

What is? How is produced? Which are its properties? Where is produced? How and why is used? What is foreseen for the future?

> Prof. Settimio Mobilio Department of Physics "E. Amaldi" University Roma TRE - Rome

## **References**

## **Handbook of Synchrotron Radiation**

**Elsevier (North Holland) editor** 

"Synchrotron light" **Springer-Verlag Compact Disk 2000** 

http://www.lightsources.org

#### X-RAY DATA BOOKLET Albert Thomason David Attwood Eric Gullikson Malcoim Howells Kwane Je Kim Jagos Kirz Jeffrey Kortright http://xdb.lbl.gov/

Ineoif Lindau Piero Pianetta Arthur Robinson James Scoffeld lames Underwood Douglas Vaughan Gwyn Williams Herman Winick

1.3NL/2008.490 Str. 2

January 2001

Center for X-Ray Optics and Advanced Light Source

Lawrence Berleckey Stational Laboratory Conversity of Catelornia Rericted CA 94720

has work was assessmined in part for the U.S. Corportment

- 1. G. K. Green, "Spectra and Optics of Synchrotron Radiation," in Proposal for National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York, BNL-50595 (1977).
- 2. H. Winick, "Properties of Synchrotron Radiation," in H. Winick and S. Doniach, Eds., Synchrotron Radiation Research (Plenum, New York, 1979), p. 11.
- S. Krinsky, "Undulators as Sources of Synchrotron Radiation," IEEE Trans. Nucl. Sci. NS-30, 3078 3. (1983).
- D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles 4. and Applications (Cambridge Univ. Press, Cambridge, 1999); see especially Chaps. 5 and 8.

## **Synchrotron Radiation**

Electromagnetic Radiation Emitted by an accelerated charge moving with relativistic a speed v ~ c

**Today:** radiation emitted by relativistic electrons (positrons) in a storage ring

**Today/Future: coherent radiation emitted by relativistic electrons in a linear accelerator (LINAC)** 

### **Synchrotron Radiation Properties**

- 1. Continuous spectrum from infrared to hard X-ray
- 2. High intensity

→ High Brilliance

- 3. Narrow angular collimation
- 4. High degree of polarization
- 5. Pulsed time structure
- 6. Partially coherent (for the moment)
- 7. Quantitative evaluable.

### **Storage Ring: rather large installations**

**Ultra-high vacuum environment** 

## Synchrotron Radiation: Energy Range



#### **Spectral distribution of synchrotron radiation**



 $E_c$  critical energy=  $3h\gamma^3 c/4\pi R$ 



Brilliance = 
$$\frac{N}{A \cdot \Omega} \left( \frac{Photons / sec}{mm^2 . (m \, rad)^2 (0.1\% \, ban)} \right)$$

### **Brilliance of synchrotron radiation**

## Comparison between the average brilliance of storage rings of different generations.



### **Brilliance of synchrotron radiation**



### **Polarization**

Mainly linear In the plane of the orbit



There is a second component perpendicular to the orbit

Two polarization component  $\pm \pi/2$  out of phase

Left and right circular polarization



**Repetition rate:** Maximum time distance = period of the orbit Minimum time distance = period of the RF

## **Schematic view of a Storage Ring**



• Insertion devices (undulator/wiggler)

### **Synchrotron Radiation Sources**



## **Synchrotron light from a storage ring**



### **Origin of Synchrotron Radiation: Larmor Formula**



**v** << **c** 

The radiation angular distribution of non-relativistic electrons has the shape of a tire orbiting at the same velocity of the electron bunch

### **Origin of Synchrotron Radiation: Lorentz transformation**





## Angular distribution

## A relativistic accelerated charge emits radiation mainly into the direction of the speed



### **Spectral distribution of synchrotron radiation**



 $E_c$  critical energy =  $3h\gamma^3 c/4\pi R = kE^3/R$ 

## Spectral distribution of synchrotron radiation as a function of the critical energy of the storage ring.



The power emitted at wavelengths lower than  $\lambda_c$  is equal to the power emitter at wavelengths higher than  $\lambda_c$ 

### **Origin of the broad spectral distribution**



Figure 3. Schematic showing the physics of synchrotron radiation generation. An observer of an electron travelling in an arc in (a), 'sees' an electric field pulse (b), whose power spectrum is given by the Fourier transform (c).



