Enhancing Superconductivity of A3C60 fullerides arXiv:1606.05796 (2016)

Minjae Kim École Polytechnique & Collège de France

Collaborators

• Antoine Georges

(Collège de France, École Polytechnique, and University of Geneva)

• Yusuke Nomura

(École Polytechnique)

Michel Ferrero

(Collège de France and École Polytechnique)

• Priyanka Seth

(Collège de France and CEA)

Olivier Parcollet

(Collège de France and CEA)

Contents

- Experiments
- Inverted Hund's coupling model
- Results
- Analysis
- Conclusion

Experiments

Light-induced superconductivity in K₃C₆₀

- Light-induced SC optical property is observed.
- The frequency of the pump light for SC is near that of T_{1u} modes optical phonon of C₆₀.

Modulation of Coulomb interaction matrix by THz light

• THz-light induced coherent excitation of a IR mode phonon driven modulation of Coulomb interaction is confirmed.

Nonlinear phononics by THz light

$$V(Q_{\rm R}, Q_{\rm IR}) = \frac{1}{2}\Omega_{\rm R}^2 Q_{\rm R}^2 + \frac{1}{2}\Omega_{\rm IR}^2 Q_{\rm IR}^2 + \frac{1}{3}a_3 Q_{\rm R}^3 + \frac{1}{4}b_4 Q_{\rm IR}^4 - \frac{1}{2}g Q_{\rm R} Q_{\rm IR}^2.$$

 $\ddot{Q}_{\rm IR} + \Omega_{\rm IR}^2 Q_{\rm IR} = g Q_{\rm R} Q_{\rm IR} - b_4 Q_{\rm IR}^3 + F(t),$ $\ddot{Q}_{\rm R} + \Omega_{\rm R}^2 Q_{\rm R} = \frac{1}{2} g Q_{\rm IR}^2 - a_3 Q_{\rm R}^2.$

> Subedi et al., Physical Review B (R) (2014)

 THz-light induced coherent excitation of a IR mode phonon driven structural modulation by Raman mode is possible.

Possible perturbation by pumping T_{1u}(4)

Possible perturbation by T_{1u}(4) pumping are
(a) Modification of Coulomb interaction, and
(b) H_g Jahn-Teller mode deformation.

Inverted Hund's coupling model

Inverted Hund's coupling model of A₃C₆₀

- Construct low energy effective model including el-el, el-ph interaction.
- Sign of J_{eff} is inverted due to el-ph coupling in the H_g JT phonon.
- H_g JT phonons are pairing glues of superconductivity.

Equilibrium SC of A₃C₆₀ in the Inverted Hund's coupling model

 Low energy effective model including inverted Hund's coupling describes strongly correlated superconductivity of A3C60 in the equilibrium.

Validity of the inverted Hund's coupling model in fullerides

- The first-principle model of inverted Hund's coupling describes experimental phase diagram.
- The spin gap from low-spin to high-spin transition is observed in experiment.

Perturbation in the K₃C₆₀

• From the time scale comparison, $0.5 Period(T_{1u})=10 fs \sim 0.01 ps$, anti-adiabatic deformation of T_{1u} mode is assumed.

$$dU/U \sim 0.04$$
 $h_{CF}/W \sim 0.06$

Results

Results : Imbalance of U

- dU>0 : enhancing SC ($\Delta_{x,y}$ up to factor of 3.5)
- dU<0 : suppresses SC without complete orbital polarization.

Results : Crystal-field

• Crystal-field suppresses SC with complete orbital polarization.

Results : T_c, P_{sc}, and Δ

• In the estimated parameters from $T_{1u}(4)$ (2.0 Å \sqrt{amu}) T_c was enhanced up to factor of ~1.41.

Analysis

Enhancing SC (i): Stabilization of singlet

- dU>0 : Singlet state is stabilized & SC is enhanced.
- dU<0 : Singlet state is destabilized & SC is suppressed.
- hcF>0 : Singlet state is stabilized & SC is suppressed?

Enhancing SC (ii): Orbital fluctuation

- Orbital fluctuation is possible in dU>0 case & SC is enhanced.
- Orbital fluctuation is suppressed in dU<0 case & SC is suppressed.
- Orbital fluctuation is suppressed in hcF>0 case & SC is suppressed, even though singlet state is stabilized.

U/W vs dU/U controls

- U/W control (isotropic control of volume) : Strong coupling regime is realized near the metal-insulator transition.
- dU/U control (T_{1u} pumping) : Strong coupling regime is realized without metal-insulator transition. (enters superfluid density)

Conclusion & Questions

arXiv:1606.05796 (2016)

Conclusions

- Perturbation enhancing SC of A₃C₆₀ exist.
- This perturbation, dU>0, could be realized by $T_{1u}(4)$ phonon pumping.
- This perturbation satisfies following conditions for enhancing SC of A_3C_{60} ,

(a) stabilization of singlet states.

(b) preserved orbital fluctuation.

Conclusion & Questions

arXiv:1606.05796 (2016)

Questions

- Time dependent propagation of states.
- Frequency dependent perturbation beyond Born-Oppenheimer approximation.
- Experimental realization of light-induced structure of C60.

Thanks for your attention

Appendix

Spectral functions

Negative crystal field

x and y orbital in the T_{1u} pumped structure

Multiplet states

