

Elettra Sincrotrone Trieste

Recent results from PADReS at Fermi@Elettra

Nicola MAHNE on behalf of PADReS group

I0 monitor (IOM)

- works online and shot-to-shot
- is "transparent" to radiation
- gives power of radiation per pulse (after calibration)

PRESTO: Pulse Resolved Energy Spectrometer: Transparent and Online

Groove density expanded in Taylor series $N(w) = D_0 + D_1w + D_2w^2 + D_3w^3 + \dots$

1 1 1	Parameter	LE	HE
h = groove depth	Wavelength range m=1 (nm)	24-100	6.6-27
w = groove width d = groove spacing	Wavelength range m=2 (nm)	12-50	3.3-13.5.
	Energy Resolution (meV)	0.2-2.9	0.3-9.5
h w d	D0 (l/mm)	500	1800
	D1 (l/mm ²)	0.35	1.26
	— D2 (l/mm ³)	1.7x10 ⁻⁴	6.3x10 ⁻⁴
ORIBAJOBIN YVON	Groove profile	Laminar	Laminar
	Groove height (nm)	12	4
	Groove ration (w/d)	0.60	0.65
INCOATEC	Coating Material / Thickness	a-C / 50 nm	Au / 50 nm

innovative coating technologies gmbh

Н

PRESTO gives information on:

- Energy distribution
- Energy peak position
- Energy Bandwidth
- Vertical intensity distribution (projected)
- Angular divergence
- Intensity estimation

Two-colors experiment Pulses Generation Scheme

First tests (visible laser)

 L_{2}

Splitting and delay line

- 8 x Au coated plane mirrors
- Two additional delay acchieved with ML mirrors at 45° (to be defined)

To be commissioned soon with FEL...

$$\Delta L = L \downarrow 1 - L \downarrow 2 = 2a(1 - \cos\phi) - 2z(1 - \cos\theta)$$

without ML branches

 $(290\pm0.01) mm \le z \le (1150\pm0.01) mm$

With ML1: $\Delta t \downarrow 1 = 0.3 \div 1.5 \text{ ns}$ With ML2: $\Delta t \downarrow 2 = 0.33 \text{ ns}$

So far 3 beamlines installed and operative: EIS-TIMEX, DiProI, LDM

Kirkpatrick-Baez (KB) active optics systems

K-B active optical system (DiProl + LDM)

Necessity of high fluence in the focal plane \Rightarrow small spot \Rightarrow great demagnification

Advantages of K-B system with bendable mirrors

- Decoupling of vertical and horizontal components
- Focalization of two sources (FEL1 and FEL2), placed at different distances, with the same mirror pair
- Possibility of changing the focal plane position
- Possibility of correction of the beam wavefront with different source conditions

K-B active optical system (DiProl +

Laser-Laboratorium Göttingen e.V

To be compared with

- Diffraction limited spot size = $4.1 \times 5.9 \ \mu m^2$ ٠
- Simulated spot size (using the profiles ٠ measured with LTP) = $5.1 \times 6.0 \ \mu m^2$ $\lambda = 37.2 nm$

Focusing with ellipsoidal mirror

Necessity of high fluence in the focal plane \Rightarrow small spot \Rightarrow great demagnification

Source distance:84.85 mFocal distance:1.4 mInc. angle: 2.5°

Mirror design <u>optimized for FEL2</u>. Nevertheless with <u>FEL1</u> ($\lambda = 27 nm$), we obtained a Gaussian focus with $\sigma = 4 \mu m$ (FWHM=9.4 μm)!

Summary

PADReS can...

- give information on
 - radiation intensity (IOM, PRESTO) shot-to-shot
 - spectral content of the radiation (PRESTO)
 - "quality" of the beam (PRESTO)
- reject "undesired" components of the light (seed laser, higher harmonics, radiation of the 1st stage in FEL2) by means of filters
- split the beam and delay the two parts (pump and probe experiments, measure of the longitudinal coherence,...)
- provide good focusing in the experimental stations, using K-B active optics system (DiProl and LDM) or ellipsoidal mirror (TIMEX)

• ...

Thank you for your attention!

MEADOW 2013 Trieste, 28-30 October 2013

With gas absorber the FEL intensity can be reduced by 4 order of magnitude.

The second stage converts the first stage to the $n^{th} x m^{th}$ harmonic of the seed (24th harmonic at 10.8nm)