{B}} = \vec{\mathbf{k}} \times \vec{\mathbf{A}}_{k} \mathbf{e}^{i(\vec{k}\vec{r}-\omega t)}$$

Semiclassical approach: the matter

Matter: Quantum system

The system is characterized by its Hamiltonian H_0 and by its eigenfunctions ψ_n and energy eigenvalues E_n obtained by solving the Schrodinger equation

$$\hat{\mathbf{H}}_{0}\boldsymbol{\psi}_{n}=\boldsymbol{E}_{n}\boldsymbol{\psi}_{n}$$

$$\left(\frac{\mathbf{\hat{p}}^{2}}{2\mathbf{m}} + \mathbf{V}\right)\psi_{n} = \mathbf{E}_{n}\psi_{n}$$

Interaction Hamiltonian

$$\hat{\mathbf{p}} \rightarrow \left(\hat{\mathbf{p}} \cdot \frac{\mathbf{e}}{\mathbf{c}} \vec{\mathbf{A}} \right)$$

$$\hat{\mathbf{H}} = \frac{1}{2m} \left(\hat{\mathbf{p}} \cdot \frac{\mathbf{e}}{\mathbf{c}} \vec{\mathbf{A}} \right)^2 + \mathbf{V} =$$

$$\left(\frac{\hat{\mathbf{p}}^2}{2m} - \frac{\mathbf{e}}{\mathbf{mc}} \vec{\mathbf{A}} \hat{\mathbf{p}} + \frac{\mathbf{e}^2}{2\mathbf{mc}^2} \mathbf{A}^2 \right) + \mathbf{V}$$

$$\hat{\mathbf{H}}_0 - \frac{\mathbf{e}}{\mathbf{mc}} \vec{\mathbf{A}} \hat{\mathbf{p}} + \frac{\mathbf{e}^2}{2\mathbf{mc}^2} \mathbf{A}^2 = \hat{\mathbf{H}}_0 + \hat{\mathbf{H}}_{\text{int}}$$

Perturbation Hamiltonian

Fermi Golden rule

The perturbation due to the e.m. field induce transitions from the ground state ψ_i to excited states ψ_f with a probability per unit time given by

$$\Gamma_{if} = \frac{2\pi}{\hbar} |\mathbf{M}_{if}|^2 \delta(\mathbf{E}_f - \mathbf{E}_i) = \frac{2\pi}{\hbar} |\mathbf{M}_{if}|^2 \mathbf{g}(\mathbf{E}_f)$$

$$\mathbf{M}_{_{if}} = \left\langle \boldsymbol{\psi}_{_{f}} \left| \widehat{\mathbf{H}}_{_{int.}} \right| \boldsymbol{\psi}_{_{i}} \right\rangle + \sum_{_{n}} \frac{\left\langle \boldsymbol{\psi}_{_{f}} \left| \widehat{\mathbf{H}}_{_{int.}} \right| \boldsymbol{\psi}_{_{n}} \right\rangle \left\langle \boldsymbol{\psi}_{_{n}} \left| \widehat{\mathbf{H}}_{_{int.}} \right| \boldsymbol{\psi}_{_{i}} \right\rangle}{\mathbf{E}_{_{i}} - \mathbf{E}_{_{n}} \pm \hbar \omega + i\epsilon}$$

Absorption

$$\hat{\mathbf{H}}_{int} = -\frac{\mathbf{e}}{\mathbf{mc}} \vec{\mathbf{A}} \hat{\mathbf{p}} + \frac{\mathbf{e}^2}{\mathbf{2mc}^2} \vec{\mathbf{A}}^2 \qquad \Gamma_{if} = \frac{2\pi}{\hbar} |\mathbf{M}_{if}|^2 \mathbf{g}(\mathbf{E}_f)$$