A point detector receives the radiation for a very short time

The detector records the radiation emitted along the arc  $2/\gamma$   $\rightarrow$ the duration of the pulses is non zero ( $\tau$ )

## Angular emission from a Bending magnet

- The orbit is circular
  The radiation is emitted
- The radiation is emitted tangentially
- It is collected in a horizontal slit (S) of width, *w*, at a distance, *D*.



In the vertical direction the natural collimation preserved

In the horizontal direction the natural collimation is lost

**Insertion Devices** 

## **Emission view**



### Vertical aperture



# Angular and wavelength distribution of synchrotron radiation

The power radiated by one electron in a unit wavelength interval centred at  $\lambda$  in a unit vertical angular cone centred at  $\psi$  is:

$$I(\lambda,\psi) = \frac{27}{32\pi^3} \frac{e^2 c}{R^3} \left(\frac{\lambda_c}{\lambda}\right)^4 \gamma^8 \left[1 + (\gamma\psi)^2\right]^2 \left[K_{2/3}^2(\xi) + \frac{(\gamma\psi)^2}{1 + (\gamma\psi)^2} K_{1/3}^2(\xi)\right]$$
(2).

- 1. R is the bending radius of the electron orbit
- 2.  $K_{1/3}$  and  $K_{2/3}$  are modified Bessel functions of the second kind
- 3.  $\lambda_c$  is the so called critical wavelength

 $\lambda_c(\mathring{A}) = 4/3 \pi R \gamma^3$ 

 $\xi = (\lambda_c/2\lambda) [1 + (\gamma \psi)^2]^{3/2}$ 

In pratical units:

$$\lambda_{c} = 5.59 R(m) E^{3} (GeV)$$

## Angular and wavelength distribution of S.R.

$$I(\lambda,\psi) = \frac{27}{32\pi^3} \frac{e^2 c}{R^3} \left(\frac{\lambda_c}{\lambda}\right)^4 \gamma^8 \left[1 + (\gamma\psi)^2\right]^2 \left[K_{2/3}^2(\xi) + \frac{(\gamma\psi)^2}{1 + (\gamma\psi)^2} K_{1/3}^2(\xi)\right]$$
(2)

$$\lambda_c = 4/3 \pi R \gamma^3$$

 $\lambda_{c}(A) = 5.59 R(m) E^{3} (GeV)$ 

$$\xi = (\lambda_c/2\lambda) [1 + (\gamma \psi)^2]^{3/2}$$

### Note that:

- the wavelength dependence is only on the ratio  $\lambda_c / \lambda$
- the angular dependence is only on the product  $\gamma \psi$

### Wavelength distribution of S.R. in the horizontal direction

$$\mathbf{At } \psi = 0 \rightarrow \xi = (\lambda_c/2\lambda) \qquad \mathbf{I}(\lambda, \psi)|_{\psi=0} = \frac{27}{32\pi^3} \frac{\mathrm{e}^2 \mathrm{c}}{\mathrm{R}^3} \gamma^8 \left(\frac{\lambda_c}{\lambda}\right)^4 \mathrm{K}_{3/2}^2$$

$$\mathbf{H}_2(\lambda_c/\lambda)$$

$$\mathbf{H}_2(\lambda_c/\lambda)$$

$$\mathbf{I}(\lambda) \propto \frac{\lambda_c}{\lambda} \int_{\lambda_c/\lambda}^{\infty} \mathrm{K}_{5/3}^2 \mathrm{d}\left(\frac{\lambda_c}{\lambda}\right)$$

$$\mathbf{G}_1(\lambda_c/\lambda)$$

Left and right circular polarization above and below the orbit



# Behavior of the parallel and perpendicular component for different $\lambda/\lambda_c$



The integration over all wavelengths gives:  $I_{//} = 7/8 I_{total}$  $I_{\perp} = 1/8 I_{total}$ 

### **Insertion devices**

### Magnetic field structures Force the electrons to move along particular orbits







### **Insertion devices**



Magnetic field structures Force the electrons to move along particular orbits

 $\Delta \Psi = 1/\gamma$ 





No interference between the emission from different poles
Total emission is the sum of the emission from each pole

