

ESRF | The European Synchrotron

NGSCES, TRIESTE – SEPT. 26-30, 2016

Magnetic and orbital excitations studied by X-rays

<u>Marco Moretti (Sala)</u> ESRF – The European Synchrotron Grenoble, France

Outline

Resonant inelastic X-ray scattering (RIXS)

- ✓ RIXS from a single Cu^{2+} ion
- ✓ RIXS and the magnetic structure factor
- ✓ when magnetic RIXS

RIXS of iridates

- Introduction to the physics of iridates
- RIXS (including XRMS) in iridates
 - ✓ RIXS of a single Ir⁴⁺ ion
 - \checkmark the case of CalrO₃
- Orbital excitations in Ir fluorides
- Magnetic excitations in pure and doped Sr₂IrO₄

Outline

Resonant inelastic X-ray scattering (RIXS)

- ✓ RIXS from a single Cu^{2+} ion
- ✓ RIXS and the magnetic structure factor
- ✓ when magnetic RIXS

RIXS of iridates

- Introduction to the physics of iridates
- RIXS (including XRMS) in iridates
 - ✓ RIXS of a single Ir^{4+} ion
 - \checkmark the case of CalrO₃
- Orbital excitations in Ir fluorides
- Magnetic excitations in pure and doped Sr₂IrO₄

Resonant inelastic X-ray scattering

Resonant – ω_i at an absorption edge (~ 1-10 keV)

- element sensitivity
- site and orbital selectivity

(In)elastic – energy loss spectroscopy

- probe of excited states (~ 0.01-10 eV)
- ...and ground state (REXS/XRMS)

X-ray scattering – photon in/photon out

- neutral excitations
- momentum resolution
- bulk sensitivity

Resonant inelastic X-ray scattering

Kramers-Heisenberg equation for the scattering amplitude: a "2-step process"

L. J. P. Ament et al., Rev. Mod. Phys. 83, 705 (2011)

Resonant inelastic X-ray scattering

ene. ~ 1-10 keV flux ~ 10^{13} ph/s size ~ 10 μ m res. ~ 10 meV

Consider a single Cu²⁺ ion

- 3d⁹ configuration, i.e. one e_g hole system
- trivial multiplet structure (10Dq ~ 1 eV, x²-y² ground state)

Consider a single Cu²⁺ ion within CuO₂ planes with AFM order

- 3d⁹ configuration, i.e. one e_g hole system
- trivial multiplet structure ($10Dq \sim 1 \text{ eV}$, x^2-y^2 ground state)
- the degeneracy of the ground state is lifted $(J \sim 100 \text{ meV})$

Spin-flip is a possible final state of the RIXS process. But...

...how can optical (spin-conserving) transitions give rise to spin-flip?

.

$$\mathcal{A}_{|\mathsf{N}}^{\epsilon\epsilon'} = \sum_{n} \frac{\langle \mathsf{N}_{\epsilon'} | n \rangle \langle n | \mathcal{D}_{\epsilon} | \mathsf{N}_{\epsilon'} \rangle}{E_{g} - E_{n} + \hbar\omega + \imath \Gamma_{n}}$$
$$\propto \sum_{n} \langle \mathsf{N}_{\epsilon'} | \mathcal{D}_{\epsilon'}^{\dagger} | n \rangle \langle n | \mathcal{D}_{\epsilon} | \mathsf{N}_{\epsilon'} \rangle$$

$$\mathcal{D}_{\boldsymbol{\epsilon}} = \mathcal{D}_{\mathbf{x}}, \quad \mathcal{D}_{\mathbf{y}}, \quad \mathcal{D}_{\mathbf{z}}$$

...how can optical (spin-conserving) transitions give rise to spin-flip?

.

$$\mathcal{A}_{|\mathsf{N}\rangle}^{\epsilon\epsilon'} = \sum_{n} \frac{\langle \mathsf{N} | \mathcal{D}_{\epsilon'}^{\dagger} | n \rangle \langle n | \mathcal{D}_{\epsilon} | \mathsf{N} \rangle}{E_{g} - E_{n} + \hbar\omega + \imath \Gamma_{n}}$$
$$\propto \sum_{n} \langle \mathsf{N} | \mathcal{D}_{\epsilon'}^{\dagger} | n \rangle \langle n | \mathcal{D}_{\epsilon} | \mathsf{N} \rangle$$

L₃ edge
$$2p_{3/2}$$
 $2p_{3/2}$ $2p_{1/2}$

...how can optical (spin-conserving) transitions give rise to spin-flip?