$$\mathbf{M}_{_{\mathrm{if}}} = \left\langle \boldsymbol{\psi}_{_{\mathrm{f}}} \middle| \widehat{\mathbf{H}}_{_{\mathrm{int.}}} \middle| \boldsymbol{\psi}_{_{\mathrm{i}}} \right\rangle + \sum_{_{n}} \frac{\left\langle \boldsymbol{\psi}_{_{\mathrm{f}}} \middle| \widehat{\mathbf{H}}_{_{\mathrm{int.}}} \middle| \boldsymbol{\psi}_{_{n}} \right\rangle \left\langle \boldsymbol{\psi}_{_{n}} \middle| \widehat{\mathbf{H}}_{_{\mathrm{int.}}} \middle| \boldsymbol{\psi}_{_{\mathrm{i}}} \right\rangle}{\mathbf{E}_{_{\mathrm{i}}} - \mathbf{E}_{_{n}} \pm \hbar \omega + i\epsilon}$$

$$\Gamma_{_{if}} = \frac{2\pi}{\hbar} \left(\frac{e A_{_k}}{m c}\right)^2 \left| \left\langle \psi_{_f} \left| e^{i\vec{k}\vec{r}} \left(\hat{e}_{_k} \bullet \hat{p} \right) \right| \psi_{_i} \right\rangle \right|^2 \delta(E_{_f} - E_{_i} - \hbar\omega)$$

$$\Gamma_{_{if}} = \frac{2\pi}{\hbar} \left(\frac{e E_{_{k}}}{m \omega}\right)^{2} \left| \left\langle \Psi_{_{f}} \left| e^{i\vec{k}\vec{r}} \left(\hat{e}_{_{k}} \bullet \hat{p} \right) \right| \Psi_{_{i}} \right\rangle \right|^{2} \delta(E_{_{f}} - E_{_{i}} - \hbar \omega)$$

Power Absorption

$$\Gamma_{_{if}} = \frac{2\pi}{\hbar} \left(\frac{e E_{_{k}}}{m \omega}\right)^{2} \left| \left\langle \Psi_{_{f}} \left| e^{i\vec{k}\vec{r}} \left(\hat{e}_{_{k}} \bullet \hat{p} \right) \right| \Psi_{_{i}} \right\rangle \right|^{2} \delta(E_{_{f}} - E_{_{i}} - \hbar \omega)$$

Total power absorbed per unit volume

$$\frac{dW}{dt} = \frac{1}{V} \sum_{f} \hbar \omega \Gamma_{if} = \frac{1}{V} \sum_{f} \hbar \omega \Gamma_{if} = \frac{1}{V} \sum_{f} \frac{2\pi}{\omega} \left(\frac{e E_{k}}{m \omega}\right)^{2} \left| \left\langle \Psi_{f} \left| e^{i\vec{k}\vec{r}} \left(\hat{e}_{k} \bullet \hat{p}\right) \right| \Psi_{i} \right\rangle \right|^{2} \delta(E_{f} - E_{i} - \hbar \omega)$$

Absorption Coefficient

$$\frac{dW}{dt} = \frac{(w(cdt) - w_0)}{dt} = w(0) \ \mu \ c = \frac{\mu \ c}{2} E_0^2$$

$$\frac{\mathrm{dW}}{\mathrm{dt}} = \sum_{\mathrm{f}} \hbar \omega \frac{2\pi}{\hbar} \left(\frac{\mathrm{e} \mathrm{E}_{\mathrm{k}}}{\mathrm{m} \omega} \right)^{2} \left| \left\langle \psi_{\mathrm{f}} \left| \mathrm{e}^{\mathrm{i}\vec{\mathrm{k}}\vec{\mathrm{r}}} \left(\hat{\mathrm{e}}_{\mathrm{k}} \bullet \hat{\mathrm{p}} \right) \right| \psi_{\mathrm{i}} \right\rangle \right|^{2} \delta(\mathrm{E}_{\mathrm{f}} - \mathrm{E}_{\mathrm{i}} - \hbar \omega)$$