### Wigglers Emission







### **Undulators condition**



An undulator is similar to a wiggler with a K < 1

 $\rightarrow$ 

The wiggling angle is smaller than the photon natural emission angle  $1/\gamma$ 

### **Interference effects are important**

Observing the radiation at an angle  $\theta$  from the axis constructive interference occur at the wavelengths

$$\longrightarrow \lambda = \frac{\lambda_u}{2\gamma^2} \left( 1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$

## **Undulator fundamental frequency**





An undulator as seen in the laboratory reference system





The undulator as seen from the electron





Further reduction of the light periodicity due to the Doppler effect



### **Undulator harmonics**

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left( 1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$

Also harmonics  $\lambda/n$  are emitted

On the axis (θ=0) only odd harmonics are emitted

The radiated field adds coherently → The intensity increases as N<sup>2</sup>

while in a wiggler it increase as 2N


Radiation from an undulator: typically N = 50

The natural emission cone is always smaller than  $1/\gamma$ 

## **Undulator bandwidth**

$$\lambda = \frac{\lambda_{u}}{2\gamma^{2}} \left( 1 + \frac{K^{2}}{2} + \gamma^{2}\theta^{2} \right) \Rightarrow \frac{\Delta\lambda}{\lambda} \approx \gamma^{2}\theta^{2} \approx \frac{1}{nN}$$

$$\sigma_{\rm r} \approx \frac{1}{\gamma} \frac{1}{\sqrt{\rm nN}} \qquad \qquad \frac{\Delta \lambda}{\lambda} = \frac{1}{nN}$$

Numbers:  $\lambda_u \approx 0.1 \text{ m}$ N = 50  $\gamma = 4000 - 10000$ 

> $\lambda_{Fund.} \approx 1 - 10 \text{ Å}$   $\sigma_{Fund..} \approx 14 - 30 \mu rad$  $\Delta \lambda / \lambda \approx 2 \ 10^{-2}$

#### Spectral brilliance

For experiments that require a small angular divergence and a small irradiated area, the figure of merit is the beam brilliance B which is the photon flux per unit phase space volume, often given in units of photons·s<sup>-1</sup>·mr<sup>-2</sup>·mm<sup>-2</sup>. (0.1% bandwidth)<sup>-1</sup>



## **Beamlines**



## Synchrotron Radiation Facilities around the world



| 71 facilities in the world: | 18 in America       |
|-----------------------------|---------------------|
|                             | 24 in Asia          |
|                             | <b>26 in Europe</b> |
|                             | 2 in Middle Eas     |
|                             | 1 in Oceania        |
|                             |                     |

# The twenty-five synchrotron light sources around the world which entered operation in the past 15 years



Synchrotron Radiation Facilities in Europe

26 Facilities, most dedicated, few parasitic

III Generation FacilitiesAt home: Medium energy (~ 2GeV) S.R.Policy in EuropeHigh brilliance in soft X-ray

ELETTRA in Italy BESSYII in Germany SLS in Switzerland DIAMOND in UK SOLEIL in France ALBA in Spain

Germany (Hamburg) DORIS III and PETRA II/III

**Brilliance in hard X-ray** 

**European Synchrotron Radiation Facility ESRF in Grenoble For High Brilliance in the hard X-ray region** 

## **European Synchrotron Radiation Facility -ESRF**



## **European Synchrotron Radiation Facility -ESRF**



| Members' Contribution to the budget: |  |  |
|--------------------------------------|--|--|
| 27.5% France                         |  |  |
| 25.5% Germany                        |  |  |
| 15% Italy                            |  |  |
| 14% United Kingdom                   |  |  |
| 4% Spain                             |  |  |
| 4% Switzerland                       |  |  |
| 6% Benesync                          |  |  |
| (Belgium&Netherlands)                |  |  |
| 4% Nordsync                          |  |  |
| (Denmark, Finland, Norway, Sweden)   |  |  |
| Additional contributions             |  |  |
| 1% Portugal                          |  |  |
| 1% Israel                            |  |  |
| 1% Austria                           |  |  |
| 1%Poland (from July 2004)            |  |  |
| 1.05% Centr. Synch                   |  |  |
| (Czech Republic,Hungary,Slovakia)    |  |  |
|                                      |  |  |