$$\begin{aligned} \mathcal{A}_{|\mathbf{N}\rangle}^{\mathbf{x}\mathbf{y}'} \propto \sum_{n} \langle \mathbf{N} | \mathbf{P} | \mathbf{N} \rangle \langle n | \mathbf{P} | \mathbf{N} \rangle = \\ &= \langle \mathbf{N} | \mathbf{P} | \mathbf{N} \rangle \langle \mathbf{O} | \mathbf{P} | \mathbf{N} \rangle + \end{aligned}$$

$$+ \langle \mathbf{1} \mathbf{1} \mathbf{1} \mathbf{2} \rangle \langle \mathbf{2} | \mathbf{1} \mathbf{1} \mathbf{2} \rangle + \langle \mathbf{1} \mathbf{2} | \mathbf{2} | \mathbf{2} \rangle \langle \mathbf{2} | \mathbf{2} | \mathbf{2} \rangle + \langle \mathbf{2} | \mathbf{2} | \mathbf{2} \rangle \langle \mathbf{2} | \mathbf{2} | \mathbf{2} \rangle + \langle \mathbf{2} | \mathbf{2} \rangle \langle \mathbf{2} | \mathbf{2} | \mathbf{2} \rangle \langle \mathbf{2} | \mathbf$$

$$+\langle \mathbf{\mathcal{N}} | \mathbf{\mathcal{O}} | \mathbf{\mathcal{O}} \rangle \langle \mathbf{\mathcal{O}} | \mathbf{\mathcal{O}} | \mathbf{\mathcal{N}} \rangle \neq 0$$

Spin-flip is allowed by spin-orbit coupling in the intermediate state (e.g. $2p_{3/2}$ in case of L₃ edge RIXS)

$$\mathcal{A}_{\rm spin-flip}^{L_3} = \begin{pmatrix} x & y & z \\ 0 & i \sin \theta_s & 0 \\ -i \sin \theta_s & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

No spin-flip in the absence of spin-orbit coupling

Kedge 1s

L. J. P. Ament et al., Phys. Rev. Lett. 103, 117003 (2009) M. Moretti Sala, New J. Phys. 13, 043026 (2011)

First RIXS evidence of magnons in 2010

L. Braicovich et al., Phys. Rev. Lett. 104, 077002 (2010) R. Coldea et al., Phys. Rev. Lett. 96, 174533 (2010) – INS

Semi-quantitative agreement with single Cu²⁺ ion model

L. Braicovich et al., Phys. Rev. Lett. 104, 077002 (2010) L. Braicovich et al., Phys. Rev. B 81, 174533 (2010)

RIXS and the magnetic structure factor

RIXS in the cross-polarisation channel is reminescent of $S(q,\omega)$

C. J. Jia et al., Nat. Comm. (2014) – exact diagonalisation calculations

The natural probe of magnetism is neutrons...

- direct coupling to magnetic moments
- easy interpretation of results $S(q, \omega)$
- unbeatable energy resolution (INS vs. RIXS)

...but unfavourable when

- small sample volumes
- strong neutron absorbers

RIXS if energy resolution is good enough

~ 10 meV nowadays (continuously improving)

when magnetic **RIXS**

Intense paramagnon excitations in the YBa₂CuO_{6+x} family of high-temperature superconductors

M. Le Tacon et al., Nat. Phys. 7, 725 (2011)

M. Guarise et al., Nat. Commun. 5, 5760 (2014); M. P. M. Dean, et al., Phys. Rev. B 90, 220506 (2014)

The European Synchrotron ESRF

when magnetic **RIXS**

Spin excitations in isolated single La₂CuO₄ layers

M. P. M. Dean et al., Nat. Mat. 11, 850–854 (2012)

REXS is RIXS back to the ground state

Long-range incommensurate charge fluctuations in $(Y,Nd)Ba_2Cu_3O_{6+x}$

G. Ghiringhelli et al., Science 337, 821-825 (2012)

The European Synchrotron

Long-range incommensurate charge fluctuations in $(Y,Nd)Ba_2Cu_3O_{6+x}$

G. Ghiringhelli et al., Science 337, 821-825 (2012)

The European Synchrotron | ES

Orbital-flip is also a possible final state of the RIXS process

Excitations to crystal field states (d-d excitations)

M. Moretti Sala, New J. Phys. 13, 043026 (2011)

Symmetry of the final states from their angular dependence

M. Moretti Sala, New J. Phys. 13, 043026 (2011)

Outline

Resonant inelastic X-ray scattering (RIXS)
 ✓ RIXS from a single Cu²⁺ ion
 ✓ RIXS and the magnetic structure factor
 ✓ when magnetic RIXS

RIXS of iridates

- Introduction to the physics of iridates
- RIXS (including XRMS) in iridates
 - ✓ RIXS of a single Ir⁴⁺ ion
 - \checkmark the case of CalrO₃
- Orbital excitations in Ir fluorides
- Magnetic excitations in pure and doped Sr₂IrO₄

Electronic correlation is strongest for 3d TM

Ferroelectricity Magnetoresistance High temperature superconductivity

. . .

