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Motivation: single hole in 1D

Putting 1 hole into the 1D antiferromagnet (AF, ground state of the undoped 1D Hubbard model):
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— hole (~holon) + domain wall (~spinon) separate

— paradigm: spin-charge separation in 1D [T. Giamarchi, Quantum Physics in One Dimension (2004)]
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— hole (~holon) + domain wall (~spinon) separate

— paradigm: spin-charge separation in 1D [T. Giamarchi, Quantum Physics in One Dimension (2004)]

— observed by ARPES on undoped quasi-1D cuprates [C. Kim et al., PRL 77, 4054 (1996)]



Motivation: single hole in 2D

Putting 1 hole into the 2D AF (ground state of the undoped 2D Hubbard model):
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— hole (~holon) excites collective magnetic excitations (~magnons) when moving

— not only spin and charge does not separate but even... holon motion hindered by magnons
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— hole (~holon) excites collective magnetic excitations (~magnons) when moving
— not only spin and charge does not separate but even... holon motion hindered by magnons
— paradigm: but quantum fluctuations help and spin polaron formed in 2D

[G. Martinez & P. Horsch, PRB 44, 317 (1991)]



Motivation: single hole in 2D

Putting 1 hole into the 2D AF (ground state of the undoped 2D Hubbard model):

5% A% % @ W &
s L WL s L T T I S
NN @ NN m NN R NN
SN T L S e b N %
LT T % % % %%

— hole (~holon) excites collective magnetic excitations (~magnons) when moving
— not only spin and charge does not separate but even... holon motion hindered by magnons
— paradigm: but quantum fluctuations help and spin polaron formed in 2D

[G. Martinez & P. Horsch, PRB 44, 317 (1991)]

— observed by ARPES on undoped quasi-2D cuprates [A. Damascelli et al., RMP 75, 473 (2003)]



Motivation: single hole in 2D

Putting 1 hole into the 2D AF (ground state of the undoped 2D Hubbard model):
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— not only spin and charge does not separate but even... holon motion hindered by magnons
— paradigm: but quantum fluctuations help and spin polaron formed in 2D
[G. Martinez & P. Horsch, PRB 44, 317 (1991)]

— observed by ARPES on undoped quasi-2D cuprates [A. Damascelli et al., RMP 75, 473 (2003)]
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1.Spin-orbital separation in quasi-1D cuprates:
— theory
— experiment

— postsciptum (PS)

2. Polaronic motion of j=3/2 spin-orbital excitons in quasi-2D iridates:
— theory
— experiment

— postscriptum (PS)

3. Conclusions



separation in quasi-1D cuprates: theory

Single Cu”* ion in SrZCuO3 (1 hole in 3d orbitals):

crystal field — hole with s=1/2 spin in the x*-)”* orbital (ground state) & 4 excited orbitals
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1D lattice of Sr2CuO3:

hopping + Coulomb repulsion — low energy: Heisenberg superexchange between s=1/2 spins
1
M=y (S:8;+7)
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[KW et al., PRL 107, 147201 (2011); KW et al., PRB 88, 195138 (2013)]



separation in quasi-1D cuprates: theory

How does orbital excitation move in 1D s=1/2 AF?

1% step: 1D AF and ferroorbital (FO) ground state

time

[KW et al., PRL 107, 147201 (2011); KW et al., PRB 88, 195138 (2013)]



separation 1n quasi-1D cuprates: theory

How does orbital excitation move in 1D s=1/2 AF?

1% step: 1D AF and FO

2 step: we create orbital excitation (also called: exciton)
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[KW et al., PRL 107, 147201 (2011); KW et al., PRB 88, 195138 (2013)]



separation 1n quasi-1D cuprates: theory

How does orbital excitation move in 1D s=1/2 AF?

1% step: 1D AF and FO

2" step: we create orbital excitation

"4

3" step: orbital excitation moves and creates 1 spinon
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[KW et al., PRL 107, 147201 (2011); KW et al., PRB 88, 195138 (2013)]
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separation in quasi-1D cuprates: theory

How does orbital excitation move in 1D s=1/2 AF?

