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The last decade has witnessed the development of new methodologies in molecular biology and 
biochemistry which, together with the widespread availability of computing power for fast calculation and 
graphics, have supported the striking growth of crystallographic studies of biological relevance. This surge 
in new methodologies experienced by macromolecular crystallography has been largely fuelled by 
developments in structural genomics and by the needs of pharmaceutical industry. A key contribution to 
such rapid growth was certainly provided by the increased access to synchrotron sources, which resulted in 
new ways of collecting X-ray diffraction data and allowed novel structure determination techniques, 
otherwise not possible on conventional X-ray sources. Open access to synchrotron sources, together with 
the use of efficient X-ray detectors, is probably the fundamental reason of the exponential growth of 
structural biology studies during the last fifteen years.  
The next paragraphs cover some general aspects and select recent advances in macromolecular 
crystallography, focussing especially on synchrotron radiation applications. 
 
 

1. Macromolecular crystals 
 
Almost every week new three-dimensional structures of proteins, nucleic acids, and their complexes 
appear in the most important scientific journals. The complexity of such structures is steadily growing, 
and their experimental resolution is often at atomic level. These results provide one of the most 
exciting and accurate tools for innovation in life sciences, particularly for applications in drug-design, 
immunology, virology, and in enzymology [1-5]. Protein crystallography, which has a growing role in 
the human genome project, is one of the most powerful techniques in modern biology for three-
dimensional structure determination. However, it can only be applied providing suitable crystals can be 
obtained. The ability to produce suitable crystals is currently the major bottleneck to structure 
determination. 
 
 
1.1 Physical and chemical properties 
 
A crystal of organic material (such as proteins, DNA fragments, tRNA molecules, viruses, etc) is a 
three-dimensional periodic array of macromolecules. In terms of crystal size bio-macromolecular 
crystals are rather small, with volumes rarely exceeding 0.1 mm3 and crystal lattice periodicity often 
>100 Å. Macromolecular crystals show unique physical and chemical properties, among other crystals 
in Nature. In particular, they display poor mechanical stability and a high solvent content. Both the 
fragility of these crystals and their sensitivity to external conditions are related to the weak interactions 
between macromolecules in the crystal lattice, which are based mainly on hydrogen bonds and van der 
Waals interactions. The energy responsible for crystal lattice stabilization is very low (<10 kcal/mol), 
typically lower than the energy required for protein folding. Therefore, the lattice forces usually do not 
disrupt the overall conformation of the crystallized macromolecules. This is a critical point since it 
ensures that the three-dimensional structure of a macromolecule in a crystalline environment is 
identical to the structure of the same molecule in solution. 
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 The fragility of macromolecular crystals is also related to their high solvent content (from 30% 
to more than 80% v/v). In fact, to prevent crystal cracking or collapse due to dehydration, the crystals 
must be kept in a solvent saturated environment. The high solvent content of the crystals has two 
important and useful implications. Firstly, the macromolecule concentration in the crystal is of the 
same order of magnitude of that typical of cytoplasmic compartments in vivo (about 10-2 M). Secondly, 
extended solvent channels (completely crossing the crystal volume and touching each crystallized 
protein molecule) allow the efficient diffusion of small molecules within the crystals. The diffused 
molecules can be either heavy atoms or other ligands (substrates, inhibitors, cofactors, etc), thus 
providing key information for structure determination purposes and for the mechanicistic description of 
enzymatic reactions. 
 
 
1.2 Crystal growth 
 
Despite dramatic progress in macromolecular crystallography research, crystallization remains a major 
bottleneck in the structural characterization of macromolecules. In fact, the methods used to produce 
crystals have also evolved over the years as a result of increased understanding and advancing 
technology, but crystallization strategies continue to be rooted in massive trial-and-error approaches [6-
8]. In general, it is common belief that insufficient purity of the sample is the most probable cause of 
unsuccessful crystallization. The sample quality requirements for protein crystallography are more 
stringent than the requirements for most biochemical tests. To grow macromolecular crystals of good 
quality the protein sample must be highly homogeneous: other compounds should be absent, all protein 
molecules should have the same surface properties (particularly for what concerns surface charge 
distribution), and the same oligomerization state. 
 The fundamental task in protein crystallization is to create a solution supersaturated with protein 
that will produce single, well-ordered crystals. More often than not, supersaturated solutions produce 
precipitate or phase separation instead. There is no a priori theory for discerning which solutions will 
produce crystals and which will produce precipitate. So the crystallization process is separated into two 
stages: screening and optimizing. Each stage is conducted with a largely empirical approach. The 
screening process discovers lead crystallization conditions or ‘hits’, which typically produce 
microcrystals, thin rods or plates. The optimization process is devoted to grow crystals of size and 
regularity adequate for a successful X-ray diffraction data collection. 
 Crystal growth is a multiparametric process involving three basic steps: nucleation, growth, and 
cessation of growth (Fig. 1). To achieve the spontaneous formation of the first ordered aggregates 
(nuclei) the sample solution is brought to supersaturation. Supersaturation can be achieved by varying 
intrinsic physical and chemical parameters, such as ionic strength, dielectric constant of the solvent, 
pH, temperature, macromolecule concentration, concentration of chemicals (precipitant, buffer, 
additives). Once nuclei have formed, crystal growth can begin, and proceed while the degree of 
supersaturation is reduced. Maintaining high supersaturation would result in the formation of too many 
crystallization nuclei, which will develop into too many small crystals. Furthermore, crystals should 
grow slowly to reach the maximum degree of intrinsic order. Cessation of growth can be triggered by 
different causes, such as growth defects, poisoning of the crystal faces, “ageing” (chemical reaction) of 
the macromolecules, or simply depletion of the macromolecules from the crystallization media. 
 From a practical point of view, precipitation of the macromolecules to form crystals is mostly 
achieved using techniques known as “vapour diffusion” (increase of protein concentration by 
evaporation of water in a sealed environment), or by dialysis (Fig. 1). A great number of experiments 
(100-500) are usually necessary to determine the best crystallization conditions. Therefore, 
crystallization experiments are run on a very small scale (µl samples). Macromolecular crystals suitable 
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for X-ray diffraction experiments have a typical linear size of 10-100 µm, and grow in a time period 
varying from few hours, to weeks or even months. In case of limited crystal growth, not related to 
biochemical problems, crystallization experiments carried out in space, under “microgravity” 
conditions, might improve the quality of the crystals [9]. 
 When screening methods for protein crystallization fail, the modification of target proteins is 
often necessary to increase the susceptibility of the proteins to crystallization. Each change to the 
sequence of the protein (amino acid mutation) or its ligation state generates a new crystallization target 
for screening. This approach includes the crystallization of single domains in multi-domain proteins, of 
truncated forms at the N- and C-terminus, of truncated forms generated by limited proteolysis, and of 
single/multiple site-specific mutants. Site-directed mutagenesis is a common method to alter the 
surface properties of the target, or to stabilize the target. In addition, one can also attempt to engineer 
crystal contacts when the crystal structure of a homologous protein or a low-resolution structure of the 
target is available. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Solubility curve for a protein versus precipitant concentration (salt or another chemical parameter affecting 
protein molecule aggregation) in a typical vapour diffusion (continuous line) or dialysis (dashed line) crystallization 
experiment. 
 