## **Parameters of the ESRF**

| Energy                      | 6GeV         |
|-----------------------------|--------------|
| Circumference               | <b>844m</b>  |
| Current                     | 200 mA       |
| Bending<br>Magnet<br>Radius | 24.95m       |
| <b>RF frequency</b>         | 352.2MH<br>z |
| Harmonic<br>number          | 992          |

| <b>Critical Energy</b>                | 19.6 KeV |
|---------------------------------------|----------|
| Undulator 1 <sup>st</sup><br>Harmonic | 14 KeV   |



## **ESRF** Achieved Brilliance



#### **ESRF Brilliance**



## ESRF Experimental Hall



## Science at ESRF

#### Magnetism:

Separation of S and L contribution Contribution of different electronic shells

#### **X-ray Inelastic**

Scattering:

**Lattice dynamics & Electronic States** 

#### **Chemistry:**

High resolution crystallography Microcrystals Catalysis

**Medicine:**Microbeam therapy Tomography Angiography

#### **Surfaces:**

Structure of surfaces and overlayers Surface magnetism

#### Life Science:

Protein Crystallography Time resolved crystallography

**High Pressure:** Phase diagram up to 150 Gpa

Imaging: Phase Contrast Imaging Speckel

#### **Industrial:**

High resolution strain (10µ 10<sup>-5</sup> strain) Trace element analysis (LLD 10<sup>6</sup> at/cm<sup>2</sup>)

## ESRF Upgrade programme

Demand for high-brilliance X-ray beams is continually growing, with user communities requiring ever increasing levels of performance along with ease of access to and use of the light sources. At the ESRF, the user communities are specifically demanding smaller nanosized beams with higher brilliance, improved facilities on the beamlines and not least more beamtime.



The ESRF Upgrade Programme is serving this demand with the additional objective to maintain the ESRF's role as the leading European provider of hard X-ray light.

## ESRF Upgrade programme



An X-ray vision In 2008, the Council of the ESRF launched the ESRF Upgrade Programme 2009-2018 an ambitious ten-year project serving a community of more than 10,000 scientists.

Funding for a first phase of the Upgrade (from 2009 to 2015) has been secured to deliver:

Eight new beamlines unique in the world
Refurbishment of many existing beamlines to maintain them at world-class level
Continued world leadership for X-ray beam availability, stability and brilliance
Major new developments in synchrotron radiation instrumentation

### ELETTRA



#### ELETTRA

Energy:2 – 2.4 GeVCurrent:300 mACritical Energy:3.2 KeV

## Spectral Range: 10 eV – 10 KeV



Undulator first Harmonic: 200 – 800 eV

Brilliance: 10<sup>19</sup> photons/s/mm<sup>2</sup>/mrad<sup>2</sup>/0.1%bw

## **Beamlines at ELETTRA**



17 Operating Beamlines24 Experimental Stations

2 More in the future





**FEL are tunable, coherent, high power** radiation, currently spanning wavelengths from millimeter to visible up to ultraviolet and potentially to x-ray.

It is based on the stimulated photon emission: an electron is accelerated by an existing photon field and therefore irradiate additional photons in phase to the exiting ones.





**Two main approaches:** 

Seeding **FERMI@ELETTRA** SASE (Self Amplified Spontaneous Emission)

#### **Self Amplified Spontaneous Emission Free Electron Laser**



In a long undulator the SR emission is self amplified In a very long undulator saturation may be reached At a level 7 order of magnitude above the S.R. level

Key points: electron beam emittance undulator characteristics

#### More on SASE Free Electron Laser Scheme





The electron beam and this synchrotron radiation travelling with it are so intense that the electron motion is modified by the electromagnetic fields of its own emitted synchrotron light. Under the influence of both the undulator and its own synchrotron radiation, the electron beam begins to form micro-bunches, separated by a distance equal to the wavelength of the emitted radiation.



These micro-bunches begin to radiate as if they were single particles with immense charge. The process reaches saturation when the micro-bunching has gone as far as it can go.