1% step: 1D AF and FO

2" step: we create orbital excitation

3 step: orbital excitation moves and creates 1 spinon LR
Spin of electron in the upper orbital is conserved Y
during this superexchange process LU
(a rather realistic assumption): 0
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[KW et al., PRL 107, 147201 (2011); KW et al., PRB 88, 195138 (2013)]
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separation 1n quasi-1D cuprates: theory

How does orbital excitation move in 1D s=1/2 AF?

1% step: 1D AF and FO

2" step: we create orbital excitation

"4

3" step: orbital excitation moves and creates 1 spinon

4™ step: further motion does not create more spinons
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[KW et al., PRL 107, 147201 (2011); KW et al., PRB 88, 195138 (2013)]



separation 1n quasi-1D cuprates: theory

How does orbital excitation move in 1D s=1/2 AF?

1% step: 1D AF and FO

2" step: we create orbital excitation
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3" step: orbital excitation moves and creates 1 spinon %
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4™ step: further motion does not create more spinons LY

(AT=1,AS=%) > AT=1 + AS=%

time

orbital excitation = orbiton + spinon

: 1

spin-orbital separation

[KW et al., PRL 107, 147201 (2011); KW et al., PRB 88, 195138 (2013)]



separation in quasi-1D cuprates: theory

How does orbital excitation move in 1D s=1/2 AF?

1% step: 1D AF and FO

2ndstep: we cr
3 step: orbita

4t step: furthe

(AT=1, AS=Y%)

orbital excitatio

Note:

spin-orbital separation ~ spin-charge separation

In fact:

exact mapping between these two phenomena

(spin-orbital model of Kugel-Khomskii type and #-J model)
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[KW et al., PRL 107, 147201 (2011); KW et al., PRB 88, 195138 (2013)]



Energy transfer (eV)

Resonant inelastic x-ray scattering (RIXS) at Cu L, edge in Sr,CuO,
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separation 1n quasi-1D cuprates: experiment
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Momentum transfer (2x/a)

[J. Schlappa et al., Nature 485, 82 (2012); V. Bisogni et al., PRL 114, 096402 (2015)]
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separation 1n quasi-1D cuprates: experiment

Excellent agreement with the experiment and theory (~spin-orbital model)

RIXS experiment Theory (exact diagonalization)
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[J. Schlappa et al., Nature 485, 82 (2012); V. Bisogni et al., PRL 114, 096402 (2015)]



separation 1n quasi-1D cuprates: experiment

But where 1s the 'pure' orbiton?

Edge of spinon-orbiton continuum Orbiton (2 edges)

Exp. Exp. Theory
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[J. Schlappa et al., Nature 485, 82 (2012); V. Bisogni et al., PRL 114, 096402 (2015)]



separation in quasi-1D cuprates: PS

The above physics is only valid when strong crystal field fully polarizes the ground state (FO state)

S (q,_ ®) O (_q, ®)

No crystal field ('Bethe' chain, SU(4) symmetry)

1dentical

Moderate crystal field

Strong crystal field (FO ground state)

- spin-orbital separation spectrum
like 1D AF
[C. C. Chen et al., PRB 91, 165102 (2015)]




2. Polaronic motion of j=3/2 excitons in quasi-2D iridates: theory

Single Ir*" ion in Sr IrO, (1 hole in 54 orbitals):

crystal field + spin-orbit — hole in j=1/2 spin-orbital isospin ground state and j=3/2 excitations

J=3/2: :, :, etc.
sd) .
j=1/2: . , .

%

2D lattice of SrZIrO4:

hopping + Coulomb repulsion — low energy: Heisenberg superexchange between j=1/2 isospins
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[J. Kim et al., PRL 108, 177003 (2012); J. Kim ef al., Nature Communications 5, 4453 (2014)]



2. Polaronic motion of j=3/2 excitons in quasi-2D iridates: theory

How does j=3/2 spin-orbital excitation move in 2D j=1/2 AF?

1* : ground state is a 2D AF formed by j=1/2 isospins

[J. Kim et al., PRL 108, 177003 (2012); J. Kim ef al., Nature Communications 5, 4453 (2014)]



2. Polaronic motion of j=3/2 excitons in quasi-2D iridates: theory

How does j=3/2 spin-orbital excitation move in 2D j=1/2 AF?

