

Bidirectional membrane deformable mirror

S. Bonora, F. Frassetto, G.Naletto, L. Poletto

CNR- INFM, National Institute for the Physics of Matter, Laboratory for UV and X-Ray Optical Research c/o Department of Information Engineering, Via Gradenigo 6/B 35131, Padova, Italy

Summary

Deformable mirror developed in Padova Behavior Electrostatic push-pull mirror with single transparent electrode Electrostatic push-pull mirror with patterned electrodes Electrodes managing P-P vs. P. only Application to ultra-fast optics

Deformable mirror developed in Padova

Behavior

- Electrostatic push-pull mirror with single transparent electrode
- Electrostatic push-pull mirror with patterned electrodes
- Electrodes managing
- P-P vs. P. only
- Application to ultra-fast optics

DM developed in Padova: mirror technology

Technology

- □ Thin cellulose membrane (5 µm)
- Mirrors diameters: 12 mm, 18 mm, 25 mm
- □ 37 electrodes (up to 64), any pattern
- Initial RMS deviation from plane <50 nm</p>
- □ Maximum deflection of 10 µm (min f=2m)

Advantages

- Compact device,
- Iow cost, low power
- New designs easy accessible

To the amplifiers

DM developed in Padova: electronic devices

PCB pattern example

Actuators are independent

□ High voltage, high frequency electrodes driver

- Up to 64 channels
- DSP technology
- Stand alone
- USB connection
- C++ environment

S.Bonora, I.Capraro, L.Poletto, M.Romanin, C.Trestino, P.Villoresi. *A DSP Control System of Membrane Deformable Mirror using TMS320 C5502* Eders – Munich 2006 S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, P. Villoresi *Fast wavefront active control by a simple DSP-Driven deformable mirror* Review of Scientific Instruments 2006, September, 77

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Examples of controlled deformations:

□ Without biasing the membrane:

Astigmatism

□ With membrane biased to half voltage:

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Mathematical model

□ Solution of the Poisson equation by some approximations

Finite element model

E. Clafin, N. Bareket, Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions. J. Opt. Soc. Am. A Vol. 3, No. 11/Novembre 1986

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Deformable mirror developed in Padova	
Behavior	
Electrostatic push-pull mirror with single transparent electrode	
Electrostatic push-pull mirror with patterned electrodes	
Electrodes managing	
P-P vs. P. only	
Application to ultra-fast optics	

Electrostatic Push Pull mirror

S. Bonora, L.Poletto, *Push-pull membrane mirrors for adaptive optics,* Optics Express 2006, Vol. 14 No. 25

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Principle

- Electrostatic attraction between PCB and thin membrane
 - Voltage 300V
 - Low power
 - Low cost

Fragile
Not possible to clean
8

Only attraction is possible

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Bidirectional membrane DM

Deformable mirror developed in Padova

Electrostatic push-pull mirror with single transparent electrode

Electrostatic push-pull mirror with patterned electrodes

Behavior

Electrodes managing

Application to ultra-fast optics

P-P vs. P. only

 (\mathfrak{R})

Push Pull mirror with single transparent electrode

Electrostatic actraction between PCB and thin membrane
 Transparent conductive coating (Indium Tin Oxide)
 Low cost

Fragile	\odot
Not possible to clean	\odot
Only actraction is possible	\odot

Frassetto et al. ACTOP08 Oct. 08 TS Italy Bidirectional membrane DM

Electrodes configuration

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Realization Upper PCB ITO coated electrodes Top side Glass disc No. of Concession, Name A TABLE AND A DATA AND A DATA Spacer Calibrated frame Amplifiers Lower PCB Silver coated Bottom side membrane electrodes

Initial RMS less than 30nm

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Realization

Deformable mirror developed in Padova Behavior Electrostatic push-pull mirror with single transparent electrode Electrostatic push-pull mirror with patterned electrodes Electrodes managing P-P vs. P. only Application to ultra-fast optics

Push pull deformable mirrors with only a central transparent electrode

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Push Pull mirror with patterned transparent electrodes