$$\mu = \frac{4\pi^2 \hbar \alpha}{m^2 \omega} \sum_{f} \left| \left\langle \psi_{f} \left| e^{i\vec{k}\vec{r}} \left(\hat{e}_{k} \bullet \hat{p} \right) \right| \psi_{i} \right\rangle \right|^2 \delta(E_{f} - E_{i} - \hbar \omega)$$

$$\alpha = \frac{e^2}{\hbar c} \cong \frac{1}{137}$$

Absorption Coefficient: dipole approximation $e^{i\vec{k}\vec{r}}\cong 1+\vec{k}\vec{r}$ $\mu = \frac{4\pi^2 \hbar \alpha}{m^2 \omega} \sum_{f} \left| \left\langle \psi_{f} \left| \left(\hat{\mathbf{e}}_{k} \bullet \hat{\mathbf{p}} \right) \right| \psi_{i} \right\rangle \right|^2 \delta(\mathbf{E}_{f} - \mathbf{E}_{i} - \hbar \omega)$

Optical transitions: $\lambda \approx 5000 \text{ Å} \rightarrow \text{always valid}$

In the case of X-ray, the wavelength is few Å, i.e. of the same order as the extensions of the atomic orbitals

In general the core states Spatial extension reduces as 1/Z with increasing the Z number of the atom with respect to the hydrogen orbitals

the energy of the absorption edges increases as Z^2 and the wavelength of the radiation needed to excite a core level decreases as $1/Z^2$

Therefore for high Z elements, deviations from the dipole approximations must be expected and must be taken into account.

Quadrupole approximationSecond term in the expansion of
$$e^{jkr}$$
 $\mu = N_A 4\pi^2 \alpha \hbar \omega_k | \hat{\mathbf{e}}_{\vec{k},\lambda} \bullet \langle \psi_f | (1 + i\vec{k}\vec{r}_i) \vec{r}_i | \psi_i \rangle |^2 g(\mathbf{E}_f) =$ $N_A 4\pi^2 \alpha \hbar \omega_k | \hat{\mathbf{e}}_{\vec{k},\lambda} \bullet \langle \psi_f | \hat{\mathbf{r}}_i | \psi_i \rangle + \hat{\mathbf{e}}_{\vec{k},\lambda} \bullet \langle \psi_f | (i\vec{k}\vec{r}_i) \vec{r}_i | \psi_i \rangle |^2$

Peculiar angular dependance

Important when the dipole term is zero

Quadrupole/dipole term

Atom	K	L_1	L _{2.3}	
	Edge	Edge	Edge	Negligible for light
Al	0.012	0.004	0.001	elements
Cu	0.058	0.026	0.01	Relevant for the K edge of 3d elements
Ag	0.152	0.073	0.03	
Yb	0.314	0.194	0.06	Cannot be neglected for heavy elements
Au	0.397	0.270	0.08	

Always negligible far from the edge

Absorption Coefficient: electric dipole

$$\begin{cases} \Psi_{f} \mid \hat{\mathbf{p}} \mid \Psi_{i} \rangle = \langle \Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \hat{\mathbf{r}} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{f} \mid \Psi_{i}}{\hbar} & \Psi_{i} \rangle = \frac{\Psi_{i} \mid \Psi_{i} \mid \Psi_{i} \rangle = \frac{\Psi_{i} \mid \Psi_{i} \mid \Psi_{i} \rangle = \frac{\Psi_{i} \mid \Psi_{i} \mid \Psi_{i} \mid \Psi_{i} \rangle = \frac{\Psi_{i} \mid \Psi_{i} \mid \Psi_{i} \mid \Psi_{i} \rangle =$$