 
1.3 Crystal handling ad radiation damage 
 
Macromolecular crystals are usually very fragile, and need special handling care. This unique property 
reflects the fact that the macromolecules are loosely packed in the crystal, with large solvent-filled 
channels crossing the crystal volume. Removal of the solvent destabilizes the crystal, which can easily 
dissolve or shatter. Protein crystals must, therefore, always be kept in their mother liquor or in its 
saturated vapour, even when exposed to X-rays. For data collection purpose, the crystal can be hosted 
in a thin-walled capillary, containing a small amount of mother liquor. Water vapour will guarantee 
proper hydration of the crystal when the capillary is sealed on both sides by resin (Fig. 2A). Then, the 
capillary is easily mounted on a goniometer head and properly oriented for X-ray exposure. 
Unfortunately, the energy released by absorption of X-rays in a crystal inevitably damages it by 
causing the formation of free radicals in the crystal (especially OH· due to water radiolysis) which react 
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with the protein molecules and irreversibly damage their crystal packing. The most common symptoms 
of radiation damage are a decrease of diffraction intensity and resolution limits (ultimately resulting in 
the X-ray pattern dying away), a variation of the unit cell volume with consequent non-isomorphism 
within a data series (thus hampering traditional phasing methods), and site-specific damage. The latter 
occurs in a well-defined order, starting with the breakage of disulphide bonds, followed by 
decarboxylation of aspartates, glutamates and the C-terminus, and then loss of the hydroxyl group from 
tyrosines [10]. The extent of radiation damage depends on the applied radiation dose, on the photon 
energy (it is lower for energy higher than 12.4 keV, or λ=1.0 Å), on the type of proteins and on the 
chemical composition of the solvent. The damage continues even after X-ray exposure, due to the long 
half-life time of the free radicals. 
 Nowadays, the extensive use of synchrotron radiation has made almost obligatory the cooling of 
the crystal samples to cryogenic temperature. In liquid nitrogen at 100 K, the radiation damage effects 
are so much reduced that they are often negligible. Most protein crystals can be cooled to cryogenic 
temperatures (with appropriate care for the solvent properties) using the so called “flash-freezing” 
technique. The crystal is “fished” by using a nylon fibre loop, where it remains suspended in a thin film 
of solvent (Fig. 2B). The loop is then cooled very rapidly by immersion into liquid nitrogen through the 
temperature where ice crystals may grow, to below 190 K where water forms a stable glassy state. If 
flash-freezing is successful, the liquid film in the loop freezes into a glass and remains clear. For data 
collection, the loop is mounted onto a goniometer head, where it is held in a stream of cold nitrogen gas 
(Fig. 2C). Crystallographers can take or ship loop-mounted flash-frozen crystals to synchrotron, 
minimizing handling of crystals at the data collection site. 
 
A       B       
 
 
 
 
 
 
 
 C 

 
Figure 2. Crystal mounting. (A) Protein crystal in equilibrium with liquid solvent in a thin-walled capillary. (B) Crystal on a 
fibre loop at 100 K. (C) Typical set-up for recording data from a slowly rotated crystal at a MAD synchrotron beamline 
(ESRF, Grenoble, France). 
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2. X-ray diffraction and phasing problem 
 
 
2.1 Fundamentals of crystallography  
 
Let’s now consider a crystal ideally schematised by a mosaic of crystalline blocks. At fixed 
wavelength, a Bragg reflection only occurs if the incident beam makes the correct angle with the 
reflecting planes. Because of the slight disorder in a real crystal, the reflection can be fully excited if 
the crystal is rotated through its reflecting position. In fact, all fixed-wavelength observing techniques 
use a rotating crystal system. Usually, the crystal is rotated about an axis orthogonal to the X-ray beam 
(Fig. 2C). For a protein crystal, a very large number of diffracted beams (called ‘reflections’ to remind 
Bragg’s law) may be recorded, and it is necessary to avoid them overlapping. By rotating the crystal 
through a small angle (0.5-1°), they can easily be observed separately (Fig. 3). For macromolecules in a 
crystal to be observed at atomic resolution, very many reflections must be recorded. At the modest 
resolution of 2 Å a moderate-sized protein unit cell edge of 50 Å will give 25 orders of diffraction 
along this direction. Therefore, in three dimensions the hkl all vary between -25 and +25, assuming that 
the three cell dimensions are similar. Very roughly 125000 different Bragg reflections exist to this 
resolution and should be collected. In fact, the number of independent reflection is reduced by a factor 
of two if the Friedel’s law applies and the number is further reduced depending on crystal symmetry. 
 If the crystal is rotated with an angular velocity ω through the reflection position, then the total 
energy of a diffracted X-ray along the direction defined by the Bragg reflection associated to the lattice 
planes hkl is expressed by the Darwin equation: 
 
 
 
 
where I0 is the incident beam intensity, λ is the wavelength, A is the correction due to the absorption of 
the sample, L and P are the Lorentz and the polarization factors, Vx is the volume of the crystal and V0 

the volume of the unit cell. Each structure factor Fhkl is a complete description of a diffracted X-ray 
recorded as reflection hkl and, therefore, is characterized by an amplitude and a phase and it can be 
represented in the imaginary plane as a vector (Fig. 4A).  
 
