Growth and characterization of graphene layers on cubic-SiC(001)/Si standard wafers

O.V. Molodtsova¹, A.A. Zakharov², B. Thiagarajan², J. Viefhaus¹, O.Yu. Vilkov³, I. Vobornik⁴, D.V. Vyalikh⁵, C. Laubschat⁵, V.V. Kveder⁶, M. Knupfer⁷, V.Yu. Aristov^{1,6}

¹HASYLAB at DESY, D-22607 Hamburg, Germany ²MAX-lab Uni Lund, Lund, Sweden ³BESSY II, 12489 Berlin, Germany ⁴TASC NL INFM-CNR, Trieste, Italy ⁵IFP, TU Dresden, D-01069 Dresden, Germany ⁶ISSP, Russian Academy of Sciences, Chernogolovka, Moscow District 142432, Russia ⁷IFW Dresden, Postfach 270116, D-01171 Dresden, Germany

victor.aristov@gmail.com

Graphene synthesis on the surface of alpha-SiC at high pressure of argon [1, 2] is the best method for graphene preparation so far. Nevertheless it does not meet the requirements of industrial massproduction because of the limited size and the costly nature of alpha-SiC wafers sliced from the single crystal ingots. If graphene layers can be fabricated on the surface of thin SiC film grown on a large-diameter standard Si wafer (SiC virtual substrate), its industrial impact would be enormous. Such graphene/cubic-SiC(001)/Si wafer could be easily adapted for graphene-based electronic technologies and thus could be directly patterned by standard Si-electronic lithographic processes. The realizability of graphene synthesis on the surface of cubic-SiC(001) thin film (about 1 μ m) deposited on standard Si wafer was already demonstrated in Refs. [3-5]. Here we show our recent data of investigation of graphene grown on SiC(001) virtual substrate. It seems that the results represent a realistic way of bridging the gap between the outstanding graphene properties and their technological applications.

Acknowledgements: This work was supported by the RFBR under grant 11-02-01253. We are grateful to T. Chassagne, M. Zielinski and M. Portail (CRHEA-CNRS, Sophia Antipolice, France) for providing SiC samples.

- [1] K.V. Emtsev et al., Nat. Mater. 8, 203 (2009).
- [2] M. Sprinkle et al., Phys. Rev. Lett. 103, 226803 (2009).
- [3] V.Yu. Aristov et al., Nano Letters 10, 992. (2010).
- [4] V.Yu. Aristov at al., Tenth International Conference on the Structure of Surfaces & e-Conference (Hong Kong, China, August 2011), p. 9.
- [5] A. Ouerghi et al., Phis. Rev. B 83, 205429 (2011).