Scattering in the semiclassical approach - I

$$\left(\hat{\mathbf{H}}_{0}+-\frac{\mathbf{e}}{\mathbf{mc}}\vec{\mathbf{A}}\hat{\mathbf{p}}+\frac{\mathbf{e}^{2}}{2\mathbf{mc}^{2}}\mathbf{A}^{2}\right)\Psi=-\mathbf{i}\hbar\frac{\partial\Psi}{\partial t}$$

$$\hat{\mathbf{j}} = \mathbf{e}\vec{\mathbf{v}} = \mathbf{e}rac{\hat{\mathbf{p}}}{\mathbf{m}}
ightarrow rac{\mathbf{e}}{\mathbf{m}} \left(\hat{\mathbf{p}} - rac{\mathbf{e}}{\mathbf{c}}\vec{\mathbf{A}}
ight)$$

Scattering in the semiclassical approach - II

$$\vec{\mathbf{j}}_{_{nm}} = \frac{e}{2m} \langle \Psi_{_{n}}^{'} | \mathbf{\hat{p}} | \Psi_{_{m}}^{'} \rangle - \frac{e^{^{2}}}{mc} \vec{\mathbf{A}} \langle \Psi_{_{n}}^{'} \| \Psi_{_{m}}^{'} \rangle$$

Current associated with a moving electron:

$$\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 \sin \omega t$$

$$\vec{\mathbf{j}} = \mathbf{e}\vec{\mathbf{v}} = \mathbf{e}i\omega\vec{\mathbf{r}} = -\mathbf{i}\frac{\omega \mathbf{e}^2}{\mathbf{m}\omega^2}\vec{\mathbf{E}} = -\frac{\mathbf{e}^2}{\mathbf{m}\mathbf{c}}\vec{\mathbf{A}}$$

$$\frac{\mathbf{d}\sigma}{\mathbf{d}\Omega} = (\hat{\mathbf{e}}_{in} \cdot \hat{\mathbf{e}}_{out})^2 r_e^2$$

Elastic Scattering at high energy - I

$$\Psi'_{n} = \psi_{n} e^{-i\frac{E_{n}}{\hbar}t} + correction$$

correction
$$\propto \left| \frac{1}{\hbar \omega_{\text{ln}} \pm \hbar \omega} \right|^2 \cong 0 \Rightarrow \Psi'_{\text{n}} \cong \Psi_{\text{n}} e^{-i\frac{E_{\text{n}}}{\hbar}t}$$

$$\vec{\mathbf{j}}_{nn} = \frac{\mathbf{e}}{2\mathbf{m}} \langle \Psi_n | \hat{\mathbf{p}} | \Psi_n \rangle - \frac{\mathbf{e}^2}{\mathbf{mc}} \vec{\mathbf{A}} \langle \Psi_n | \Psi_n \rangle \cong -\frac{\mathbf{e}^2}{\mathbf{mc}} \vec{\mathbf{A}} | \Psi_n |^2$$
Does not depend on time
Depend on time

Elastic Scattering at high energy - II

$$\frac{d\sigma}{d\Omega} = \mathbf{r}_{e}^{2} (\mathbf{\hat{e}}_{in} \bullet \mathbf{\hat{e}}_{out})^{2} |\mathbf{f}(\mathbf{\vec{q}})|^{2}$$

Inelastic Scattering at high energy

$$\vec{\mathbf{j}}_{nm} \cong -\frac{\mathbf{e}^2}{\mathbf{mc}} \vec{\mathbf{A}} \left\langle \Psi_n \| \Psi_m \right\rangle = \\ -\frac{\mathbf{e}^2}{\mathbf{mc}} \vec{\mathbf{A}}_k \mathbf{e}^{i\vec{k}\vec{r} - \omega_0 t} \left\langle \Psi_n \| \Psi_m \right\rangle \mathbf{e}^{i(\omega_n - \omega_m)t}$$