CAD drawing of the patterned transparent conductive electrodes

Image of the device

Flat membrane measurement using Zygo interferometer

An influence function

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Deformable mirror developed in Padova	
Behavior	
Electrostatic push-pull mirror with single transparent electro	le
Electrostatic push-pull mirror with patterned electrodes	
Electrodes managing	
P-P vs. P. only	
Application to ultra-fast optics	

Experimental results

Influence function Matrix measured by Zygo interferometer

External ring 0.8 um 1.3 um Positive displacement 2.5 um PTV

Upper actuators 3 μ m

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Zernike polynomials generation

Problems		$\mathbf{p} = \mathbf{A}^{-1} Z(x, y)$	Compute p
 Avoid electrodes Saturation Exploit the mirror capabilities 		$\mathbf{p'} = \left\{ p_i \in p, p_i > p_{\max} \right\}$ $p'_i = p_{\max} \forall p'_i \in \mathbf{p'}$ $\mathbf{A'} = \left\{ A_i \mid p_i > p_{\max} \right\}$ $\mathbf{p''} = \left\{ p_i \in \mathbf{p}, p_i \leq p_{\max} \right\},$ $\mathbf{A''} = \left\{ A_i \mid p_i \leq p_{\max} \right\}.$	Some definitions
		$\mathbf{p''} = \mathbf{A''}^{-1} [Z(x, y) - \mathbf{A'p'}]$ $\mathbf{p} = \mathbf{p'} \cup \mathbf{p''}$	Compute p "
	Yes	p" saturated ?	Update p

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Geometry: How to choose the optimal parameters

$$P_{i} = \frac{D_{i}}{\sqrt{D_{1}^{2} + \dots + D_{n}^{2}}} \qquad \text{Purity}$$

$$Di = \langle M(x, y) \bullet \hat{\mathbf{z}}_i(x, y) \rangle$$

 $D_i=1$ if the M(x,y) is parallel to \hat{z}_i \hat{z}_i Zernike terms

 $\mathbf{A} = \begin{bmatrix} \mathbf{A}_{1} \dots \mathbf{A}_{47} \end{bmatrix}$ Influence functions matrix

$$\mathbf{p} = \mathbf{A}^{-1} Z(x, y)$$

Bidirectional membrane DM

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Active region

Optimal active region 0.4 x Radius = 10mm

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Results

Measurements by Zygo interferometer

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Performance comparison

- Methods
 - comparison of the peak to peak amplitude of aberrations with a pull mirror
 - correction of a statistical distribution (human eye aberrations)

correction of a statistical distribution

Young population with no visual problems

Pull mirror biased at half voltage

Push pull mirror, optical bias at the value of the average defocus

Push Pull mirror average error is 3 times smaller!!!

Human eye statistics: J.F. Castejon-Mochon, N.Lopez-Gil, A.Benito, P.Artal "Ocular wave-front aberration statistics in a normal young population", *Vision Research* 42, 1611–1617, (2002)

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Applications to ultrafast optics

- Generation of IR transform limited fs pulses by OPA
- Observation of photo-induced phase transition in fs time scale
- DMs for petawatt lasers and relativistic regime
- Source
 - Laser source Ti:Sh 795nm 150fs, 80µJ 1kHz
 - OPA parametric process in BBO with NIR source and white light in Sapphire plate
- Compressor
 - IR pulse at 1.6µm compressed by 4-f closed by a linear deformable mirror

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Mirror design for 4-f compression

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Mirror design for 4-f compression

- Linear mirror
- Membrane electrostatic 15mm x 47mm
- □ Max deflection 10µm
- Ideal parameters: active region 0.95 length
- □ 30 actuators

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Mirror design for 4-f compression

SHG- FROG Pulse Characterization

8.57 fsPresent world record!!1.5 optical cyclesUseful for pump-probeExperiment

Next steps: Push-pull mirror capabilities for pulse shaping Extend the working principle to UV region.

Frassetto et al. ACTOP08 Oct. 08 TS Italy

Contacts

Deformable mirror developed in Padova Behavior Electrostatic push-pull mirror with single transparent electrode Electrostatic push-pull mirror with patterned electrodes Electrodes managing P-P vs. P. only Application to ultra-fast optics

WWW

http://www.padova.infm.it/luxor/

E-mail:

bonox@dei.unipd.it

frassett@dei.unipd.it