

The FERMI@Elettra beamlines: From diagnostics to microfocusing

M. Zangrando

On behalf of the FERMI@Elettra Photon Beam Transport System: A. Abrami, D. Bacescu, <u>D. Cocco (project leader)</u>, I. Cudin, C. Fava, D. Giuressi, R. Godnig, D. Lonza, F. Parmigiani, L. Rumiz, R. Sergo, C. Svetina

PICTURES FROM THE TRIESTE TOURIST ATTRACTION SITE

FERMI@Elettra parameters

Parameter	FEL I	FEL 2
Wavelength (nm)	100 - 20	40 - 10
Pulse length FWHM (fs)	50 - 100	100 - 200
Bandwidth rms (meV)	~20	~5
Polarization	Variable	Variable
Peak power (GW)	l - 5	~0.4
Photons per pulse	~2 10 ¹⁴ (100 nm)	~1 10 ¹³ (10 nm)
Brightness (Ph/s/mm²/mrad²/0.1%BW)	~6 I0 ³²	~10 ³²
Power fluctuation (%)	~2 5	> 50
Central wavelength fluctuation	Within BW	Within BW
Pointing fluctuation (µrad)	< 5	< 5
Source size FWHM (μm)	290	140
Divergence rms (µrad)	50	15
Repetition rate (Hz)	10 - 50	10 - 50

Photon beam transport system

Damage threshold

- A. Andrejczuk et al. DESY annual report 2001
- D. Von der Linde et al. Appl. Surf. Science 154 (2000)
- Y. Hirayama et al. Appl. Surf. Science 197 (2002)
- H. Jeschke et al. Appl. Surf. Science 197 (2002) (2 articles)
- J. Kuba et al. NIM A 507 (2003)
- L. Juha et al. NIM A 507 (2003)
- V. Schmidt et al. Appl. Surf. Science 197 (2002)
- K. Venkatakrishnan at al. Optics & laser technology 34 (2002)
- Y. Dong et al. Appl. Surf. Science 252 (2005)

Damage threshold

Material	Damage threshold @ 90 nm	Safety angle 100 nm (10 /20/40 m)	Estimated damage threshold @ 40 nm	Safety angle 40 nm (10 /20/40 m)
Cu/Glidcop bilk	~ 500 mJ/cm ²	24° / 90°/ 90°	~ 1000 mJ/cm ²	41° / 90°/ 90°
Au coating	40 mJ/cm ²	1.9° / 7.6°/ 32°	50 mJ/cm ²	4.8° / 20°/ 77°
Silicon bulk	30 mJ/cm ²	l.5° / 6°/ 23°		
Graphite coating	60 mJ/cm ²	2.9° / 11.5°/ 53°	240 mJ/cm ²	9° / 40°/ 90°
YAG bulk	70 mJ/cm ²	3.3° / 13.4°/ 68°		

Fel 2

Fel I

Damage threshold

Mirrors coating

Photon diagnostics

In collaboration with the Instrumentation Group and T-REX lab for prototyping the systems

Gas reduction cell

- Preservation of coherence, statistics, spectrum, etc.

Photon diagnostics

Pulse length measurement: NOT On line; NOT Shot by shot;

Energy spectrometer

Photon	Photon per	Bandwidth	Grating	Screen efficiency	CCD	Spot dimension	Energy	Expected photon per pixel
energy	pulse	(meV)	efficiency	(Vis ph out/XUV ph in)	efficiency	(µm)	resolution	$(10 \times 10 \mu m^2)$ with
(eV)							(meV)	demagnification 2:1
12	$\sim 2 10^{14}$	20	0.1%	0.25	$\sim 85\%$	4.5 μm X13mm	0.3	~ 250,000
31	$\sim 4 10^{13}$	20	0.25%	0.4	$\sim 85\%$	5.9 µm X5.2mm	1.0	~ 1,200,000
124	$\sim 1 10^{13}$	10	0.2%	1	~ 85%	4.8 µm X1.6mm	2.4	~ 125,000

Use of a set of visible filters

Photon diagnostics

VUV pulse lengths can be measured by:

- Cross-correlation, ..., with a short-pulse laser.

Can be applied to many systems (Above Threshold Ionization of noble gases, pump-probe of molecules, etc.) <u>BUT time resolution is determined by jitter</u>

- Streak camera type techniques: collaboration ST-Hamamatsu for a sub-ps EUV-SXR streak camera (Ref. F. Parmigiani, M. Zangrando)

- Autocorrelation (beam splitting). Precision depends entirely on mechanical design of optics. Requires non-linear phenomena.