 

 
 
Figure 3. Diffraction pattern of a protein crystal subjected to small-angle oscillation data collection. 
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The Darwin equation shows that many different factors contribute to weaken the intensities of the 
waves diffracted by macromolecular crystals: the amplitude of the structure factors |Fhkl| are small, due 
to the low atomic number of the component elements (H, C, N, O, etc) of the biological 
macromolecule, the crystal volume is always small, while the unit cell is normally quite large. 
Therefore, significant diffracted intensities can be measured if high intensity incident radiation is 
applied, and if the sample X-ray absorption (by varying λ) as well as the diffused background radiation 
(by using a highly collimated beam) is minimized. All these experimental adjustments can be achieved 
using synchrotron radiation, while they are more difficult (or impossible) to achieve on a normal 
rotating anode X-ray source [11, 12].  
 A unique application of the synchrotron radiation in bio-crystallography is the so called Laue 
technique [13]. In this method the sample is hit by “white” radiation (0.5 Å<λ<3.0 Å). As a 
consequence, many families of lattice planes are simultaneously “excited”, thus producing a complex 
pattern of diffraction that can, however, be deconvoluted. The advantage of this technique is that very 
short X-ray pulses (<<1 s) can be used, due to the high intensity of the white radiation. In some cases 
(high symmetry of the crystal) one single pulse of radiation is sufficient to record the full diffraction 
diagram. This technique is at the basis of time-resolved crystallography experiments, which have found 
their major applications in the study of biological photoactivated protein reactions. The development of 
time-resolved multiwavelength Laue crystallography allows following the time course of biochemical 
processes (i.e. the catalytic cycle of an enzyme) through analysis of the related high resolution three-
dimensional structure(s), with a time resolution in the (sub)nanosecond-millisecond range. In the past 
few years, this technique has evolved considerably due to the improvement of synchrotron sources, of 
beamline optics, charge-coupled detectors and of the optimized reaction triggering strategies based on 
femtosecond-picosecond laser pulses. In fact, the dynamical processes investigated with Laue 
diffraction require an accurate triggering event (initiated usually by a laser pulse) to achieve the correct 
timing between protein structural transitions and X-ray beam exposure [14-16]. 
 
 
2.2. Solution of the phase problem 
 
In the diffraction experiment we measure the intensity of the diffracted beam Ihkl, which is proportional 
to the square of the amplitude of the structure factor Fhkl. The structure factor is a function of the 
scattering due to the individual atoms comprising the unit cell electron density, fj, known as the atomic 
scattering factor: 
 
 
 
Instead of summing over all N separate atoms in the unit cell, we can integrate over all electrons in the 
unit cell volume V: 
 
 
 
The reverse of this Fourier transform provides an expression of the electron density as a function of all 
structure factors: 
 
 
 

N 

 
j=1 

Fhkl = ∑ fj exp [2πi(hxj+kyj+lzj)] 

∫ 
V 

Fhkl =  ρ(xyz) exp [2πi(hx+ky+lz)] dV 

ρ(x,y,z) = 1/V ∑ Fhkl exp [-2πi(hx+ky+lz)] = 1/V ∑ |Fhkl| exp (iαhkl) exp [-2πi(hx+ky+lz)] 
hkl  hkl  
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So, to calculate the electron density at the position (x,y,z) in the unit cell of a crystal requires us to 
perform the summation over all the hkl planes of the contributions to the point (x,y,z) of waves 
scattered from plane hkl whose amplitudes must be added with the correct relative phase relationship 
(αhkl). We can measure the structure factor amplitudes, but the phases are lost in the experiment. This is 
“the phase problem” [17]. 
 A similar equation can be calculated using the diffraction intensities as coefficients and with all 
phase angles equal to zero: 
 
 
 
This equation is the Patterson function. It can be always calculated from the diffraction data since it 
depends on the squared structure factor amplitudes and it can be demonstrated to be a self-convolution 
of the electron density. The Patterson function is particularly useful both for the localization of “heavy 
atoms” (meaning atoms with atomic number higher than typical protein atoms), when heavy atom 
methods are applied for phasing, and for the correct orientation and translation positioning of a model 
in the crystal unit cell when the molecular replacement phasing method can be applied [13]. 
 
 
2.3 The MIR method 
 
The Multiple Isomorphous Replacement (MIR) method is the most successful and general experimental 
approach for the determination of phase angles and their assignment to the corresponding structure 
factors. The method is based on the possibility of modifying structure factors and phases of the 
“native” protein crystal by specific binding of heavy atoms. When the position of the heavy atoms 
bound to the protein have been found by a Patterson map calculation, then it is possible to calculate the 
phase of each observed structure factor by proper consideration of the variation of the structure factor 
moduli in the native protein and in the derivatized crystals [13]. 
 Practical application of the MIR method requires the comparison of X-ray diffraction patterns 
of the native protein crystal and of the crystals of at least two independent heavy atom derivatives. In 
case of perfect isomorphism (the conformation of the protein molecules, their position and orientation 
relative to the crystallographic axes, as well as the unit cell parameters must be exactly the same in the 
native and derivative crystals) the structure factor differences between the native protein crystals (FP) 
and the derivatives (FPH) are exclusively due to the contribution of the bound heavy atoms (FH). The 
contribution of the heavy atom replacement to the structure factor amplitude and phases is best 
illustrated on the Argand diagram (Fig. 4A). 
The structure factor of the heavy atom derivative is then expressed by the vectorial summation: 
 