#### **FEL Radiation Properties** $10^{35}$ **FEL Spontaneous** Peak TESLA **Emission B**rilliance $10^{33}$ Peak Brilliance [Phot/fsec · mrad<sup>2</sup> · mm<sup>2</sup> · 0.1% bandw.)] LCES $10^{31}$ Existing **Undulators** Spontaneous Sportul $10^{29}$ SASE TEL Spontáneous Spectrum SASE FEL J $10^{27}$ In duilates **Coherent Radiation** Spatiant Contracts $10^{25}$ Titut by warmants **Pulse length:** DSRF Lindulator 0111235 $10^{23}$ tens of femtosecond APS Unitatio (Lip A) Undulator $10^{21}$ $10^{19}$ $10^{3}$ $10^{5}$ $10^{6}$ $10^{4}$ $10^{2}$ Energy [eV]

#### **FEL Radiation Average Brilliance**



## **X- FEL Science**



The investigation of structural changes on ultra short time scales will become possible, thus complementing femtochemistry with optical lasers.

Investigation of molecular structures without the need of crystallization. This will give access to a vast number of biomolecules yet impossible to crystallize.

A new, and may be most important domain will be the non-linear interaction of X-rays and matter, leading, e.g., to multiphoton processes in atoms and molecules which can not be studied with the present radiation sources.

And last not least, by focusing the X-rays to  $\mu m^2$  and below, one will generate plasmas at still totally unexplored temperatures and pressures.

## **X- FEL Science**



"Can we see the electron dynamics in the bonds?"
"Can we see how matter forms and changes?",
"Can we take pictures of single molecules?"
"Can we make a movie of a chemical reaction?"
"Can we study the vacuum decay in a high field?

### FEL in the X-ray regime Image of the FEL spot at 1.5 Å

Linear Coherent Light Source at Stanford



Main X-ray projects under development in Europe: FLASH at Hamburg (HASYLAB)

**European X-FEL (Hamburg)** 

A working FEL in Italy: FERMI @ ELETTRA

## **FLASH Facility @ DESY**



Bird's eye view of the 260-meter-long FLASH user facility: the experimental hall (left), the FLASH tunnel (middle, between the ponds) the FEL hall (right)

## **FLASH Facility @ DESY**

**Design wavelength range of the fundamental: 6.5 - 47 nm** 

#### Pulse duration 10-50 fs

Peak brilliance: 10<sup>29</sup>-10<sup>30</sup> [photons/(s mrad<sup>2</sup> mm<sup>2</sup> 0.1% BW)]



The FLASH experimental hall starts 30 meters behind the last dipole magnet that separates the electron bunches and the photon beam emerging from the long undulator in the accelerator tunnel. The photon beam transport system in the hall delivers the FEL pulses – as short as 10 fs – to the experimental stations.

## **FLASH Facility @ DESY**

**Design wavelength range of the fundamental: 6.5 - 47 nm** 

## Pulse duration 10-50 fs

Peak brilliance: 10<sup>29</sup>-10<sup>30</sup> [photons/(s mrad<sup>2</sup> mm<sup>2</sup> 0.1% BW)]



4.12 nm achieved: water window available



Schematic layout of the FLASH facility. The electron gun is on the left, the experimental hall on the right. Behind the last accelerating module, the beam is switched between FLASH I, which is the present <u>undulator</u> line, and FLASH II, which is the upgrade. Behind the extraction point, space is reserved for an additional laser system for seeding.

#### 0.8 nm on the fifth harmonic expected

## **FLASH Facility @ DESY: Five Beamline Scheme**



## **European X-FEL @ Hamburg**



The X-ray laser is an 3.4-km-long facility which runs essentially underground and comprises three sites above ground. It will begin on the DESY site in Hamburg-Bahrenfeld and runs mostly underground to the XFEL research site south of the town of Schenefeld (Pinneberg district, Schleswig-Holstein)

## **European X-FEL @ Hamburg**

Wavelength: 0.05 to 6 nanometres
Flashes per second: 27.000
Pulse width: 100 fs
Peak brilliance: 10<sup>33</sup> ph/s/mm<sup>2</sup>/mrad 0.1%Bw
Average Brilliance: 10<sup>25</sup> ph/s/mm<sup>2</sup>/mrad 0.1%Bw

Partecipating countries:12Denmark, France, Germany, Greece, Hungary, Italy, Poland, Russia, Slovakia,<br/>Spain, Sweden and Switzerland