$$\omega = \omega_0 \pm (\omega_n - \omega_m)$$

$$\vec{\mathbf{j}} = \mathbf{e}\vec{\mathbf{v}} = \mathbf{e}\mathbf{i}\omega\vec{\mathbf{r}} = -\frac{\mathbf{e}^2}{\mathbf{mc}}\vec{\mathbf{A}}\left(\frac{\omega}{\omega_0}\right) \overleftarrow{\left(\frac{\omega}{\omega_0}\right)} \overleftarrow{\left(\frac{\omega}{\omega_0}\right)} = \mathbf{r}_e^2\left(\hat{\mathbf{e}}_{\mathrm{in}} \cdot \hat{\mathbf{e}}_{\mathrm{out}}\right)^2 \left(\frac{\omega}{\omega_0}\right)^2$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{in.}} = r_e^2 \left(\hat{e}_{\text{in}} \bullet \hat{e}_{\text{out}}\right)^2 \left(\frac{\omega}{\omega_0}\right)^2 \sum_{m \,\# n} \left| \left\langle \psi_n \left| e^{i \vec{q} \cdot \vec{r}} \left| \psi_m \right\rangle \right|^2 \right|^2 \right|^2$$

Inelastic Scattering at very high energy

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{in.}} = r_e^2 \left(\hat{e}_{\text{in}} \bullet \hat{e}_{\text{out}}\right)^2 \left(\frac{\omega}{\omega_0}\right)^2 \sum_{m \neq n} \left| \left\langle \psi_m \left| e^{i\vec{q}\vec{r}} \right| \psi_n \right\rangle \right|^2$$

$$\begin{split} \sum_{m \,\# n} \left| \left\langle \psi_{m} \left| e^{i \vec{q} \vec{r}} \left| \psi_{n} \right\rangle \right|^{2} &= \sum_{m \,\# n} \left\langle \psi_{n} \left| e^{i \vec{q} \vec{r}} \left| \psi_{m} \right\rangle \right\rangle \left\langle \psi_{m} \left| e^{-i \vec{q} \vec{r}} \left| \psi_{n} \right\rangle \right\rangle = \\ \left\langle \psi_{n} \left| e^{i \vec{q} \vec{r}} \left(\sum_{m \,\# n} \left| \psi_{m} \right\rangle \right\rangle \left\langle \psi_{m} \left| \right) \right|^{2} e^{-i \vec{q} \vec{r}} \left| \psi_{n} \right\rangle = \mathbf{1} - \left| \left\langle \psi_{n} \left| e^{i \vec{q} \vec{r}} \left| \psi_{n} \right\rangle \right|^{2} = \\ \mathbf{1} - \left| \mathbf{f} \left(\vec{q} \right) \right|^{2} \end{split}$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{in.}} = r_{e}^{2} \left(\hat{e}_{\text{in}} \bullet \hat{e}_{\text{out}}\right)^{2} \left(1 - \left|f\left(\vec{q}\right)\right|^{2}\right)$$

Inelastic Scattering at very high energy

$$\left(\frac{d\sigma}{d\Omega}\right)_{in.} \cong \mathbf{r}_{e}^{2} \left(\mathbf{\hat{e}}_{in} \bullet \mathbf{\hat{e}}_{out}\right)^{2} \left(\mathbf{1} - \left|\mathbf{f}\left(\mathbf{\vec{q}}\right)\right|^{2}\right)$$

$$\left(\frac{d\sigma}{d\Omega}\right)_{el.} + \left(\frac{d\sigma}{d\Omega}\right)_{in.} \cong \mathbf{r}_{e}^{2} \left(\mathbf{\hat{e}}_{in} \bullet \mathbf{\hat{e}}_{out}\right)^{2}$$

The sum of the elastic and inelastic cross sections is equal to the Classical cross section of a free electron