FPH = FP+ FH  
 
The amplitudes |FPH| and |FP| are experimentally measured from the diffraction pattern of the native and 
derivative crystals, respectively. FH (module and phase) is calculated from the position of the heavy 
atoms, which can be obtained from the Patterson synthesis of the isomorphous differences (|FPH| - |FP|)2. 
The native phase angle αP (assigned to the structure factor FP) can be calculated by using the cosine 
rule: 
 

αP = αH + cos-1 [(|FPH|2 - |FP|2 - |FH|2) / 2|FP||FH|] 

ρP(u,v,w) = 1/V ∑ |Fhkl|
2 cos[2π(hu+kv+lw)] 

hkl  



 8 

leading to two possible solutions symmetrically distributed about the heavy atom phase (αP = αH ± α0). 
This two-fold ambiguity is better illustrated in the Harker construction (Fig. 4B). In this representation 
the possible structure factors FP and FPH are drawn by circles in the complex plane, having radius |FP| 
and |FPH|, respectively. The two possible phase values occur at the circle intersections. The phase 
ambiguity can be removed by measuring at least two different heavy atom derivatives. The comparison 
of the two heavy atom contributions identifies the common correct value of αP (Fig. 4C).  
 
 
A       B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   C        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (A) Argand diagram for a single isomorphous replacement. Amplitude moduli and phases are indicated on the 
corresponding vectors for a native reflection (FP), a derivative reflection (FPH), and for the contribution of the bound heavy 
atom (FH). (B) Harker diagram for one heavy atom derivative. (C) Harker diagram for two heavy atom derivatives in a MIR 
experiment.  
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In real experimental cases, one heavy atom makes little difference to the structure factor amplitudes of 
the native protein. Furthermore, the calculation of FH is often not precise, due to an approximate 
deconvolution of the isomorphous difference Patterson, and due to the fact that binding of heavy atoms 
can introduce non-isomophism between native and derivative crystals. As a result of several sources of 
experimental noise, the Harker circles do not intersect at a single point and uncertainty is present in the 
assignment of the correct phase angle αP. A method recognising these difficulties has been therefore 
proposed, based on the consideration of a probability function for the phase angle αP as a function of 
the observed experimental parameters. These phase probability distributions can be used to estimate 
“best phases”, with appropriate weighting, yielding the protein electron density map with the least 
error. If ε is the “lack of closure” of the phase triangle FPH = FP + FH for the phase angle α 
 

ε = |FPH|obs - |FPH|calc = |FPH|obs - |[|FP| exp(iαP) + |FH| exp(iαH)]| 
 
then for each heavy atom derivative j, and for each Bragg reflection (hkl), a phase probability Pj(αP)hkl 

can be defined, making the assumption that all the errors reside in |FPH|calc and that errors follow a 
Gaussian distribution:  
 

Pj(αP)hkl = N exp [-εj(αP)2/2Ej
2]hkl 

 
where N is a normalization factor of the probability over 2π, and Ej is the error associated to the 
structure factor measurements. As expected, the distribution is bimodal if only one derivative is 
considered, the two peaks corresponding to the intersection points of the circles with radii |FP| and |FPH| 
(Fig. 4B and Fig. 5A). The total probability for each (hkl) reflection is obtained by multiplying the 
separate probabilities of each derivative j:  
 
 
 
 
The composed P(αP)hkl distribution normally shows a unimodal shape (Fig. 5B). An electron density 
map calculated with a weighted amplitude representing the centroid of the phase distribution yields the 
least error. The polar coordinates of the centroid define the phase angle α(best)hkl and a number mhkl 

(varying between 0 and 1) called “figure of merit”, used as a weight associated to the corresponding 
native structure factor moduli |Fhkl|: 
 

Fhkl(best) = mhkl |Fhkl| exp [iαP(best)hkl] 
 
The figure of merit corresponds to the cosine of the mean error in phase angle, providing an estimate of 
the quality of the phasing process. Reflections not properly phased maintain a bimodal distribution 
P(αP)hkl, and a figure of merit close to 0. Viceversa, if the phasing has been accurate, then the 
probability distribution for each reflection P(αP)hkl is unimodal and mhkl is close to 1. After the 
computation of the phase angles using the MIR method, it is possible to calculate an electron density 
map using native protein data and the phase angles derived from isomorphous replacement. 
 
 
 

P(αP)hkl = Π Pj(αP)hkl 
n 

 
j=1 

ρ(x,y,z) = 1/V ∑ mhkl |Fhkl| exp [iαP(best)hkl] exp [-2πi(hx+ky+lz)] 
hkl  
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Inspection of such electron density map allows to detect structural features typical of proteins (i.e. α-
helices, β-strands, amino acid residues, etc), and to build an atomic model of the macromolecule. The 
knowledge of the atomic coordinates allows to calculate new phases that are usually more accurate of 
the “best” MIR phases. Then, the phase improvement will continue by the iteration of electron density 
map calculation, model rebuilding, and crystallographic refinement. 
 
 
A                B 
 
 
 
 
 
 
 
 
 
 
Figure 5. (A) Bimodal distribution, for the hkl reflection, of the probability Pj(αP) for a phase angle αP derived from 
derivative j. FP(best) is the centroid of the distribution. (B) Unimodal distribution of the total probability P(αP) for a phase 
angle αP derived from more than one derivative. (Adapted from[17]) 
 
 
2.4 SIRAS method 
 
All elements, particularly those of high atomic number, display “anomalous scattering” when exposed 
to X-rays. The effect depends on the wavelength of the X-rays, being relevant when the energy of the 
incoming radiation is close to the element X-ray absorption edge. At such wavelength the energy of the 
X-ray photon is sufficient either to excite an electron of the strongly absorbing atom to a higher 
quantum state, or to eject the electron completely from the atom. As a consequence, the scattering 
factor f for the atomic species j (which is normally a real number for low atomic number elements) 
becomes “complex”, having three components: 
 