Courtesy by K. Prince

Autocorrelation by using Helium!

- first ionization potential is high, 24.6 eV, second is 79.004 eV,
- calculations exist, laser harmonic results exist,
- "canonical" three body system.

For FELI, we can choose energies below 24.6 for "non-resonant to continuum" or "resonant to continuum" two photon ionization.

For FEL2, we can choose two-photon, double ionization (above 79 eV).

Feasibility Cross-section is 10^{-50} - 10^{-53} cm⁴ s. We estimate count rates of 1 to 100 counts/sec, for a 20x20 micron spot.

Courtesy by K. Prince

Pulse length measurement

Wavefront preservation

 $\varphi = \frac{2\delta h \cdot \sin\vartheta}{\lambda}$

$$x^{2}\left(\frac{\sin^{2}\vartheta}{b^{2}} + \frac{1}{a^{2}}\right) + y^{2}\left(\frac{\cos^{2}\vartheta}{b^{2}}\right) - x\left(\frac{4f\cos\vartheta}{b^{2}}\right) - xy\left[\frac{2\sin\vartheta\sqrt{e^{2} - \sin^{2}\vartheta}}{b^{2}}\right] = 0$$

where: $f = \left(\frac{1}{r} + \frac{1}{r'}\right)^{-1}$
Need for a 3rd order approximation in shape

Two unequal moments applied at the edges

Focusing systems comparison

Simplified to have "just" 4 angles and 3 wavelength

Higher/lower orders contamination < 1%

		Multilay delay lin			
Theta 3rd_H	Theta Ist H	FEL @ 60	FEL @ 40	FEL @ 20	
(deg)	(deg)				3 m < length < 5 m
1.53	4.6	0.017	0.025	0.05	
3.05	9.2	0.033	0.05	0.1	
4.56	13.8	0.05	0.075	0.15	
6.1	18.6	0.067	0.1	0.2	
7.6	23.4	0.083	0.125	0.25	
9.1	28.5	0.1	0.15	0.3	
10.7	33.9	0.117	0.175	0.35	
12.2	39.5	0.133	0.2	0.4	
13.8	45.7	0.015	0.225	0.45	Delay required:
15.4	52.7	0.167	0.25	0.5	$-10 \text{ ps} < \Delta t < 5 \text{ ns}$
17	61.1	0.183	0.275	0.55	$\frac{-5 \text{ mm} \times \Delta c \times 1.5 \text{ m}}{\text{Precision: 10 fs (3 m)}}$
18.6	72.7	0.2	0.3	0.6	

Theta 3rd H (deg)	Theta Ist H (deg)	FEL @ 60 nm	FEL @ 40 nm	FEL @ 20 nm
1.53	4.6	0.017	0.025	0.05
3.05	9.2	0.033	0.05	0.1
4.56	13.8	0.05	0.075	0.15
6.1	18.6	0.067	0.1	0.2
7.6	23.4	0.083	0.125	0.25
9.1	28.5	0.1	0.15	0.3
10.7	33.9	0.117	0.175	0.35
12.2	39.5	0.133	0.2	0.4
13.8	45.7	0.015	0.225	0.45
15.4	52.7	0.167	0.25	0.5
17	61.1	0.183	0.275	0.55
18.6	72.7	0.2	0.3	0.6

Delay required: -10 ps < Δt < 5 ns -3 mm < Δt < 1.5 m Precision: 10 fs (3µm)

Theta 3rd H (deg)	Theta Ist H (deg)	FEL @ 60 nm	FEL @ 40 nm	FEL @ 20 nm
1.53	4.6	0.017	0.025	0.05
3.05	9.2	0.033	0.05	0.1
4.56	13.8	0.05	0.075	0.15
6.1	18.6	0.067	0.1	0.2
7.6	23.4	0.083	0.125	0.25
9.1	28.5	0.1	0.15	0.3
10.7	33.9	0.117	0.175	0.35
12.2	39.5	0.133	0.2	0.4
13.8	45.7	0.015	0.225	0.45
15.4	52.7	0.167	0.25	0.5
17	61.1	0.183	0.275	0.55
18.6	72.7	0.2	0.3	0.6

Delay required: -10 ps < Δt < 5 ns -3 mm < Δt < 1.5 m Precision: 10 fs (3µm)

THANK YOU FOR YOUR ATTENTION