

Investigation of a Next Generation Piezo Bimorph Mirror

Simon Alcock¹, <u>Ioana Nistea¹</u>, John Sutter¹, Kawal Sawhney¹, Jean-Jacques Fermé², Christophe Thellier², Luca Peverini²

> ¹ Optics & Metrology Group, Diamond Light Source Ltd, UK ² Thales-SESO, France

> > ioana.nistea@diamond.ac.uk

Advantages of bimorph mirrors

- Versatility: can be bent to a range of ellipses to provide variable focal distance or X-ray spot size / shape
- Remove distortions:
 - Polishing
 - Clamping
 - Heat bump
- Correct wavefront errors introduced by other optics or source

Bimorph control and analysis

- In-house developed software (EPICS) used routinely at all bimorph beamlines:
 - control of voltages
 - > automatic correction (minimise figure / slope errors)
 - > defocus beam to given size / shape
- Active research:
 - bend mirror to given ellipse
 - create non-Gaussian beam profile (e.g. top-hat intensity)

 \rightarrow Ease of use for beamline teams and users

Old type bimorph mirrors

- Complicated internal structure
- Major problems caused by junction effect [1]

[1] S. G. Alcock, J. P. Sutter, K. J. S. Sawhney, D. R. Hall, K. McAuley, and T. Sorensen, "Bimorph mirrors: The Good, the Bad, and the Ugly," Nuclear Instruments and Methods A, vol. 710, pp. 87–92, May 2013

MEADOW 2013, Trieste

Junction effect

Unction effect removed by repolishing

- > 6 bimorphs successfully repolished + 1 being repolished
- Much improved slope errors (factor of 10) to below 500nrad
- Significantly improved size & profile of reflected X-ray beam

Next generation bimorph mirrors

New design: piezo ceramics glued to side of substrate [2]

MEADOW 2013, Trieste

DLS Next Generation bimorph mirror

- Manufacturer: Thales-SESO
- Characteristics:
 - Designed to be used on a range of beamlines
 - Versatile mounting (facing up, down and sideways)
 - > 3 active regions: Rh & Pt coating + uncoated Si (central)
 - > 16 electrodes

Ex-situ metrology

- Diamond-NOM: non contact, slope measuring profiler [3]
- Optical surface facing upwards
- Automated & integrated voltage control & Diamond-NOM scans (EPICS)

[3] S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, "The Diamond-NOM: a non-contact profiler capable of characterizing optical figure error with sub-nm repeatability", Nucl. Instr. and Meth. A, Volume 616, Issue 2-3, p. 224-228 (2010)

Metrology characterisation

- Bending range of mirror
- Stability of curvature
- Piezo response functions (PRFs)
- Optimisation of slope error using matrix correction method

MEADOW 2013, Trieste

Bending tests

Radius of curvature: flat (+1300V) to ~1430 m (-1000 V)

Dynamic range of bending

Range of bending comparable to thicker, old type bimorphs

Stability tests

Monitor curvature over several days at flattest (+1000 V) & most concave situations (-1000 V)

Significant drift (~10%): piezos overcoming friction from holder

Piezo response functions

Characterize how individual piezos respond to applied voltage

Matrix optimisation

Correction voltages obtained by inverse matrix method
Remaining slope error due to polishing defects

Matrix optimisation

Improvement to figure error over central, uncoated Si stripe

Agreement with Thales-SESO data

Diamond-NOM optimised slope error vs. Thales SESO slope error (high order polynomial removed)

Beamline installation

New type bimorph mirror installed on I22 (June 2013)

Acknowledgements to I22 team: Nick Terrill, Lee Davidson, Marc Malfois, Olga Shebanova & Andy Smith

In-situ X-ray metrology

Data courtesy of John Sutter (Optics Group) and I22 team

Conclusions

OLS Next Generation bimorph mirror achieves ~0.5 urad slope error over a bending range of flat to 1.4 km (concave)

- Problems with holder, and ultimate performance limited by polishing issues (damage during fabrication)
- Successfully replaced old type bimorph mirror on beamline
 → significant improvement to beamline performance
- Perspectives:
 - New design needed for holder
 - Possibility of super-polishing substrates

Thank you for your attention