f(θ,λ)j = f0(θ)j + f'(λ)j + if"(λ)j 
 
where f0(θ)j is the normal scattering term that is dependent on the Bragg angle θ, while  f'(λ)j and f"(λ)j 
are the anomalous scattering dispersive and absorption terms which depend on the wavelength λ. 
The dispersive term (negative) decreases the normal scattering factor amplitude, whereas the 
absorption term is 90° advanced in phase and results in giving a complex nature to f(θ,λ)j. This leads to 
a breakdown in Friedel’s law, giving rise to small but significant anomalous differences between the 
absolute values and phases of F(hkl) and its Bijvoet mate F(-h-k-l). The anomalous or Bijvoet 
difference can be used in the same way as the isomorphous difference in Patterson method to locate the 
anomalous scatterers and can profitably be exploited for the determination of the protein phase angles. 
Figure 6A shows the origin of the differences between F(hkl) and F(-h-k-l) (Bijvoet pair). 
 The use of anomalous scattering in determining protein structures has increased recently in 
relation to the use of synchrotrons as X-ray sources [11, 12]. Synchrotron radiation is tunable, and its 
wavelength may, within certain limits, be tuned at will. This provides the opportunity of measuring the 
X-ray diffraction pattern of a protein crystal at wavelengths selected near (but also far) from the 
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absorption edges of any anomalous scatterer present (even as light as a sulfur atom). Phases for the 
native structure factors can then be derived in a similar way to the MIR case. Anomalous scattering can 
be used to break the phase ambiguity in a single isomorphous replacement experiment, leading to 
SIRAS (single isomorphous replacement with anomalous scattering) or MIRAS in case of multiple 
isomorphous replacement using anomalous scattering. Note that because of the 90° phase advance of 
the f″ term, anomalous scattering provides orthogonal phase information to the isomorphous term.  
 
 
A       B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. (A) Breakdown of Friedel’s law if an anomalous scatterer is present: F(hkl) ≠ F(-h-k-l) or FPH(+) ≠ FPH(-). ∆F± = 
|FPH(+)| - |FPH(-)| is the Bijvoet difference. (B) Harker construction for SIRAS. 
 
 
2.5 MAD method 
 
A different application of the anomalous scattering for macromolecular structure determination is the 
so called “Multiple wavelength Anomalous Dispersion” method (MAD). This method provides an 
extremely handy tool for the determination of protein phases, directly from just one crystal containing a 
good anomalous scatterer. The great advantage of using one crystal is that the lack of isomorphism 
problems are totally abolished. The anomalous scatterer may be provided by a conventional 
isomorphous derivative, by a selenium atom substituted to a sulfur atom in methionine and cysteine 
residues [18], or by an ion already present in native metalloproteins. In the case of engineered Se-
substituted proteins the presence of one Se atom in a protein of approximately 150 amino acids is 
sufficient for a successful application of the MAD method [19].  
 MAD data are collected at several wavelengths, typically three, in order to maximize the 
absorption and dispersive effects. Typically, wavelengths are chosen at the absorption f'' peak (λ1), at 
the point of inflection on the absorption curve (λ2), where the dispersive term (which is the derivative 
of the f'' curve) has its minimum, and at a remote wavelength (λ3 and/or λ4). Figure 7 shows a typical 
absorption curve for an anomalous scatterer, together with the phase and Harker diagrams. The changes 
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in structure factor amplitudes arising from anomalous scattering are generally small and require 
accurate measurement of intensities. Importantly, the signal increases with resolution owing to the fall-
off of normal scattering with resolution. The actual shape of the absorption curve must be determined 
experimentally by a fluorescence scan on the crystal at the synchrotron, as the environment of the 
anomalous scatterers can affect the details of the absorption. There is a need for excellent optics for 
accurate wavelength setting with minimum wavelength dispersion. Generally, all data are collected 
from a single frozen crystal to ensure the surviving of the same crystal to three data collections, with 
high redundancy in order to increase the statistical significance of the measurements and data are 
collected with as a high completeness as possible.  
 
 
A         
 
 
 
        
       C 
 
        
 
 
 
 
 
 
 
 
B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. MAD phasing. (A) Typical absorption curve for an anomalous scatterer (in this example Se). (B) Phase diagram. 
|FP| is not measured (dashed line), so usually the remote λ3 is chosen as the “native”. (C) Harker construction. (Adapted 
from [17]) 
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2.6 Molecular replacement 
 
The molecular replacement method is a phasing procedure of a native protein, that does not require 
specifically the use of synchrotron radiation. Here it is mentioned for completeness, since it represents 
one of the most common methods of protein phase determination in X-ray crystallography. The method 
is based on the observation that proteins which are homologous in their amino acid sequences have 
often a very similar three-dimensional fold. As a rule of thumb, a sequence identity >25% is normally 
required and an r.m.s. deviation of <2.0 Å between the Cα atoms of the model and the final new 
structure, although there are exception to this. Therefore, if one parent protein structure is available, it 
can be used to solve the 3D structure of homologous proteins, without the use of heavy atom 
derivatives. Conceptually, one has to transfer the known protein structure (search model) from its 
crystalline arrangement to the crystal of the protein of unknown structure (target protein). Such a 
procedure allows the calculation of approximated phases (αhkl

calc); these are combined with the 
observed structure factors (|Fhkl|

obs) of the target protein, yielding a hybrid electron density map  
 
 
 
which allows the iterative building of the target protein molecular model [13]. 
 The correct positioning (orientation and translation) of the search model in the target unit cell is 
the key step for calculating starting phases sufficiently accurate to be able to model the target protein 
structure in the hybrid electron density map. Usually, the positioning of the search model in the target 
unit cell takes place in the Patterson space. If the model and the target protein are indeed similar and if 
they are oriented in the same way in unit cells of the same dimensions and symmetry, they should have 
very similar Patterson maps. We might image a trial-and error method in which we compute Patterson 
maps for several model orientations and compare them with the Patterson map of the target protein. In 
this manner, we could find the best orientation of the model, and then use that single orientation in the 
search for the best translational position of the model. In this two-step approach, the rotational and 
translational searches are defined by the functions: 
 

 
 
 
 
 
 
 

where Pcryst(u) and Pmod(R,u) are the Patterson functions of the target protein crystal and of the search 
model rotated by matrix R, respectively, and P1,2(u,t) is the cross-Patterson function of the model 
structure, properly translated by the vector t within the unit cell. The rotational function C(R) operates 
in a volume around the origin with a radius equal to the molecular diameter expected for the target 
protein. This region hosts all the intramolecular Patterson vectors (self-vectors set), which define the 
orientation of the search model with respect to the unit cell axes of the target crystal. The next step after 
the correct orientation of the search model is its proper translational positioning within the unit cell of 
the target crystal. The translational function D(t) is calculated in the Patterson space, in the region 
external to the sphere used for the rotational search. This is because in that region lie the inter-
molecular vectors (cross-vectors set) which define the position of the macromolecule relative to the 
unit cell symmetry elements. 