T. F. Qi et al., Phys. Rev. B, 86, 125105 (2012)

The European Synchrotron

...spin-orbit coupling is strongest for 5d TM

Spin-orbit coupling renormalizes the effect of electron correlation

W. Witczak-Krempa et al., Annual Review of Condensed Matter Physics 5, 57-82 (2014)

Spin-orbit induced Mott insulating state in Sr₂IrO₄

B.J. Kim et al., Phys. Rev. Lett., 101, 076402 (2008)

Sr₂IrO₄ is characterized by a cuprate-like behaviour

- Mott-insulating phase
 - ✓ crystal structure
 - ✓ electronic structure
 - ✓ magnetic structure and dynamics

R. Coldea et al., Phys. Rev. Lett. 86, 5377 (2001) J. Kim et al., Phys. Rev. Lett. 108, 177003 (2012)

Sr₂IrO₄ is characterized by a cuprate-like behaviour

- Mott-insulating phase
 - ✓ crystal structure
 - ✓ electronic structure
 - ✓ magnetic structure and dynamics
- Doped metallic phase
 ✓ "fermiology"

Y. K. Kim et al., Science 345, 187-190 (2014) Y. K. Kim et al., Nature Physics (2015)

Sr₂IrO₄ is characterized by a cuprate-like behaviour

- Mott-insulating phase
 - ✓ crystal structure
 - ✓ electronic structure
 - ✓ magnetic structure and dynamics
- Doped metallic phase

 "fermiology"
 magnetic dynamics?
 superconducting?

Y. K. Kim et al., Science 345, 187-190 (2014) Y. K. Kim et al., Nature Physics (2015)

Sr₂IrO₄ probably the best system to look for superconductivity

H. Gretarsson et al., Phys. Rev. Lett. 117, 107001 (2016)

Persistence of magnetic excitations in the doped phase described by a $j_{eff} = 1/2$ Heisenberg model

H. Gretarsson et al., Phys. Rev. Lett. 117, 107001 (2016)

Damping and softening at $(\pi/2,\pi/2)$ like in hole-doped cuprates

Sr₂IrO₄ is characterized by a cuprate-like behaviour

- Mott-insulating phase
 - ✓ crystal structure
 - ✓ electronic structure
 - ✓ magnetic structure and dynamics
- Doped metallic phase
 - ✓ "fermiology"
 - ✓ magnetic dynamics
 - ✓ superconducting?
 - If not, why?

Sr₂IrO₄ is characterized by a cuprate-like behaviour

- Mott-insulating phase
 - ✓ crystal structure
 - ✓ electronic structure
 - ✓ magnetic structure and dynamics
- Doped metallic phase
 - ✓ "fermiology"
 - ✓ magnetic dynamics
 - ✓ superconducting?If not, why?

Pseudo-spins vs. spins No charge ordering (so far) Mott-Hubbard vs. charge transfer ins.

Conclusions and acknowledgements

RIXS probes spin, orbital (and lattice) degrees of freedom

Lot of things can be understood at the single ion level

Orbital excitations: symmetry of the ground and excited states

Magnetic excitations: persistence in the metallic phase of both cuprates and iridates

Conclusions and acknowledgements

Politecnico di Milano

- L. Braicovich
- G. Ghiringhelli

ESRF, Grenoble

- Nick Brookes
- Giulio Monaco
- Michael Krisch
- Matteo Rossi

Various collaborators

- D. McMorrow, S. Boseggia (UCL)
- J. Van den Brink (IFW, Dresden)
- K. Wohlfeld (Warsaw Univ.)
- B. J. Kim, H. Gretarsson, M. Le Tacon (MPI, Stuttgart)
- A. Gubanov (Russian Academy of Sciences)
- K. Ogushi (Tokyo Univ.)

Conclusions and acknowledgements

Politecnico di Milano

- L. Braicovich
- G. Ghiringhelli

ESRF, Grenoble

- Nick Brookes
- Giulio Monaco
- Michael Krisch
- Matteo Rossi

Various collaborators

- D. McMorrow, S. Boseggia (UCL)
- J. Van den Brink (IFW, Dresden)
- K. Wohlfeld (Warsaw Univ.)
- B. J. Kim, H. Gretarsson, M. Le Tacon (MPI, Stuttgart)
- A. Gubanov (Russian Academy of Sciences)
- K. Ogushi (Tokyo Univ.)

Thank you for your attention!

