

Simulating Hard-Xray

 beamlines by ray-tracing using ShadowOui
Manuel Sanchez del Rio

- Introduction to ray tracing

- Sources
- Optics for Hard X-rays - Examples

COHERENT FRACTION (?)

Even with the new source, at 20 keV the emission is 99\% incoherent =>

Optics simulations for incoherent beams cannot be neglected!!

FULLY INCOHERENT

The HYBRID model:
apply concepts of wave optics to correct results of geometrical optics
-Combination of many waves

PARTIAL COHERENCE

- Treated in a statistical way
-Full theory exists (Mandel \& Wolf)
-Analytical model for Gaussian Beams

The multi e-model:
We know how to calculate and propagate a coherent wavefront (emitted by a single electron), so let the computer repeat it N times

Trace (the beamline)

A MODERN RAY-TRACING TOOL

M. Sanchez del Rio, N. Canestrari, F. Jiang, F. Cerrina, "SHADOW3: a new version of the synchrotron X-ray optics modelling package", J. Synchrotron Rad. (2011), 18, 708-716
J. Demšar, B. Zupan, "Orange: From Experimental Machine Learning to Interactive Data Mining", White Paper (www.ailab.si/orange), Faculty of Computer and Information Science, University of Ljubljana(2004)

Beamline Experiment Chain

L Rebuffi

Graphical environment for optics (and more) simulations

- Python-based
- Module add-ons
- Packages that communicate

$$
\begin{aligned}
& \text { Physical } \\
& \text { Optics }
\end{aligned}
$$

?

X-ray tubes
Radioactive sources / Excitation by radioactive decay

Synchrotron Bending Magnets

Synchrotron insertion devices (wigglers and undulators)
X-ray lasers
Others: Inverse Compton, Channelling
Pulsars/Quasars/Black holes etc.
))) Shadow Sources

Tube_W

In addition a "Geometrical Source" can be used to approximate any source.
ex12_bendingmagnet.ows

Monte Carlo (SHADOW)

y

Phase Space (H)

X

Energy (and polarisation) sampled from spectrum
Geometry (along the arc,)
Angular Distribution for one electron
Convolution with electron beam ($\sigma_{x}, \sigma_{z}, \sigma_{x}^{\prime}, \sigma_{z}^{\prime}$)

The FULL undulator is not yet available in ShadowOui, but it will be there very soon!

ONUKI \& ELLEAUME UNDULATORS, WIGGLERS AND THEIR APPLICATIONS, CRC PRESS, 2002

Figure 3.4 Spectral fiux per unit surface in the middle of the undulator for three frequencies close to the on-axis resonant frequency $\omega_{R}=n \omega(0,0)$.
Even on resonance, beam is not fully Gaussian
But for resonance, can be reasonably approximated as Gaussian

$$
\begin{array}{rlr}
\sigma_{r^{\prime}, \text { photon }}=0.69 \sqrt{\frac{\lambda}{L}} & \sigma_{r, \text { photon }}=\frac{2.7}{4} \\
\Sigma_{x}^{2} & =\sigma_{x, \text { elec }}^{2}+\sigma_{x, \text { photon }}^{2} & \Sigma_{z}^{2}=\sigma_{z, \text { elec }}^{2}+\sigma_{z, \text { photon }}^{2} \\
\Sigma_{x^{\prime}}^{2} & =\sigma_{x^{\prime}, \text { elec }}^{2}+\sigma_{x^{\prime}, \text { photon }}^{2} & \Sigma_{z^{\prime}}^{2}=\sigma_{z^{\prime}, \text { elec }}^{2}+\sigma_{z^{\prime}, \text { photon }}^{2}
\end{array}
$$

-THESE FORMULAS ARE VALID AT THE WAIST, AT THE UNDULATOR RESONANCE, AND SUPOSSING GAUSSIAN EMISSION OF PHOTONS) -BY NOW IN ShadowOui WE APPROXIMATE UNDULATORS BY

WIGGLER: LIKE BM, BUT A BIT MORE COMPLEX

From magnetic field to trajectory, then:
-Photons emitted with axis tangent to the trajectory

- More photons where higher curvature
-At the emission point, the angles correspond to the "local" bending magnet

Wiggler
ex13_insertiondevices.ows

Figure 5
Plot of the horizontal phase space for a wiggler (ID17 at the ESRF) with 11 periods of 0.15 m length, $K=22.3$ and electron beam energy of 6.04 GeV .

