## The SLS Optics Beamline – Performance Measurements and Status

#### U. Flechsig

#### Paul Scherrer Institut, Villigen, Switzerland

Actop workshop, Trieste, Oct 2008

U. Flechsig Actop workshop, Oct 2008

イロト イポト イヨト イヨ

## Outline

- Status
  - The Swiss Light Source SLS
  - Optics Beamline X05DA
- Performance Measurements
  - Photon Flux
  - Higher Orders
  - Focus
  - Pink Beam

### 3 Hardware

- Monochromator Assembly
- Mirror Bender



Applications

Conclusions

SLS Optics

## The SLS as Part of the PSI



U. Flechsig

Actop workshop, Oct 2008

SLS Optics

## **SLS** Parameters

#### Parameter:

- circumference: 288 m
- electron energy: 2.4 GeV
- typical current:  $(400 \pm 0.5)$  mA
- 9 straights for ID's, 9 ID-BL's in operation, 2 in construction
- about 24 BM-BL's possible, 8 in operation, 1 in construction
- Is slicing facility at X05L



SLS Optics

## The Optics Beamline X05DA





- photon energy: 5.5 ... 22.5 keV (with mono)
- different modes: monochromatic, pink beam, focused, unfocused

・ロト ・回ト ・ヨト ・ヨト

Photon Flux Higher Orders Focus Pink Beam

### Statu

The Swiss Light Source SLSOptics Beamline X05DA

#### Performance Measurements

- Photon Flux
- Higher Orders
- Focus
- Pink Beam

#### Hardware

- Monochromator Assembly
- Mirror Bender

### Applications

5 Conclusions



Photon Flux Higher Orders Focus Pink Beam

## Monochromatic Photon Flux



photon flux in photons/s,  $E/\Delta E \approx 3000$ , uncalibrated AXUV100 photo diode: area 1 cm<sup>2</sup>, hor. acceptance 1 mrad (1) and 0.6 mrad (2).

Photon Flux Higher Orders Focus Pink Beam

## Higher Orders and Focus





Photon Flux Higher Orders Focus Pink Beam

### Higher Orders and Focus





イロト 不得 とくほと くほう

Photon Flux Higher Orders Focus Pink Beam

## Dynamic Focusing with Mirror Bender (1)

### **X05DA dynamic focusing**

images @ 16.5 m, 12 keV



#### nominal (vertical) focus position (m)

・ロト ・回ト ・ヨト ・

| 14.8 | 15.8 | 16.8 | 17.8 | 18.8               | 19.8 |  |
|------|------|------|------|--------------------|------|--|
| 1.9  | 2.0  | 2.1  | 2.2  | 2.3                | 2.4  |  |
|      |      |      |      | mirror radius (km) |      |  |

file: fxv.fig

Photon Flux Higher Orders Focus Pink Beam

## Dynamic Focusing with Mirror Bender (2)



U. Flechsig

Actop workshop, Oct 2008

Photon Flux Higher Orders Focus Pink Beam

## Focus Stability during Energy Scan



U. Flechsig

Actop workshop, Oct 2008

Photon Flux Higher Orders Focus Pink Beam

## Pink Beam

#### unfocused pink beam



focused pink beam 100  $\mu m$  Kapton window melts within a few s, estimated power density:  $1.6 \, \mathrm{kW/mm^2}$ 

measurement with thermopile sensor: 10.6 W for 1 mrad FE opening

Photon Flux Higher Orders Focus Pink Beam

## Pink Beam

#### unfocused pink beam



measurement with thermopile sensor: 10.6 W for 1 mrad FE opening

#### focused pink beam



100  $\mu$ m Kapton window melts within a few s, estimated power density:  $1.6 \, \mathrm{kW/mm^2}$ 

### Status

- The Swiss Light Source SLS
- Optics Beamline X05DA

### Performance Measurements

- Photon Flux
- Higher Orders
- Focus
- Pink Beam

### 3 Hardware

- Monochromator Assembly
- Mirror Bender

### Applications

5 Conclusions

## Monochromator Assembly



## **Mirror Bender**





・ロト ・回ト ・ヨト ・ヨト



æ

Glueing Tests

#### Status

- The Swiss Light Source SLS
- Optics Beamline X05DA

### Performance Measurements

- Photon Flux
- Higher Orders
- Focus
- Pink Beam

### 3 Hardware

Monochromator Assembly

<ロト <四ト <注入 <注下 <注下 <

Mirror Bender

### Applications

Conclusions



#### An ultrafast streak camera for the detection of hard x-ray synchrotron radiation



#### Details

courtesy Maik Kaiser Sep 2008



- very flexible beamline, reliable operation, good performance, very economic realization
- offers fast beam access for instrumentation developments and detector calibration
- possibility to exploit the beamline for at wavelength metrology and optics characterization is foreseen

▲ @ ▶ ▲ ⊇ ▶

## Acknowledgment

- SLS optics group
  - Sibylle Spielmann
  - Andreas Jaggi
  - Veit Schönherr (now Jenoptik)
- Advanced Light Source
  - Howard Padmore
  - Alastair McDowell
  - Keith Franck

- PSI engineering
  - Sasa Zelenika (now Univ. Rijeka)
  - Hansueli Walther
  - Charles Zumbach
  - Heinrich Blumer
- SLS controls
  - Werner Portmann

ヘロト ヘアト ヘヨト ヘ



# I thank you for your attention!



#### Streaked hybrid pulse



Streaked hard x-ray pulse (100 ps) at 12 keV with gated MCP technology (100 ns gate @ 1 kHz)

The estimated time resolution of the apparatus at this stage is about 2ps.

I Return

courtesy Maik Kaiser Sep 2008

(日)、

## Learning the Bonding Technology and Tests

topics: surface treatment handling etc.











silicon breaks at F > 20000 N(area: 60 × 50 mm)

イロト イポト イヨト イヨ



