



# Complete reconstruction of bound and unbound electronic wavefunctions in two-photon double ionization

P. A. Carpeggiani <sup>1,2,11</sup>, E. V. Gryzlova <sup>3</sup>, M. Reduzzi<sup>1,2</sup>, A. Dubrouil<sup>1</sup>, D. Faccialá <sup>1,2</sup>, M. Negro <sup>1,2</sup>, K. Ueda <sup>4</sup>, S. M. Burkov <sup>5</sup>, F. Frassetto <sup>6</sup>, F. Stienkemeier <sup>7</sup>, Y. Ovcharenko <sup>8,9</sup>, M. Meyer <sup>9</sup>, O. Plekan <sup>10</sup>, D. Finatti <sup>10</sup>, K. C. Prince <sup>10</sup>, C. Callegari <sup>10</sup>, A. N. Crum Crahimaile <sup>3</sup> and C. Sansono<sup>7</sup>

P. Finetti <sup>10</sup>, K. C. Prince <sup>10</sup>, C. Callegari <sup>10</sup>, A. N. Grum-Grzhimailo <sup>3</sup> and G. Sansone<sup>7</sup>.

- 1. Dipartimento di Fisica, Politecnico di Milano, Milan, Italy.
  - 2. IFN-CNR Politecnico, Milan, Italy.
- 3. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
- 4. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.
  - 5. Pacific National University, Khabarovsk, Russia.
    - 6. IFN-CNR, Padua, Italy.
  - 7. Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
    - 8. Institut für Optik und Atomic Physik, TU Berlin, Berlin, Germany.
      - 9. European XFEL, Schenefeld, Germany.
      - 10. Elettra-Sincrotrone Trieste, Basovizza, Trieste, Italy.
    - 11. Institut für Photonik, Technische Universität Wien, Wien, Austria.





### Outline

- 1. Intro: complete experiment & two photon double ionization
- 2. FERMI FEL and Low Density Matter beamline
- 3. Neon, non resonant case:
  - excitation scheme & detection
  - yield ratio and PAD (photoelectron angular distribution)
  - complete experiment: theory vs experiment
- 4. Resonant case: the role of AIS (auto ionizing states)
- 5. Complete experiment: reconstruction of all the variables
- 6. Conclusions



### Motivations

#### Complete experiment in photoionization

- ✓ Complete characterization of the process
- ✓ Information on all observables (test of theory)
- ✓ Three dimensional photoelectron distribution (Amplitudes  $A_n$  and phases  $\varphi_n$  of the partial waves)

#### **Two-photon double ionization**

- ✓ Dominant nonlinear mechanism intensity range 10<sup>13</sup>-10<sup>15</sup> W/cm<sup>2</sup>
- ✓ High XUV intensities are required

 ✓ Complete experiment in ions (intermediate polarized state)

H. Klar and H. Kleinpoppen J. Phys. B: At. Mol. Opt. Phys. 15, 933 (1982)



## FERMI @ ELETTRA & LDM (Low Density Matter) Beamline

#### FERMI and ELETTRA



Seeded FEL XUV pulses:

- Polarization control
- Spectral and intensity stability
- Spectral tunability
- Pulse energy ~10µJ
- Δω = 1.5% FWHM (90meV @ 60eV)







## The experiment: linearly and circularly polarized intense XUV pulses



1) *Complete experiment*: 44-62 eV in steps of 0.5 eV

2) Role of autoionizing states: 56.2-56.7 eV in steps of 20 meV

FUSEE Future of Steded free Electron lasers



## $\beta_k$ parameters: definition and physical meaning



Calculated VMI images for PAD with a  $\pm \beta_{k=1...4}$  behaviour

 $\begin{array}{ll} \text{Ne, 1 color, 1 photon ionization:} & 1+\beta_2 P_2 \\ \text{Ne, 1 color, 2 photon double sequential ionization:} & 1+\beta_2 P_2+\beta_4 P_4 \\ & (\text{pulse duration >> optical cycle}) \end{array}$ 

FUSEE

#### Photoelectron spectrum & ionization channels





#### PES (Photo Electron Spectra):

Peak Ratios



- ✓ Good agreement between experimental and theoretical ratios
- ✓ Presence of sharp resonances around 56 eV (autoionizing states)
- Overlap between 2s and <sup>1</sup>S photoelectrons

USEE

## PES (Photo Electron Spectra): Angular Distribution ( $\beta_2$ parameter)



- ✓ Good agreement between experiment and theory
- ✓ Presence of sharp resonances around 56 eV (autoionizing states)
- Overlap between 2s and <sup>1</sup>S photoelectrons

## PES (Photo Electron Spectra): Angular Distribution ( $\beta_4$ parameter)



✓ Good agreement between experiment and theory

✓ Small alignment of the intermediate ion (Ne<sup>+</sup>)



## Complete experiment: the model





**Complete experiment:** experiment vs theory

- Ratio 1<sup>st</sup> step R<sub>1</sub> = |d<sub>s</sub><sup>(1)</sup>/d<sub>d</sub><sup>(1)</sup>|
  Ratio 2<sup>nd</sup> step R<sub>2</sub> = |d<sub>s</sub><sup>(2)</sup>/d<sub>d</sub><sup>(2)</sup>|
  Relative phase 2<sup>nd</sup> step φ = φ<sub>s</sub><sup>(2)</sup> φ<sub>d</sub><sup>(2)</sup>  $\blacksquare B_2^L \blacksquare B_2^C \blacksquare B_4^L$

$$B_{2}^{L} = f(R_{1}, R_{2}, \phi)$$
  

$$B_{2}^{C} = g(R_{1}, R_{2}, \phi)$$
  

$$B_{4}^{L} = h(R_{1}, R_{2}, \phi)$$





### Complete experiment: experiment vs theory



FUISEE Future of Steded free Electron lasers

#### Autoionizing states (AIS) in TPDI:

ratios



FUSEE

EUture of SEeded free Electron lasers

## Autoionizing states (AIS) in TPDI: angular Distribution ( $\beta_2$ parameter)



- ✓ Effect of the autoionizing states on the PADs
- ✓ Good agreement between experiment and theory for circular and linear polarization
- $\checkmark$  2s PAD as a benchmark of the data quality

### Autoionizing states (AIS) in TPDI: Angular Distribution ( $\beta_4$ parameter)





#### Complete experiment for AIS:

#### theory vs experiment

## Converging to the non-resonant model



FUSEE

## Complete experiment (linear polarization): residual ion polarization and electron scattering





## Complete experiment (circular polarization): residual ion polarization and electron scattering





#### Conclusions

- $\,\circ\,$  Intense, tunable XUV pulses from FERMI
- Sequential two photon double ionization
   → alignment of Ne<sup>+</sup>
- $\,\circ\,$  Observation of PE peak intensity and angular distribution with VMI
- $\,\circ\,$  First complete experiment of photoionization in an ion
- $\,\circ\,$  Reconstruction for resonant and non-resonant ionization
- $\,\circ\,$  Determination of the observable quantities in photoionization

