

The European XFEL deformable optics project

Maurizio Vannoni (European XFEL GmbH)

- Overview of the European XFEL project
- Bendable Mirrors in the Distribution System
- General Specifications
- Metrology
- Status of the project and future plans

Undulator Segment	FEL radiation energy [keV]	Wavelength [nm]
SASE 1	3 - over 24	0.4 - 0.05
SASE 2	3 - over 24	0.4 - 0.05
SASE 3	0.27 - 3	4.7 – 0.4

XFEL Thermal effect on offset mirror

Pulse time structure:

- # pulses / train = 2700
- Pulse train duration = 0,6ms
- Pulse train rep. rate = 10Hz

Assuming 10mJ as pulse energy:

HELMHOLTZ

XFEL Thermal effect on offset mirror

(Simulations by Daniele La Civita and Antje Trapp)

Max temperature variation (ΔT_{max} =0.3-0.6°C)

Dynamic thermal bump @ 10Hz

ASSOCIATION

XFEL Bendable Mirrors in the Distribution System

XFEL General Specification

	Mirror specifications	Prototype specifications
Substrate length	930 mm	950 mm
Optical surf (mer x sag)	800x20mm ²	750x20mm ²
Substrate Material	Single crystal silicon	Single crystal silicon
Surface coating	B ₄ C	none
Figure	Flat	Flat
Cooling system	InGa eutectic bath	Groove present but not used

Height error (Peak to Valley) (4th order polynomial removed)	<2 nm	<20 nm
Slope error (root mean square)	<0.05 urad	<1 urad <0.5 urad (3rd order removed)
	<0.5 urad sagittal	<5 urad sagittal
Roughness (@10x) rms	<0.3 nm	<0.3 nm
Radius of curvature	>600 km	>50 km >1 km sagittal
Bending capability	-50 km to flat to +50 km	-50 km to flat to +50 km

XFEL Wavefront distortion

Wavefront preservation depends on:

- Mirror length \rightarrow diffraction on mirror edges
- Residual height errors

Sinn, Samoylova, et al., "X-ray Optics and Beam Transport CDR", April 2011 and F. Siewert et al., Optics Express 20, 4525, (2012)

0.5 keV

0.8 keV

3.1 keV

XFEL General Specifications

Why so long ?

To allow 4-sigma cutting and operation in different conditions/energies/footprint To minimize thermal load over the surface

Why so "flat" ? To reduce wavefront aberrations (fully coherent beam!)

Why bendable ?

To correct for the different beamlines length. To correct offset mirrors thermal load. To correct low spatial frequency aberrations on the surface

Why InGa cooled ? To allow mirror cooling without clamping (=bending)

Why B4C coated ?
To protect the mirror from beam damage (eventual misalignment and misfocusing)

XFEL Internal Metrology (THALES-SESO)

Two different methods using Fizeau interferometry:

Pros:

- Direct height profile measurement
- Full Map measurement
- High spatial resolution
- Fast (=seconds)

Cons:

- Limited by Reference Flat Calibration

XFEL Simulations V.S. Measurements

XFEL BESSY Metrology (Frank Siewert, HZG)

Deflectometric method:

Pros:

- No reference needed
- System already calibrated

Cons:

- Slope measurement (=indirect height profile measurement)
- "Slow" (=minutes)
- Limited to a profile in its basic implementation (but with BESSY-NOM, slope mapping is possible)

XFEL Prototype built by Bruker/CINEL/SESO

Design by Riccardo Signorato, formerly Bruker ASC, currently Strumenti scientifici CINEL Substrate by SESO, includes one IBF step

XFEL Prototype built by Bruker/CINEL/SESO

Hands of Riccardo Signorato

XFEL Measurements with NOM, BESSY

European **XFEL**

How would the prototype perform at E.XFEL?

Calculations by Liubov Samoylova, Maurizio Vannoni

EuropeanXFELStability issues

XFEL Full surface measurements (THALES-SESO)

Height map

Ion Beam polished area

Slope map

XFEL Full surface measurement (HZB)

Height map – face up

Height map – face up – polynomial subtracted

Maurizio Vannoni, MEADOW Conference, Trieste, 2013

XFEL Conclusions

Present state:

- The prototype is ok with specifications
- The metrology is stretched to the limit but still reliable.
- Combining height and slope measurements we retrieve additional information
- Further details to investigate
- Piezo characterization, EEM polishing (JTEC), B4C coating, InGa cooling...

Special thanks to:

- Frank Siewert and HZB Helmholtz
- Riccardo Signorato (formerly Bruker ASC, currently Strumenti scientifici CINEL)
- Luca Peverini (THALES-SESO)
- All the XFEL Optics and Beam Transport Group

XFEL WP-73 X-ray Optics & Beam Transport Group

