

Optical properties of nickelate heterostructures

Paola Di Pietro

NGSCES 2016

Paola Di Pietro - 27-09-2016 | 1

www.elettra.eu

Oxide heterostructures

Motivation: nickelate LaNiO₃

LaNiO₃ is the only nickelate that does not undergo a metal to insulator transition

It does not exhibit a AF-insulating ground state!

Controlling the LaNiO₃ ground state with

 ✓ Interfacial doping (LNO/LMO)
✓ Dimensionality (LNO/LAO)
✓ THz light (opportunities @TeraFERMI)

(LaNiO₃)_n/(LaMnO₃)₂ superlattices n=2,3,4,5

Interfacial doping: the case of LMO/SMO

Perucchi et al., Nano Letters 2010

The electronic properties of (LMO)₂/ (SMO)₁ SL are fully equivalent to those of the corresponding alloy La_{2/3}Sr_{1/3}MnO₃

LNO/LMO superlattice

 $(LaNiO_3)_n/(LaMnO_3)_2$ n=2, 3, 4, 5 10° (a) (a) Mn L_2 edge n = 2With increasing LaNiO₃ 10° Absorption (arb. units) -n = 4o— LNO thickness, the SLs - LaMnO Resistivity $(m\Omega-cm)$ La Sr MnO undergo an insulator-to 10^{4} metal transition 10^{2} 644 646 638 640 642648 Energy (eV) X-ray spectroscopy of this system shows that the (b) Ni L_{a} edge n=2Absorption (arb. units) 10° n=4Mn oxidation state is LaNiO. converted from 3+ to 4+, NiO while Ni is intermediate 10^{-2} 2500 50100150200between 2+ and 3+ Temperature (K) 846 848 850 852 854 856 858 860 862 Hoffman et al., Phys Rev B 2013 Energy (eV)

NGSCES 2016

Paola Di Pietro - 27-09-2016

300

Reflectivity and Optical Conductivity

NGSCES 2016

8

Average Optical Conductivity

The red area is always larger than the blue area

Di Pietro et al., Phys Rev Lett 2015

 $(LaNiO_3)_n/(LaMnO_3)_2$ n=2, 3, 4, 5

$$\sigma_{1,n}^* = \frac{n\sigma_{1,\text{LNO}} + 2\sigma_{1,\text{LMO}}}{n+2}$$

The comparison between $\sigma_{1,n}^*$ and $\sigma_{1,n}$ allows us to single out the features directly related to the **interfaces**

The additional MIR spectral weight is only in part due to the loss of SW at low frequencies, and a redistribution from the green area is also at play

Average Optical Conductivity

(LaNiO₃)_n/(LaMnO₃)₂ n=2, 3, 4, 5

Di Pietro et al., Phys Rev Lett 2015

Average Optical Conductivity

(LaNiO₃)_n/(LaMnO₃)₂ n=2, 3, 4, 5

Infrared data show that the LNO/LMO SLs display the presence of significant midinfrared excitations that are not present in LNO or LMO alone.

Interfacial charge redistribution is identified as the origin of changes to the MIR spectral response.

This is in contrast to what is observed in ultrathin LNO films and in LNO/LAO superlattices, where localization is believed to occur due to dimensional confinement and enhanced correlations...

Di Pietro et al., Phys Rev Lett 2015

(LaNiO₃) thin films and (LaNiO₃) /(LaAlO₃) superlattice

Elettra Sincrotrone Trieste

ь

E-E_F (eV)

King et al., Nature Nano 2014

abrupt destruction of Fermi liquid-like quasiparticles in the correlated metal LNO when confined to a critical film thickness of 2 unit cells

LNO thin films and LNO/LAO SL: reflectivities

Fitting this data to a Drude-Lorentz model we can show the effect of the thickness in LNO....

Dimensionality-driven MIT

THz control in Nickelate heterostructure

THz-induced MIT

Caviglia et al., Phys Rev Lett 2012

Hu et al., arXiv 2016

Nickelates are very sensitive to **strain** due to different substrates

a MIT transition in NdNiO₃ and SmNiO₃ is induced by pumping on the lattice of the LAO substrate

Exploiting all available phonon modes (substrate + film) to induce the MIT!

The TeraFERMI beamline

THz control of matter

THz light couples with electronic, vibrational and magnetic excitations

The TeraFERMI idea

Exploiting the properties of the FERMI-FEL electron beam to produce **Short (sub-ps), Powerful (>MV/cm), Broadband (0.1-15 THz)** THz pulses

to be used as a **Pump** beam for *ultrafast nonlinear spectroscopies*

Beamline parameters

Ultra-short, high-power THz pulses between 1 mm - 20 μm (0.1 -15 THz) Access to the Reststrahlen-band gap! Pumping on electronic, vibrational, magnetic excitations

Seeded FEL operation

Integrated power

two different detectors

Spectral content

TeraFERMI commissioning shift ↑(March 2016)

e-beam optimized for FEL users, flat current profile at the undulator (**April 2016**)

 $\Delta L = 0.3 \text{ mm} \rightarrow \Delta \omega_{res} = 0.5 \text{ THz}$ $\delta L = 3 \mu \text{m} \rightarrow \text{N} = 100 \text{ pts}$ 30 averages for each point 1 Spectrum in ~ 5 minutes @ 10Hz

Focusing

For 10 μJ/pulse ~MV/cm

THz beam profile at sample position performed with the help of a **Pyrocam IIIHR camera.**

Conclusions

- ✓ Infrared data show that the LNO/LMO SLs display the presence of significant mid-infrared excitations that are not present in LNO or LMO alone
- Interfacial charge redistribution is identified as the origin of changes in the MIR spectral response of LNO/LMO at variance with LNO thin films
- ✓ LNO heterostructures are a great platform to manipulate the interplay of electronic magnetic and vibrational degrees of freedom

opportunity to THz control of matter @TeraFERMI

Perspectives @TeraFERMI

- Synchronizing an external laser source
 - Electro-optic sampling
- THz pump NIR probe (780 and 1560 nm)

Acknowledgments

<u>A. Perucchi – Elettra/INSTM</u> IN RICERCA

S. Lupi - "Sapienza" University of Rome and CNR-IOM

Elettra – Sincrotrone Trieste&FERMI

L. Capasso N. Adhlakha and whole the FERMI staff

Argonne A. Bhattacharya J. Hoffman Argonne

Sapienza University

F. Giorgianni

CNR-SPIN P. Orgiani

Consiglio Nazionale delle Ricerch

Temple University X. Xi M. Golalikhani TEMPLE

G. mi

www.elettra.eu