Anomalous and Resonant Scattering

$$\begin{split} \Psi_{n}^{'} &= \psi_{n} e^{-i\frac{E_{n}}{\hbar}t} + \text{correction} \\ \Psi_{n}^{'} &= \psi_{n} e^{-i\frac{E_{n}}{\hbar}t} + \text{correction} \\ -\frac{e^{2}}{mc} \vec{A} \langle \Psi_{n}^{'} \| \Psi_{m}^{'} \rangle \\ \Psi_{n}^{'} &= \psi_{n} e^{-i\frac{E_{n}}{\hbar}t} + \frac{eA_{k}}{mc} \\ \sum_{l\neq n} \left(\frac{\langle \psi_{l} | e^{i\vec{k}\vec{r}} \hat{p} | \psi_{n} \rangle}{\hbar \omega_{n} - \hbar \omega} e^{i(\omega_{n} - \omega)t} - \frac{\langle \psi_{n} | e^{i\vec{k}\vec{r}} \hat{p} | \psi_{l} \rangle}{\hbar \omega_{n} + \hbar \omega} e^{i(\omega_{n} + \omega)t} \right) \psi_{l} e^{-i\frac{E_{l}}{\hbar}t} \end{split}$$

Corrections are frequency dependent → anomalous scattering

One term is resonant

$$E = -\vec{\mu}\vec{H}$$
$$\vec{F} = \operatorname{grad}\left(\vec{\mu}\vec{H}\right)$$

Is due to the variation of the energy for the non uniformity of the magnetic field of the radiation

Strength of Magnetic Interactions

$$\vec{\mathbf{F}}_{_{\mathrm{T}}} = -e\vec{\mathbf{E}}$$
 $\vec{\mathbf{F}}_{_{\mathrm{M}\,2}} = \operatorname{grad}\left(\vec{\mu}\vec{\mathbf{H}}\right)$

$$\frac{\left|\vec{F}_{M2}\right|}{\left|\vec{F}_{T}\right|} = \frac{\left|\operatorname{grad}\left(\vec{\mu}\cdot\vec{H}\right)\right|}{\left|eE\right|} = \frac{\left|\operatorname{grad}\left(\vec{\mu}\cdot\vec{H}_{0}e^{i\vec{k}\vec{r}}\right)\right|}{eE_{0}} = \frac{k}{2} \left|\frac{eE}{2}\right| = \frac{2\pi}{\lambda} \left(\frac{e\hbar}{2m}\right) \frac{1}{2} \left|\frac{H_{0}}{E_{0}}\right|^{2}}{\frac{1}{2}} \left|\frac{e}{2}\right|^{2} \left|\frac{e}{2}\right|^{2}} = \frac{\pi\hbar}{2} \left|\frac{h}{2}\right|^{2} \left|\frac{e}{2}\right|^{2}} = \frac{2\pi}{2} \left|\frac{e}{2}\right|^{2}} \left|\frac{1}{2}\right|^{2} \left|\frac{e}{2}\right|^{2}} \left|\frac{1}{2}\right|^{2} \left|\frac{e}{2}\right|^{2}} = \frac{\pi}{2} \left|\frac{1}{2}\right|^{2}} \left|\frac{1}{2}\right|^{2}$$
Only magnetic Electrons are active in the second secon

de Bergevin e Brunel on NiO(1972)

•NiO e' un cristallo cubico antiferromagnetico (T_{Neel}=250 °C)
•Gli ioni Ni⁺⁺ hanno due soli spin accoppiati
•Gli spin sono allineati magneticamente nel piano (111)
•Ed antiferromagneticamente tra i piani (111)

Figure 10: Panel a: Superlattice magnetic reflection (3/2, 3/2, 3/2) of NiO measured in magnetic phase (25°) , and in the paramagnetic phase. The disappearance of the peak shows its magnetic origin. Panel b: The magnetic reflection (3/2, 3/2, 3/2) of NiO measured today at a third generation synchrotron radiation facility.

Quantum origin of the magnetic interactions

Relativistic correction To the kinetic energy Darwin term Do not depend on A because

• =

Spin – magnetic field interaction

Spin-orbit interaction