Practical case of Wiggler simulations:

The new "Bending Magnet" beamlines at the EBS

Figure 2.09: a) Magnetic structure of a typical three-pole wiggler (only one half represented for improved clarity) and b): Associated vertical field profile of the three-pole wiggler.

20 keV - 1:1 Ideal focusing BM 3P

 x12 Gain

Any solution produces a much more brilliant source than the "present "uivs

Emission 3P wiggler at 20 keV

Beamline Performances?
 Effect of side BMs?

2PBcut - 20 keV - alignment

Trajectory 1:1 focusing (Toroid)

1P Divergences 5keV 80 keV

ROLES

-Transport the beam (vacuum)
-Shape the beam (slits)
-Focus (or collimate) (focusing elements: mirrors, lenses) -Filtering (high pass: attenuators/filters, low pass: mirrors)
-Monochromatizing (crystals, multilayers)

Passive

Slits
Attenuators
Reflective optics
Mirrors
Refractive Optics
Lenses
Diffractive optics
(Gratings)
Multilayers
Crystals

For each optical element we need:

Geometrical model: how the direction of the rays are changed:
reflected (mirrors)
refracted (lenses)
diffracted (gratings and crystals)
Physical model: how the ray intensity (in fact electric fields) decreases because of the interaction
-Structures along the surface =>playing with the direction
-Structures in depth => playing with the reflectivity

MIRRORS

GEOMETRICAL MODEL

PHYSICAL MODEL

Medium 1

$$
\vec{k}_{o}=\vec{k}_{i}-2\left(\vec{k}_{i} \cdot \vec{n}\right) \vec{n}
$$

Fresnel equations give the reflectivity as a function of angle and photon energy. As a consequence, one gets the critical angle:

$$
r_{\sigma}=\frac{n_{1} \sin \theta_{1}-n_{2} \sin \theta_{2}}{n_{1} \sin \theta_{1}+n_{2} \sin \theta_{2}} ; \quad r_{\pi}=\frac{n_{1} \sin \theta_{2}-n_{2} \sin \theta_{1}}{n_{1} \sin \theta_{2}+n_{2} \sin \theta_{1}}
$$

-Total reflection: very grazing angles
($\sim \mathrm{mrad})$:
-Long mirrors
-High aberration (shape is very important)
-Surface finish
-Slope errors: ~ urad
-Roughness: ~A

Waviness

DABAM Height Profile

-Mirror combinations (e.g. KB)

MULTILAYER MIRRORS (PHYSICAL MODEL)

Surface Studies of Solids by Total Reflection of X-Rays*

$$
\begin{aligned}
& \text { L. G. Parratt } \\
& \text { Cornell University, Ihaca, New York }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ornell Oniversity, Ihaca, New I I } \\
& \text { (Received March 22, 1954) }
\end{aligned}
$$

- no reflection from the back of the substrat
- compute recurrently the reflectivity of each layer from bottom (substrate) to top

LENSE = TWO INTERFACES

GEOMETRICAL MODEL

PHYSICAL MODEL

Law of Refraction (Snell's Law)

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

absorption in media

$$
\mathrm{I} / \mathrm{I}_{0}=\exp (-\mu \mathrm{t})
$$

Focusing
Absorption
Chromatic aberrations
Geometrical aberrations:
Which is the best shape?
Cylindrical => Lots of aberrations
Parabolic => Much less aberrations (but non-zero)
Elliptical => collimated beam to convergent beam
Hyperbolic => convergent beam to collimated beam

IDEAL INTERFACE SHAPE FOR FOCUSING A COLLIMATED BEAM

FULL RAY TRACING WITH SHADOWOUI: STACK OF INTERFACES

ex24_transfocator.ows
OTTHER_EXAMPLES/lens_ellịptical.ows
OTHER_EXAMPLESTCRL_Snigđjem 1996.ows

OE surface in form of conic equation: $\mathrm{c}[1] * \mathrm{X}^{\wedge} 2+\mathrm{c}[2] * \mathrm{Y}^{\wedge} 2+\mathrm{c}[3] * \mathrm{Z}^{\wedge} 2+$ $c[4] * X * Y+c[5] * Y * Z+c[6] * X * Z+$ $c[7] * X+c[8] * Y+c[9] * Z+c[10]=0$
with
$c[1]=0.0000000000000000$
$c[2]=1.0000000000000000$
$c[3]=0.0000000000000000$
$c[4]=0.0000000000000000$
$c[5]=-0.0000000000000000$
$c[6]=0.0000000000000000$
$\mathrm{G}[7]=0.0000000000000000$
$\mathrm{c}[8]=0.0000000000000000$
$c[9]=-0.10000000000000001$
$c[10]=0.0000000000000000$

CRL $=n$ identical Lenses
Compound Refractive Lens

CRYSTAL DIFFRACTION

A result of COHERENT (RAYLEIGH) scattering of the X-rays on the elements of a periodic structure (e.g., atoms).
Although σ_{R} is small compared to other processes, the effect is the basis of X-ray diffraction.
The (small) scattering is enhanced by the periodic distribution of the scatterers (atoms)

The diffraction of X-rays by very small crystals has been described by Laue's kinematic theory.