Total cost:1 GeuroGermany 54%, Russia 23%, other countries 1-3.5%

Time schedule:2009 – 2014Start of user operation:2015


**Thanks for your attention** 

Prof. Settimio Mobilio Department of Physics "E. Amaldi" University Roma TRE - Rome

## Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing linac

Injector (35°) at 2-km point

Existing 1/3 Linac (1 km) (with modifications)

New e Transfer Line (340 m)

Far Experiment

Hall

1.5-15 Å

Transport

Line (200 m)

- Undulator (130 m) - Near Experiment Ha



#### **LCLS Accelerator Layout**



### First lasing at 1.5 Å: April 10, 2009 (first try!)

LCLS First Lasing UCLA, May 2009

LCIC

Zhirong Huang zrh@slac.stanford.edu

## **LCLS Stanford**

#### Image of the FEL spot at 1.5 Å



http://lcls.slac.stanford.edu/AnimationViewLCLS.aspx

# **European X-FEL @ Hamburg**

|                                      | Units     | SASE1                | SASE 2               | SASE 3*                  |
|--------------------------------------|-----------|----------------------|----------------------|--------------------------|
| Wavelength range**                   | nm        | 0.1-0.31             | 0.1-0.4              | 0.4-6.4                  |
| Photon energy range**                | keV       | 12.4-4               | 12.4-3.1             | 3.1-0.2                  |
| Peak power                           | GW        | 24                   | 22                   | 100-135                  |
| Average power***                     | W         | 72                   | 66                   | 300-800                  |
| Photon beam size (FWHM) <sup>+</sup> | $\mu m$   | 110                  | 110                  | 65-95                    |
| Photon beam divergence (FWHM)++      | $\mu$ rad | 0.8                  | 0.8                  | 3-27                     |
| Bandwidth (FWHM)                     | %         | 0.09                 | 0.08                 | 0.28-0.73                |
| Coherence time                       | fs        | 0.3                  | 0.3                  | 0.3-1.9                  |
| Pulse duration (FWHM)                | fs        | 100                  | 100                  | 100                      |
| Number of photons per pulse          | #         | $1.2 \times 10^{12}$ | $1.1 \times 10^{12}$ | $2-43 \times 10^{13}$    |
| Average flux of photons***           | #/sec     | $3.6 \times 10^{16}$ | $3.3 \times 10^{16}$ | $0.6-26 \times 10^{18}$  |
| Peak brilliance                      | $B^{+++}$ | $5.4 \times 10^{33}$ | $5.4 \times 10^{33}$ | $17-0.6 \times 10^{32}$  |
| Average brilliance***                | $B^{+++}$ | $1.6 \times 10^{25}$ | $1.6 	imes 10^{25}$  | $5.2-0.3 \times 10^{24}$ |

## **European X-FEL @ Hamburg**

|                               | Units            |                     | U-1*                |                     |
|-------------------------------|------------------|---------------------|---------------------|---------------------|
| Photon energy                 | keV              | 20                  | 50                  | 200                 |
| Peak power                    | MW               | 15                  | 126                 | 81                  |
| Average power**               | W                | 59                  | 504                 | 324                 |
| Photon beam size (FWHM)       | $\mu \mathrm{m}$ | 84                  | 83                  | 83                  |
| Photon beam divergence (FWHM) | $\mu$ rad        | 3.5                 | 2.9                 | 2.5                 |
| Pulse duration (FWHM)         | fs               | 100                 | 100                 | 100                 |
| Number of photons per pulse   | #                | $3.3	imes10^8$      | $2.8 	imes 10^8$    | $1.1	imes 10^8$     |
| Average flux of photons       | #/sec/0.1%       | $1.3	imes10^{13}$   | $1.1 	imes 10^{13}$ | $4.4	imes10^{12}$   |
| Peak brilliance               | $B^{***}$        | $1.4 	imes 10^{28}$ | $2.9	imes10^{28}$   | $1.4 	imes 10^{28}$ |
| Average brilliance            | $B^{***}$        | $5.8	imes10^{19}$   | $1.2 	imes 10^{20}$ | $5.6	imes10^{19}$   |

#### **Spontaneous emission**