# **Correcting the heat load induced performance degradation on a XUV beamline**



# **Correcting the heat load induced performance degradation on a XUV beamline**

Source
Beamline Optical Design
Ray Traces
Resolution and Flux
Heat Load
Summary



# **Correcting the heat load induced performance degradation on a XUV beamline**

Source
Beamline Optical Design
Ray Traces
Resolution and Flux
Heat Load
Summary

- S. Hulbert, NSLS
- C. Sanchez-Henke, NSLS
- D. Arena, NSLS
- K. Kriesel, PSL
- R. Reininger, SAS-SRC

ACTOP08

## Source: NSLS II, EPU 45



No need to focus horizontally

# Source: NSLS II, EPU 45



|                        | 200 eV | 1000 eV |
|------------------------|--------|---------|
| $\sigma_{hor} (\mu m)$ | 45     | 32      |
| $\sigma_{ver} (\mu m)$ | 36     | 16      |
| $\sigma'_{hor}$ (µrad) | 34     | 23      |
| $\sigma'_{ver}$ (µrad) | 28     | 13      |

No need to focus horizontally

## Source: NSLS II, EPU 45



|                               | 200 eV         | 1000 eV     |         |          |
|-------------------------------|----------------|-------------|---------|----------|
| $\sigma_{ m hor}$ ( $\mu m$ ) | 45             | 32          |         |          |
| $\sigma_{ver} (\mu m)$        | 36             | 16          |         |          |
| $\sigma'_{hor}$ (µrad)        | 34             | 23          |         |          |
| σ' <sub>ver</sub> (µrad)      | 28             | 13          |         |          |
|                               | 200 eV at 50 m | n, σ=1.7 mm | No need | to focus |

2

# **VLS-PGM**

$$k(w) = k_0 (1 + 2b_2 w + 3b_3 w^2 ...)$$
  

$$f_{20} = \frac{\cos^2 \alpha}{r_1} + \frac{\cos^2 \beta}{r_2} + 2b_2 n k \lambda$$
  

$$f_{30} = \sin \alpha \frac{\cos^2 \alpha}{r_1^2} + \sin \beta \frac{\cos^2 \beta}{r_2^2} + 2b_3 n k \lambda$$

Collimated beam  $r_1 \rightarrow \infty$ 

# VLS-PGM

$$k(w) = k_0 (1 + 2b_2 w + 3b_3 w^2 ...)$$
  

$$f_{20} = \frac{\cos^2 \alpha}{r_1} + \frac{\cos^2 \beta}{r_2} + 2b_2 n k \lambda$$
  

$$f_{30} = \sin \alpha \frac{\cos^2 \alpha}{r_1^2} + \sin \beta \frac{\cos^2 \beta}{r_2^2} + 2b_3 n k \lambda$$
  
Collimated beam  $r_1 \rightarrow \infty$   
PM:  $\gamma = \frac{\alpha - \beta}{2} \Rightarrow f_{20} = 0, n k \lambda = \sin \alpha + \sin \beta$   

$$c = \frac{\cos \beta}{\cos \alpha}$$

## Beamline



#### Horizontal Focusing: M3, 25 demagnification

| Element               | Distance (mm)      | Angle (°)         | Deflection | $4\sigma \times 4\sigma \ (mm^{2})$ |
|-----------------------|--------------------|-------------------|------------|-------------------------------------|
| M1- Sagittal Cylinder | 29500              | 88.75             | Horizontal | 190×3.5                             |
| M2- Plane             | 31929 <sup>a</sup> | 84.0 <sup>a</sup> | Vertical   | 380(70)×5                           |
| Gr - Grating          | 32000 <sup>a</sup> | 86.2 <sup>a</sup> | Vertical   | 180×5                               |
| Slit                  | 42000              |                   |            |                                     |
| M3 - Plane Elliptical | 43200              | 88.75             | Horizontal | 280×1                               |
| M4 - Plane Elliptical | 43950              | 88.75             | Vertical   | 48×4                                |
| Sample                | 44950              |                   |            |                                     |

<sup>a</sup> For 183 eV

## Ray Traces at Slit, 183 eV





#### Ray Traces at Slit, 183 eV



RP >30000

## Ray Traces at Slit, 1000 eV



#### Ray Traces at Slit, 1000 eV



#### Ray Traces at Slit, 1000 eV



RMS Slope Errors  $\approx 0.02$ "

### Size at Sample

230 eV, HEG, Linear, 10 µm slit



#### Size at Sample

230 eV, HEG, Linear, 10 µm slit



SE 0.1" meridional M1, M3, M4

#### Size at Sample

230 eV, HEG, Linear, 10  $\mu$ m slit



SE 0.1" meridional M1, M3, M4

## **Resolution & Flux (linear)**

Source, Grating efficiencies, Reflectivity, 10 µm Slit, Slope errors.



#### **Resolution & Flux (linear)**



8

#### **Heat Load Deformation Correction**

#### ➡ 3 GeV, 0.5 A

- ▶ Linear mode: 12 kW total at 183 eV
- ➡ 0.27×0.27 mrad<sup>2</sup> only 2.15 kW
- ▶ 1.9 kW absorbed on M1. Deformation → blow up horizontal at sample
- ➡ 0.24 kW on M2 I Resolution



Rev. Sci. Instrum. 79, 033108, 2008





# Finite Element Analysis, M2

| Parameters used FEA, SC Si                |                                 |  |
|-------------------------------------------|---------------------------------|--|
| Density (g/mm <sup>3</sup> )              | 2.3310 <sup>-3</sup>            |  |
| Young Modulus (N/mm <sup>2</sup> )        | 1.3105                          |  |
| Poisson's ratio                           | 0.28                            |  |
| CTE (ppm/°C)                              | -0.33 to 3.25 over 100 to 400K  |  |
| Conductivity, K (W/mm/K)                  | 0.913 to 0.105 over 100 to 400K |  |
| Water Bulk Temp (°C)                      | 20                              |  |
| Convection coeff., (W/mm <sup>2</sup> /C) | 0.01                            |  |







































# **Ray Traces Slit**



# **Ray Traces Slit**



# **Ray Traces Slit**













# Will It Work?

- Resolution recovered by changing c
- Spot at sample (hor.) by changing M3 (ellip. cyl.)
- Top-up mode
- No ID scan or very limited energy range
- Generate a working table
  - ➡Gap
  - Resolution
  - Spot size
  - Temperature
- On line measurements radius curvature and resolution Real time correction.