It supposes that oscillators in the crystal are only under the influence of the incident wave, neglecting the interaction between oscillators.

It can be applied to small crystals, like in powder diffraction.

For large crystals, the kinematical theory is no longer valid. This case is treated by the dynamical theory which includes multiple scattering of the radiation emitted by the oscillators and its interaction with the incident wave.

$$
\begin{gathered}
(\Delta \theta)_{\mathrm{D}}=2\left|\frac{P\left|\Psi_{H}\right|}{(|b|)^{1 / 2} \sin \left(2 \theta_{\mathrm{B}}\right)}\right| \\
\Psi_{H}=\frac{-r_{0} \lambda^{2}}{\pi v_{\mathrm{c}}} F_{H}, \quad r_{0}=\frac{e^{2}}{m c^{2}}
\end{gathered}
$$

Geometrical model

Guarantees that the Liouville's theorem is fulfilled

Physical model

Crystal reflectivity is given by the Dynamical Theory of Diffraction (Zachariasen formalism)

$S_{1} \Delta \theta_{1}=S_{2} \Delta \theta_{2}$

BRAGG or reflection

ex17_sagittalfocusing.ows

OTHER_EXAMPLES/crystal_analyzer_diced.ows
OTHER_EXAMPLES/crystal_asymmetric_backscattering.ows

LAUE or transmission

Th-ThB $\{$ in\} [micro rads]

Playing with shape and geometry in crystal

- Factors that affect the energy resolution
- Sagittal focusing
- Bent crystal analyzers (ID26)

Dispersive crystals: some consequences

- Visibility of coherent patters
- Laue focusing
- Rainbow spectrometers

$$
\frac{\Delta E}{E}=\frac{\Delta \lambda}{\lambda}=\Delta \theta_{0} \cot \theta_{0} \approx \sqrt{\omega_{D}^{2}+\left[\left|\frac{p}{R \sin \theta_{1}}-1\right| \Delta_{\text {src }}+\frac{s_{1}}{p}\right]^{2}} \cot \theta_{0}
$$

Source size s_{1}
Source divergence $\Delta_{\text {src }}$->
Slits, collimation or antiparalel (++)

Geometrical term (curvature R)

Darwin width $\omega_{\mathrm{D}}->$ Intrinsic resolution

Bragg's angle dependency $\cot \theta_{0}$

$$
\frac{\Delta E}{E}=\frac{\Delta \lambda}{\lambda}=\Delta \theta_{0} \cot \theta_{0} \approx \sqrt{\omega_{D}^{2}+\left[\left|\frac{p}{R \sin \theta_{1}}-1\right| \Delta_{\text {src }}+\frac{s_{1}}{p}\right]^{2}} \cot \theta_{0}
$$

Source size s_{1}
Source divergence $\Delta_{s r c}->$

Slits, collimation

 or antiparalel (++)
Geometrical term (curvature R)

Darwin width $\omega_{0}->$ Intrinsic resolution

Bragg's angle dependency $\cot \theta_{0}$

	System	I_{1}	I_{2}	$\begin{aligned} & \Delta \mathrm{E}_{1} \\ & {[\mathrm{eV}]} \end{aligned}$	$\begin{aligned} & \Delta E_{2} \\ & {[\mathrm{eV}]} \end{aligned}$
	flat-flat	$\begin{aligned} & 413 \\ & \pm 14 \end{aligned}$	$\begin{aligned} & 307 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & 8.92 \\ & \pm 0.55 \end{aligned}$	$\begin{aligned} & 8.71 \\ & \pm 0.6 \\ & 9 \end{aligned}$
	$\begin{aligned} & \text { Rowland(1:1)- } \\ & \text { flat } \end{aligned}$	$\begin{aligned} & 414 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & 65 \\ & \pm 9 \end{aligned}$	$\begin{aligned} & 1.44 \\ & \pm 0.06 \end{aligned}$	$\begin{aligned} & 1.23 \\ & \pm 0.2 \\ & 4 \end{aligned}$
	Rowland(conc ave+convex)	$\begin{gathered} 399 \\ \pm 12 \end{gathered}$	$\begin{aligned} & 296 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & 1.44 \\ & \pm 0.07 \end{aligned}$	$\begin{aligned} & 1.32 \\ & \pm 0.0 \\ & 6 \end{aligned}$
	Out- Rowland(1:3)- flat	$\begin{aligned} & 408 \\ & \pm 18 \end{aligned}$	$\begin{aligned} & 36 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & 8.2 \\ & \pm 0.9 \end{aligned}$	$\begin{aligned} & 2.1 \\ & \pm 0.5 \end{aligned}$

