

Soft X-ray scattering and imaging of quantum electronic solids

Riccardo Comin

Massachusetts Institute of Technology

FUSEE workshop Trieste, 11 Dec 2019

Outline

• Intro:

- Density-wave phenomena
- Resonant X-ray scattering
- Coherent soft X-ray imaging:
 - Resonant scanning nanodiffraction: scale-invariant nanoscale magnetic textures in rare earth nickelates
 - Coherent diffractive phase contrast imaging of antiferromagnetic domain textures

MIT Photon Scattering Lab

Jonathan Pelliciari Zhihai Zhu Mingu Kang Jiarui Li Abe Levitan Qian Song Connor Occhialini Luiz Martins David Rower

scattering.mit.edu

Acknowledgments

Collaborators

C. Mazzoli S.Wilkins

- F. Simmons E. Carlson
- S. Ramanathan

S. Catalano M. Gibert J.-M. Triscone

Funding

Density-wave phenomena in stronglycorrelated matter

Fundamental building blocks

Many-body phenomena

"More is different" (P.W.Anderson, 1972): Interactions foster new organizing principles and collective behavior in many-body systems

Density-wave phases

Instabilities of a strongly-interacting electron system

Mott-Hubbard ground state

Superconductivity (Cooper pairing)

Density-wave (particle-hole pairing)

Density-wave phases

Charge-density-wave

Spin-density-wave

E. Dagotto, Science 309, 257 (2005)

Phase segregation

A. S. McLeod, Nat. Physics 13, 80 (2017)

Charge order

Emergent nanoscale textures

Macroscale quantum phenomena Metal-insulator transition

Superconductivity

Spin order

Soft X-ray scattering probes of density waves

Scattering probes

Scattering probes

Strongly energy-dependent X-ray scattering amplitude

Charge order in copper oxide high-temperature superconductors

A. Achkar et al., Phys. Rev. Lett. 109, 167001 (2012)

M. Hepting et al., Nature Physics 14, 1097 (2018)

Orbital (+ magnetic) ordering in layered ruthenate Ca₂RuO₄

I. Zegkinoglou et al., Phys. Rev. Lett. 95, 136401 (2005)

Nanoscale electronic textures and coherent X-ray imaging

Electronic orders at the nanoscale

Reciprocal space (scattering)

Electronic orders at the nanoscale

WHY

- Nanoscale granularity:
 - Intrinsic (phase competition & segregation)
 - Extrinsic (disorder, defects, doping, ...)
- Scale-invariant phenomena:
 - Extended range of length scales (10 nm to 10 µm)
- Emergent physics at the edge or boundary:
 - Domain walls; lateral interfaces; nanoengineered structures

Spin-density-waves and scale-invariant spin textures in nickel oxides

Rare earth nickelates

RNiO₃

Jiarui Li

Johnny Pelliciari

Rare earth nickelates

J. Li, ..., RC, Nature Comm. 10, 4568 (2019)

Metal insulator transition

Rare earth nickelates

Magnetic order

Goal: map the charge and spin textures across the metal-insulator/Neel transition

J. Li, ..., RC, Nature Comm. 10, 4568 (2019)

Metal insulator transition

Resonant scattering at the nanoscale

BROOKHAVEN National Synchrotron Light Source II

CSX-1 (23-ID-1) Coherent Soft X-ray Scattering

Resonant scattering at the nanoscale

DKHAVEN National Synchrotron Light Source II

CSX-1 (23-ID-1) Coherent Soft X-ray Scattering

150 K (warming) 100 K (cooling)

10⁰

10¹

Domain map

Scale-invariant (power-law) domain distributions

Non-Euclidean scaling between geometrical descriptors Fractal magnetic texture

near the Neel transition

Resonant coherent diffractive imaging at 4th generation X-ray facilities

Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens

Jianwei Miao*, Pambos Charalambous†, Janos Kirz* & David Sayre*‡

On possible extensions of X-ray crystallography through diffraction-pattern oversampling

J. Miao*† and D. Sayre‡

J. Miao, et al., Nature 400, 342 (1999)

J. Miao & D. Sayre, Acta Cryst. A56, 596 (2000)

D. Sayre, Acta Cryst. 5, 843 (1952)

RECIPROCAL SPACE

Coherent magnetic Bragg diffraction

Bragg ptychography

Bragg ptychography

Measure overlapping regions and enforce a single-valued real field

Bragg ptychography

Magnetic domain structure and nanoscale strain in rare earth nickelates

Coherent Diffractive Imaging $S(\mathbf{r}) = A(\mathbf{r}) \cos(\mathbf{Q}_{AFM} \cdot \mathbf{r} + \phi(\mathbf{r}))$ < 30 nm resolution Phase Amplitude A(r)Phase $\phi(r)$ Au pad Amplitude 2 µm

30 nm pixel size

 $5 \ \mu m$ scale bar

Bragg ptychography

Edge dislocations in magnetic domain texture

30 nm pixel size

 $5 \ \mu m$ scale bar

-π

π

Phase (rad)

Phase map

Defects in magnetic order parameter

Line domain wall

Edge dislocation

Point defect

$$-\pi \qquad \text{Phase (rad)} \qquad \pi$$

Coherent Diffractive Imaging

Moving forward to single-shot imaging

Resonant holography

Metal-insulator transition in VO₂ (~40 nm resolution)

Vidas et al., Nano Letters 18, 3449 (2018)

Coherent Diffractive Imaging @ CXFEL

VS.

Typical probing conditions for resonant soft X-ray CDI:

- 500-1000 eV range, tunable
- Polarization control
- Single mode probe improves quality and robustness of reconstruction
- 10¹² ph/s flux yields peak count rate: ~10-100 kHz/pix
- Transverse (longitud.) coherence length > 10 µm (500 nm)
- Need focusing down to \sim I-5 μ m

SX seeded FEL @ FERMI possible targets?:

Hopefully!

YES

Seeded beam is more ideal than SASE

10¹¹⁻¹² ph/pulse for single shot experiments

Long. OK $-\lambda/\Delta\lambda > 1000$ Transv. presumably also OK

sub-µm with appropriate optics

Spatiotemporal imaging requires a <u>full-field, single-shot</u> probe of real-space textures with stable wavelength. New opportunities for soft X-ray diffractive imaging to reveal the nanoscale dynamics of collective states of matter

Thank you for your attention!