

The Optics Laboratory at ALBA

Josep Nicolas (CELLS), Joan Carles Martinez (CELLS), Carles Colldelram (CELLS), Josep Vidal (LLS), Juan Campos (UAB)

Space

ACTOP'08, October 14, 08

Spaces

Instruments

LONG TRACE Profilometer (May 2009)		
Bench and stages	Q-Sys	
LTP Optics 1	Elcomat 3000-8 + pentaprism	
LTP Optics 2	Collaboration CELLS-UAB	
LTP Enclosure	Local company	

Fizeau interferometer (Available)		
Supplier	ADE PhaseShift Minifiz 100 (KLA-Tencor)	
Aperture	100 mm	
Zoom	1x to 4x	
Others	Telecentric imaging	
	Adjustable Lateral Coherence	

Fizeau-based metrology until fall 2009

•Functionality:

- •How to use the Fizeau interferometer to qualify our mirrors?
- •Uncertainty:
 - •How to improve the repeatability and stability?
 - •How to improve accuracy, limited by:
 - Reference surfaces error
 - Alignment errors
 - Model approximations
 - •Phase shift calibration, CCD nonlinearities ...
 - Diffraction (roughness, dust, edges, IF optics)

Fizeau-based metrology until fall 2009

•Functionality:

•How to use the Fizeau interferometer to qualify our mirrors? Grazing incidence setup

•Uncertainty:

- •How to improve the repeatability and stability? Environment stability, then averaging
- •How to improve accuracy, limited by:
 - Reference surfaces error
 - •Alignment errors

- Data processing
- •Model approximations
- •Phase shift calibration, CCD nonlinearities ...
- •Diffraction (roughness, dust, edges, IF optics) ...instrument performance, partial coherence

Fizeau Setup for ALBA phase 1

- 7 beamlines will be installed along 2009, 4 HXR + 3 SXR.
- Most of them should be measured using the Fizeau at grazing incidence

35	Mirrors and gratings
20	Benders
8	Gratings
7	Polished to shape

89	surface maps
40	Flats
20	Elliptic cylinders (!)
13	Meridional cylinders
7	Toroidal (!)
5	Polynomial
2	Sphere
2	Sagittal cylinders

Vertical arrangement

Reference spheres for ALBA phase 1

- Eeach mirror can be measured using a range of angles and zoon
- 5 reference spheres are enough to measure ca. 90% of our mirrors

Simulated fringe patterns

ALBA

BL29-SXMCD KBV - focus 1 BL04-MSPD KB-HFM-multilaver BL29-SXMCD KBH - focus 1 BL29-SXMCD KBV - focus 2 BL29-SXMCD KBH - focus 2 mirror BL29-SXMCD KBV - focus 3 BL04-MSPD KB-VFM-multilayer BL29-SXMCD KBH - focus 3 BL22-XAS Focusing mirror 1 **BL22-XAS Focusing mirror 2 BL11-NCD Refocusing mirror**

ACTOP'08, October 14, 08

Temporary laboratory

- A temporary laboratory is available at the University
- Reduced Space: Interferometer setup only
- Room Temperature stability ±0.4°C
- Enclosure Temperature stability ±0.1°C
- Overpressure

Fizeau repeatability (point to point)

2080 datasets are acquired in 8h, and compared to the first dataset

•Turbulences + Acoustic Noise

•CCD noise + Speckle

PhShift Calibration

Time varation of the point differences

Fizeau repeatability (F₂₀ term)

The F_{20} term of (curvature) the wavefront is measured during 22h

Maximum drift: 0.7% per hour \rightarrow average to improve repeatability

Accuracy – Lateral shearing on a Fizeau

Lateral shearing technique is used to elliminate the reference surface error

Accuracy – Lateral shearing on a Fizeau

Lateral shearing technique is used to elliminate the reference surface error

Accuracy – Lateral shearing on a Fizeau

Lateral shearing technique is used to elliminate the reference surface error

Lateral Shearing implementation

- 1. Discretization of the method
 - Natural extension (Elster et al.)
 - →retrieve data out of the intersection
 - →extends dataset to a periodic function
- 2. Singularities of the Shear transfer function
 - Linear combination of data corresponding to different displacements
- 3. Systematic errors
 - Displacement errors \rightarrow Correlation
 - Pitch errors \rightarrow Pitch correction

Systematic errors: Location accuracy

The error of the reconstructed function depends on the sample function.

The shift distance is determined by crosscorrelation of the images

Systematic errors: Pitch error

The pitch error on the translation of the stage adds a quadratic function to the reconstruction

Systematic errors: Pitch estimation

The pitch can be estimated from known data to the level of few nrad

Conclusions ...

- 90% of ALBA phase 1 mirror will be characterized with a Fizeau interferometer in grazing incidence. An LTP will be available in the future.
- Shearing method, after controlling systematic errors, can improve the accuracy of the measurement by a factor 10.

... and future work

- Extend algorithms to 2D
- Shearing and Stitching
- Shearing on LTP data
- ...

Acknowledgements

Computing

Sergi Blanch Josep Ribas Cristina Lazar Guifré Cuní Andrej Seljak

Technicians

José Ferrer David Calderón Marc Álvarez Pablo Rodríguez Alfonso Cañas

Engineers

Carles Colldelram Claude Ruget Juanfran Moreno Marek Grabski

Management

Alejandro Sánchez Laura Campos

Thank you for your atention