C(R) =   Pcryst(u) Pmod(R,u) du ∫ 
self 

vectors 

D(t) =   Pcryst(u) P1,2(u,t) du ∫ 
cross 

vectors 

ρ(x,y,z) = 1/V ∑ |Fhkl|
obs exp (iαhkl

calc) exp [-2πi(hx+ky+lz)] 
hkl  
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 If X is the set of atomic (x,y,z) coordinates of the search model, R is the rotational matrix 
obtained from the first step, and t is the translational vector from the second step of the molecular 
replacement method, then 
 

X' = XR + t 
 
provides the atomic coordinates of the search model in the target crystal [20]. It is from these 
coordinates that a set of preliminary phases can be calculated. These phases, combined with the 
structure factor amplitudes experimentally measured from the target crystal, produce the hybrid 
electron density map. Usually, more similar the structure of the search and target proteins are, less 
approximated is the calculated electron density map. The analysis of this map, using computer 
graphics, allows to build a starting molecular model of the target macromolecule. Such model will be 
subjected to several cycles of crystallographic refinement and modeling until the best model fitting the 
observed data is reached (see section 4). 
 
 
3. Density modification 
 
If the quality of the first electron density map is not good enough to allow a complete and unambiguous 
tracing of the polypeptide chain, improvement of the protein phase angles may be required prior to 
model building and refinement. Phase improvement can be based on two different techniques of 
“density modification” [13]. The first technique (known as “solvent flattening”) is based on the 
assumption that the protein molecules are characterised by regions of relatively high electron density 
whose boundaries can be located. On the contrary, the electron density map in the solvent regions, 
between protein molecules packed in the crystal lattice, is rather low. This is related to the dynamic 
nature of the solvent molecules in these regions of the unit cell, and results in the presence of noise 
peaks in the corresponding electron density. Such a noise can be removed by setting the electron 
density for the disordered solvent regions to a low constant value, related to its chemical composition. 
Then, new phases are calculated by back-transforming the modified electron density map. In the next 
step a new electron density map is calculated with experimentally observed structure factor amplitudes 
and with phase angles either from the solvent flattening alone or by combining them with phase angles 
obtained from isomorphous or molecular replacement method. The iteration of this procedure, along 
with the continuous updating of the envelope which separates the protein from the solvent region, and 
the addition (in small steps) of the data at higher resolution, is able to transform an initial hardly 
interpretable electron density map to a map where an atomic model can be easily built. 
 A similarly successful result can be achieved with the density modification technique known as 
“non-crystallographic symmetry averaging”. This technique is applied when more than one protein 
molecule is present in the crystal asymmetric unit. The assumption is that the electron density in 
molecules related by non-crystallographic symmetry (NCS) is essentially equal. If the NCS operators 
present in the asymmetric unit are known, then the electron density is averaged at each (x,y,z) point of 
NCS-related protein molecules, the solvent region flattened and the asymmetric unit is reconstituted. 
Phase angles from this new model are calculated by back-transforming the averaged electron density 
map. A new and improved density map is calculated with experimentally observed structure factor 
amplitudes and phase angles obtained from the NCS procedure [21]. If necessary, this phase 
information can be combined with previously known phase information. The result is improved signal-
to-noise ratio and, in the end, a clearer image of the molecules. The NCS averaging method is 
spectacularly successful in systems with high symmetry, such as virus. 
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4. Refinement 
 
 
4.1 Least squares refinement 
 
The native protein phases, obtained by one of the methods discussed previously, allow the calculation 
of a preliminary electron density map, whose interpretation results in an approximated model of the 
protein structure showing the main features of the macromolecular architecture (Fig. 8). The partial 
model can be improved using the information present in the observed structure factor amplitudes. Such 
a process, known as crystallographic refinement, consists of iterative corrections of the model, to reach 
the best possible agreement between the calculated and observed structure factors. This procedure is 
essential to achieve the maximum reliability for the molecular model, as well as to provide the atomic 
resolution structural details needed for an effective biological research. 

 
 
Figure 8. A small section of the electron density map (cyan mesh) contoured at 1 σ, with the final structure superimposed 
(ball and stick representation). 
 
 
 During crystallographic refinement the molecular model is allowed to vary by changing the 
positional parameters p, which are for each non-hydrogen atom j of the structure the coordinates 
(xj,yj,zj) and the temperature factors (Bj). The temperature factors Bj are generally assumed to be 
isotropic, being related to the thermal oscillation (µj) of each atom j around its equilibrium position by 
the relation: Bj = 8π2<µj

2>. The adjustment of the parameters (xj,yj,zj,Bj) for all atoms within the initial 
approximated model is obtained by minimization of the function: 
 
 
 
The summation is calculated over all crystallographically independent reflections and whkl is the weight 
given to each observation (whkl = 1/σhkl

2, where σhkl is the standard deviation for the hkl observation). 
Least squares is the simplest statistical method used in macromolecular refinement. The least squares 
refinement of atomic coordinates and temperature factors is an iterative process. In each step the 
parameters to be refined shift only partially in the direction of their final values; usually, several 
refinement cycles are carried out before convergence is reached. The larger is the difference between 