2" : we create a single j=3/2 excitation in the ground state

[J. Kim et al., PRL 108, 177003 (2012); J. Kim ef al., Nature Communications 5, 4453 (2014)]



2. Polaronic motion of j=3/2 = excitons in quasi-2D iridates: theory

How does j=3/2 spin-orbital excitation move in 2D j=1/2 AF?

3" : we propagate it to the nn site via superexchange process — a j=1/2 magnon left behind

[J. Kim et al., PRL 108, 177003 (2012); J. Kim ef al., Nature Communications 5, 4453 (2014)]



2. Polaronic motion of j=3/2

excitons in quasi-2D iridates: theory

How does j=3/2 spin-orbital excitation move in 2D j=1/2 AF?

3" : we propagate it to the nn site via superexchange process — a j=1/2 magnon left behind

[J. Kim et al., PRL 108, 177003 (2012); J. Kim e

| J. q. number of the electron in the j=3/2 state

conserved during this superexchange process

(a rather realistic assumption):
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2. Polaronic motion of j=3/2 = excitons in quasi-2D iridates: theory

How does j=3/2 spin-orbital excitation move in 2D j=1/2 AF?

4™ . we propagate the excitation further — more magnons left behind

[J. Kim et al., PRL 108, 177003 (2012); J. Kim ef al., Nature Communications 5, 4453 (2014)]



2. Polaronic motion of j=3/2 excitons in quasi-2D iridates: theory

How does j=3/2 spin-orbital excitation move in 2D j=1/2 AF?

4™ : we propagate the excitation further — more magnons left behind
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Only motion by coupling to spin fluctuations possible, just like for a hole in 2D AF

— also 1n this case the j=3/2 exciton moves as a polaron

[J. Kim et al., PRL 108, 177003 (2012); J. Kim ef al., Nature Communications 5, 4453 (2014)]




2. Polaronic motion of j=3/2 excitons in quasi-2D iridates: experiment

Good agreement between experiment and theory

Ir L edge RIXS on St IrO, Self-consistent Born approximation calculations

Mormal incidence
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Note: theoretical calculations include the polaronic motion of the j=3/2 excitons

[J. Kim et al., PRL 108, 177003 (2012); J. Kim ef al., Nature Communications 5, 4453 (2014)]



2. Polaronic motion of j=3/2 excitons 1n quasi-2D iridates: PS

Is that the full story? )
4
N
Mormal incidence :
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What is the origin of the small branch of the exciton dispersion with the minimum at I'?

[J. Kim et al., PRL 108, 177003 (2012); J. Kim ef al., Nature Communications 5, 4453 (2014)]



2. Polaronic motion of j=3/2 excitons 1n quasi-2D iridates: PS

Not in the previous model: the Jahn-Teller interaction between j=3/2 and j=1/2 1sospins

(a) (b)

Jahn-Teller for tzg orbitals

No Jahn-Teller for j=1/2 Jahn-Teller for j=3/2 and j=1/2

[E. M. Plotnikova e al.,, Phys. Rev. Lett. 116, 106401 (2016)]



2. Polaronic motion of j=3/2 excitons 1n quasi-2D iridates: PS

This allows for the hopping of j=3/2 exciton which does not introduce defects in AF...

(a) (b) (c
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[E. M. Plotnikova e al.,, Phys. Rev. Lett. 116, 106401 (2016)]



2. Polaronic motion of j=3/2 excitons 1n quasi-2D iridates: PS

... and it may explain the extra feature with minimum at I" in RIXS (peak “A”)
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[superexchange and Jahn-Teller;

self-consistent Born approximation]|

[E. M. Plotnikova e al.,, Phys. Rev. Lett. 116, 106401 (2016)]



3. Conclusions

1. Motion of orbital exciton in quasi-1D cuprates:

spin-orbital separation, just like spin-charge separation (note: valid only for strong crystal field)

2. Motion of spin-orbital exciton in quasi-2D iridates:

polaronic type of motion, just like for a hole in 2D AF (though Jahn-Teller changes it a bit)
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Take-home message

Systems without strong on-site spin-orbit coupling (“3d”: cuprates, manganites, etc.)

are NOT always very different from

the ones with strong on-site spin-orbit coupling (“5d”: iridates, osmates, etc.)

spin-liquid quadrupolar

usn

top. ins.
or semi-metal

At
[W. Witczak-Krempa, Annual Review of Condensed Matter Physics, 5, 57 (2014)]
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