$$
\frac{\Delta E}{E}=\frac{\Delta \lambda}{\lambda}=\Delta \theta_{0} \cot \theta_{0} \approx \sqrt{\omega_{D}^{2}+\left[\left|\frac{p}{R \sin \theta_{1}}-1\right| \Delta_{\text {src }}+\frac{s_{1}}{p}\right]^{2}} \cot \theta_{0}
$$

Geometrical term (curvature R)

Darwin width $\omega_{\mathrm{D}}->$ Intrinsic resolution

Bragg's angle dependency $\cot \theta_{0}$

$$
\frac{\Delta E}{E}=\frac{\Delta \lambda}{\lambda}=\Delta \theta_{0} \cot \theta_{0} \approx \sqrt{\omega_{D}^{2}+\left[\left|\frac{p}{R \sin \theta_{1}}-1\right| \Delta_{\text {src }}+\frac{s_{1}}{p}\right]^{2}} \cot \theta_{0}
$$

Source size s_{1}

Shape effects:

-Anticlastic curvature -Cylindrical vs
-Conic (Ice\&Sparks, JOSA A11 (1994) 1265)

Beam transmission vs angular divergence

Intensity (in arbitrary units) versus magnification factor M for monochromatic ($E=20 \mathrm{keV}$) point source placed at 30 m from the sagittaly bent crystal.
We clearly observe the maximum of the transmission at $M=0.33$, as predicted by the theory
(C. J. Sparks, Jr. and B. S. Borie Nuclear Instruments and Methods, 172, 237-242 (1980)).

See: ex18b_sagittalfocusing.ws

Energy relative to center FWHM (eV)

The change in the direction of any monochromatic beam (not necessarily satisfying the diffraction condition or Laue equation) diffracted by a crystal (Laue or Bragg) can be calculated using (i) elastic scattering in the diffraction process:

$$
\begin{equation*}
\left|\mathbf{k}^{0}\right|=\left|\mathbf{k}^{H}\right|=\frac{1}{\lambda} \tag{2}
\end{equation*}
$$

with $\mathbf{k}^{0, H}=(1 / \lambda) \mathbf{V}^{0, H}$ and \mathbf{V} a unita and (ii) the boundary conditions at the crystal sur

$$
\begin{equation*}
\mathbf{k}_{\|}^{H}=\mathbf{k}_{\|}^{0}+\mathbf{H}_{\|} \tag{3}
\end{equation*}
$$

$-\left|\sin \theta_{2}\right|=\left|\sin \theta_{1}\right|-\frac{\lambda}{d} \sin \alpha$

A crystal behaves like a grating or prism, except the Bragg Symmetric crystal that behaves like a mirror.

$$
\frac{d}{\sin \alpha}=\frac{d_{\text {Grating }}}{m}
$$

- Asymmetric Bragg \& every Laue crystals are dispersive elements (X-rays with different energies will exit in different directions)
- Bragg symmetric crystals are non-dispersive

They modify the divergence of the beam. It must be taken into account when combined with other focusing elements

Dispersive crystals reduce visibility of diffraction patterns by coherent light

Si 111, $\alpha=0, \alpha=0.15 \mathrm{deg}$ $8 \mathrm{keV}, \Delta \mathrm{E} \sim 1 \mathrm{eV}$
8000.0 eV 8000.5 eV

"Polychromatic focusing" with flat Laue crystals is fake focusing

M. Sanchez del Rio et al, Rev Sci Instrum, 66 (11) 5148-5152, Nov 1995

Extreme asymmetry (backscattering) produces a rainbow effect shyyd'ko 2006 PRL 97, 235502

FIG. 4. Bragg reflectivity from crystal D of 9.1315 keV x rays, exactly backwards, as a function of the angle of incidence $\Theta=$ $\pi / 2-\theta$ to the reflecting atomic planes.

See you in the practical session to model your beamline like you were playing video games!!