Q(p) = ∑ whkl (|Fhkl|obs - |F(p)hkl|calc)
2 

hkl  
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the observation and the model’s prediction, the worse the model. The more precise is an observation, 
the more important that observation becomes in the overall sum. One varies the parameters of the 
model to find a set that gives the lowest sum of deviants.  
 Whereas for small molecules the ratio between observations (|Fhkl|) and parameters to be refined 
is about 10:1, for macromolecules such a ratio is often close to 1. Such poor over-determination is 
generally compensated by the introduction of additional “observations”, mostly related to the known 
stereochemical properties of the proteins (bond lengths, bond angles, van der Waals contacts, etc). The 
function which is then minimized is: 
 

C = Q + kU 
 

where Q is the crystallographic term previously introduced, U is the potential energy associated to a 
particular conformation of the macromolecule, and k is a scaling factor which controls the relative 
contribution of the energy and X-ray terms. U consists of several contributions based on the deviations 
of the stereochemical parameters of the protein model from ideal values, mainly derived from small 
molecule structures: 
 
 
 
 
The potential energy function includes terms for bond stretching (b terms), bond angle bending 
(τ terms), torsion potentials, and van der Waals interactions, respectively. Electrostatic interactions are 
usually ignored, because they act over rather long distances and they are not particularly sensitive to 
small changes in atomic positions. When the crystallographic residual Q is minimized together with the 
potential energy term U, the refinement process is defined as “restrained” since the stereochemical 
parameters (treated as new “observations”) are allowed to vary in a narrow range around their standard 
values. The atomic coordinates of the protein model vary within a sort of harmonic potential, driven by 
minimization of the crystallographic term. If the deviation of the model atoms from those of the real 
structure is large, the refinement may be trapped in a local minimum instead of converging to the 
correct solution. This situation can be avoided by correcting manually the model via computer graphics 
analysis, or by applying a more sophisticated refinement technique, which includes the contribution of 
molecular dynamics. This technique, which takes into account the kinetic energy associated to each 
atom of the macromolecule during the refinement, has rapidly gained popularity because of its wider 
radius of convergence which allows a faster refinement of the initial model [22]. 
 
 
4.2 Maximum-likelihood refinement 
 
In general, the assumptions of the least squares method are that errors in the observations obey a 
normal distribution with completely known (“observed”) variances and that, given perfect observations 
and the best parameters, the model would predict the observations perfectly. In many refinement 
problems, however, these assumptions are not completely correct. The simplest example occurs when 
the model is incomplete, say missing a domain. In this case it is impossible for any set of parameters to 
reproduce all the observations. The refinement function must account for the unknown contribution of 
the unmodeled part of the molecule and least squares cannot do that. Recently a more general approach 
has been introduced in the refinement procedure, by using the so called “maximum-likelihood” 
approach.  

U = ∑ 1/2 kb,j (bj,calc - bj,obs)
2
 + ∑ 1/2 kτ,j (τj,calc - τj,obs)

2 + ∑ kφ {1+cos(nφj-δ)} + ∑ [(Ar -12)ij + (Br-6)ij] 
 j j j ij 
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 Maximum-likelihood is a general statistical framework for estimating the parameters of a model 
on the basis of observations [23]. This approach differs from least squares in that maximum-likelihood 
can accommodate observations with uncertainties of arbitrary character and model parameters whose 
values are also expected to have such uncertainties. While maximum likelihood is completely general, 
macromolecular refinement is such a difficult problem that no computer can perform a likelihood 
refinement in complete generality. Therefore the maximum likelihood method depends critically on the 
assumptions made about the nature of the uncertainties in the observations and the parameters of the 
final model [24]. The maximum-likelihood method begins with the assumption that the current 
structural model itself contains errors (Fig. 9A). Instead of a single location, as assumed by the least-
squares method, there is a cloud of locations that each atom could occupy (usually, the distributions of 
positions are assumed to be normal and have equal standard deviations). This distribution of structures 
results in a distribution of values for the complex structure factors calculated from that model. Because 
of the nonlinear relationship between real and reciprocal space, the value of the structure factor 
calculated from the most probable model (labelled Fcalc in Fig. 9B) is, however, not the most probable 
value for the structure factor distribution. This is the key difference between least squares and 
maximum likelihood methods. The most probable value for the calculated structure factors has the 
same phase of Fcalc but a smaller amplitude which equalize Fcalc only when the model is infinitely 
precise. The width of the distribution, named σcalc, also arises from the coordinate uncertainty and is 
large when the difference between Fcalc and the most probable value of the structure factor distribution 
is high. In refinement without experimental phase information, the probability distribution of the 
calculated values of the structure factors are converted to a probability distribution of the amplitude of 
this structure factor by integrating the two-dimensional distribution over all phase angles at each 
amplitude. This integral is represented by a series of concentric dashed circles in Fig. 9B. As expected, 
the most probable amplitude is smaller than |F|calc (Fig. 9C).  
 
 
A     B     C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Probability distributions for one reflection in the maximum-likelihood approach (A) probability distributions of 
the atoms in the model. (B) The distribution of structures results in a distribution of values for the structure factors 
calculated from that model. Fcalc indicates the value of the structure factor calculated from the most probable model. A 
series of concentric dashed circles represent the integral over all phase angles at each amplitude needed to convert the 
probability distribution of the calculated value of the structure factor to a probability distribution of the amplitude of this 
structure factor. (C) The probability distribution for the amplitude of the structure factor. The arrow below the horizontal 
axis represents the amplitude of Fcalc, calculated from the most probable model. The corresponding |Fobs| is also indicated. 
(Adapted from[24]) 
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With this distribution the likelihood of any value for |F|obs can be evaluated, and one can calculate how 
to modify the model to increase the likelihood of |F|obs. For instance, in the case shown in (Fig. 9C) the 
likelihood of |F|obs can be improved by either increasing |F|calc or increasing the precision of the model. 
In general, compared to the least squares method, the basic maximum-likelihood residual function is: 
 
 
 
where <|F(p)hkl|calc> is the expectation value of the amplitude of a structure factor calculated from all 
plausible model similar to p, and σ(p)calc is the width of the distribution of values for |F(p)hkl|calc.  
 
