Beamline Description



The availability of high brightness synchrotron radiation sources has led to the development of spectromicroscopy techniques which involve well-established spectroscopies that make use of x-rays and the high spatial resolution - below 1 micron - afforded by modern synchrotron radiation optical systems.
The beamline houses unique microscope designed for studies of the local band structure of materials. A low photon energy beam (below 100 eV) is focused into a submicrometre spot and electrons arising from the photoemission process are collected and analyzed in terms of their angular and energy distributions (ARPES). Thanks to the beam focusing the photoelectron spectrum is acquired as a function of its origin on a sample surface coordinate system.
The final focusing is obtained by multilayer coated optics of Schwarzschild objectives. The use of multilayers required for high reflectivity at a certain wavelength restricts the photon energy range available after the monochromator (20-200 eV) to specific narrow lines. Currently the beamline is equipped with two Schwarzschild objectives designed for 27 and 74 eV of photon energy.  
The ARPES is then performed by means of internal movable electron energy analyzer mounted on precision two axes goniometer setup. The sample can be measured in the temperature range of 40-470K and the sample focusing and imaging are performed thanks to the XYZR scanning stage on which the sample manipulator is mounted.

Last Updated on Friday, 20 January 2012 10:45