 
4.3 Quality of the model 
 
The progress of the crystallographic refinement is monitored by comparing the measured structure 
factor amplitudes (|Fhkl|obs) with those calculated from the current atomic model (|Fhkl|calc). As the model 
converges to the correct structure, the calculated structure factor amplitudes should also converge to the 
corresponding measured values. The most widely used measure of convergence is the so called 
“residual index”, o R-factor: 
 
 
 
 
 
Values of the R-factor range from zero, for perfect agreement of calculated and observed structure 
factors, to about 0.6, when the measured structure factors are compared to a set of random amplitudes. 
An early model with R-factor near 0.4 is promising and is likely to improve during the refinement 
procedure. A desirable target R-factor for a refined protein model with data to 2.5 Å is about 0.2.  
 A more revealing criterion of model quality and improvement is the so called “free R-factor”, or 
Rfree. The Rfree.is calculated exactly as the R-factor but the summations are on a small set of randomly 
chosen reflections (5-10% of the total measured reflections), the “test set”, which are set aside from the 
beginning and never used during the refinement procedure. Therefore, at any stage in refinement, Rfree 
measures how well the current atomic model predicts a subset of measured amplitudes that were not 
included in the refinement of the model. For this reason, Rfree provides a less biased measure of the 
overall model quality, correlating very well with phase accuracy of the atomic model. In general, 
during intermediate stages of refinement, Rfree values are higher than the R-factor, but in the final 
stages, the two often become more similar (the final Rfree value is generally higher than the R-factor by 
2 - 7%).  
 In addition to R-factors as indicators of convergence, other structural parameters can be 
monitored to check whether the model is chemically, stereochemically, and conformationally 
reasonable. During the progress of refinement, all of these structural parameters should improve. 
 
 
5. Data bases 
 
The macromolecular structures solved by means of X-ray crystallography or NMR techniques are 
usually submitted to the Protein Data Bank (http://www.rcsb.org/pdb) as text files [25]. The head of 
each PDB file contains specific information about the macromolecule, whereas the body of the file 
consists of a list of coordinates for each single atom of the structure (expressed in Å and referred to 

∑ ||Fhkl|obs - |Fhkl|calc| 

    ∑ |Fhkl|obs 

hkl  

hkl  

R  =  

Q(p) = ∑ (|Fhkl|obs - <|F(p)hkl|calc>)2 / [σobs
2 + σ(p)calc

2] 
hkl  
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orthogonal axes), with their temperature factors. Additionally, the atomic coordinates of a variable 
number of experimentally located solvent molecules (usually water molecules) are also present in the 
PDB files. These solvent molecules are localized on the surface of the macromolecule as well as in 
internal cavities. A substantial revision of the PDB is currently in progress with the aim of improving 
the quality and the completeness of the deposited structural and biological information. For instance, 
the PDB provides several links to correlated data bases and access to structural analysis software for 
the study of protein folds, general research in various fields of structural biology, and for the validation 
of each new deposition. As a rule of thumb, the basic criteria that an occasional user should take into 
account to check the quality of a deposited structure are: 
(a) the agreement index between calculated and observed structure factors (R-factor and Rfree) 
(b) maximum resolution of the data used during the refinement procedure 
(c) global stereochemistry of the macromolecule (as evaluated by estimates of the deviation from the 
ideal values for bond length, bond angles, etc) 
(d) atomic temperature factors (average and local values) of the macromolecule and of the localized 
solvent molecules 
 The amount of data provided by bio-crystallographic analysis is continuously increasing. 
During the year 2010, on average, one new structure has been deposited in the PDB every 1.5 hours. 
This flood of information, however, does not necessarily correspond to novel structural information, 
since many protein folds are well conserved through the different evolutionary phyla. Statistics and 
biological considerations suggest that the all proteins present in Nature (about 105 different types in 
humans) are compatible with the existence of a limited number of folds, probably less than 104. 
 
 
6. Structural genomics 
 
Macromolecular crystallography is experiencing a surge in new methodologies, largely fuelled by 
developments in structural genomics and by the needs of pharmaceutical industry. While most 
structural biologists pursue structures of individual proteins or protein groups, specialists in structural 
genomics pursue structures of proteins on a genome wide scale, in particular human proteins implicated 
in disease states, as well as proteins from a set of pathogens. The Human Genome Project has produced 
an enormous body of information about the sequence of the human genome and in addition genome 
sequences of a large number of human pathogens, from tuberculosis to malaria, are also known. 
However, detailed information on the structure, function and interaction of the tens of thousands of 
proteins encoded by these genomes is required in order to fully exploit this new panoply of data. 
 Rapidly increasing the numbers of known atomic structures of proteins will have a number of 
strategic benefits for medical research, basic and applied. In particular, knowledge of the three-
dimensional structures of key human proteins or human pathogenic proteins is vital for speeding up the 
difficult task of discovering new antibiotics or anti-cancer drugs (Center for Structural Genomics of 
Infectious Diseases: http://csgid.org). X-ray crystallography at latest generation synchrotron sources is 
the key technique that will build the database of three-dimensional information on protein structure and 
by generating large amounts of systematic crystallization data that may lead to more predication-based 
crystallization methods. Nuclear magnetic resonance techniques and neutron scattering constitute 
further important and complementary structure determination tools.  
 As opposed to traditional structural biology, the determination of a protein structure through a 
structural genomics effort often (but not always) comes before anything is known regarding protein 
function. This implies new challenges in structural bioinformatics, i.e. determining protein function 
from its three-dimensional structure and the need to speed up the structure determination process by 
optimising each step for high throughput, including target selection, protein production, purification, 
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crystallization and structure analysis by X-ray crystallography and/or NMR spectroscopy. As an 
example, several synchrotron beamlines normally provide the so called “remote data collection system” 
for macromolecular crystallography, which allows users to work on their samples, shipped and 
mounted on the beamline goniometer, through the use of extensive robotics that allow for 
comprehensive crystal manipulation, screening, selection of best samples, and data collection, all done 
from their home laboratory. The user can also conduct data processing and phasing calculations during 
the actual data collection experiment (i.e. “on the fly”). This service not only minimizes the cost of data 
collection, but also simplifies the operation of the beamline, thereby reducing human traffic and 
security issues. 
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