

# X-ray photon transport simulators comparison: which will win?

M. Altissimo and L. Raimondi



PhotonMeadow 2023, 12th – 14th September 2023, Trieste (Italy)

M. Altissimo, 13th September 2023

1



CERTIFIE

UNI EN ISO 9001:2018

### Motivation

- Upgrades to storage ring(s)
- OASYS development\*
- Beamline scientists wanting to "tinker":
  - Which tool do I use for..??
  - How can I evaluate mirror's quality?







- ✓ Briefly on simulators
- ✓ "Experimental" conditions
- ✓ Tour around the results
- ✓ Key lessons learned





#### Briefly on simulators



L. Rebuffi, M. Sanchez del Rio Proc. SPIE 10388, 103880S (2017).

 SHADOW
 F. Cerrina, SPIE 503 (1984) 68,

 Lai B., Cerrina F., Nucl. Instrum. Methods Phys. Res. A, 246 (1986), pp. 337-341,

 L. Rebuffi, M. Sanchez del Rio, J. Synchrotron Rad. 23 (2016).

SRW Chubar, O. and Elleaume, P., Proceedings of the European Particle Accelerator Conference (EPAC 98), 1177–1179 (1998).

Hybrid X. Shi, et al., J. Synchrotron Rad. 21, 669 (2014), X. Shi, et al., Proc. SPIE 9209, 920911 (2014).

 WISEr
 L. Raimondi, et al, Nucl. Instrum. and Meth A 710, 131-138 (2013),

 M. Manfredda, L. Raimondi, D. Cocco; J. Synchr. Rad. 29, 1344-1353 (2022).





#### "Experimental" conditions





Summary of "experiments"

#### ✓ 3 Energies

- ✓ Gaussian source, PM/KB beamline (reflectivity assumed ideal).
- ✓ 4 simulation tools (SHADOW, SHADOW+Hybrid, SRW, WISEr)
- ✓ 4 figure error, namely:
  - Ideal mirrors's surface (i.e. no figure error, no roughness)
  - Decent mirrors figure error (1µrad rms slope error)
  - Good mirrors figure error (0.3 µrad rms sloper error)
  - State-of-the-art mirrors figure error (0.1µrad rms slope error)

#### ✓ Chosen figure of merit: spot sizes @ final screen





#### Geometry and energy

Divergence semi-cone  $\Delta$  = 10 µrad

|                                                                                           | Distance (m) | Incidence (mrad)  | Size (mm)         | Facing |  |
|-------------------------------------------------------------------------------------------|--------------|-------------------|-------------------|--------|--|
| Plane mirror                                                                              | 60           | 3                 | 800 x 40          | Up     |  |
| Elliptical 1                                                                              | 80           | 3                 | 800 x 40          | Down   |  |
| Elliptical 2                                                                              | 80.8         | 3                 | 800 x 40          | Right  |  |
| Image                                                                                     | 81.6         |                   |                   |        |  |
| Wavelength (nm)                                                                           | Energy (keV) | Source waist (µm) | Source sigma (µm) |        |  |
| 5                                                                                         | 0.24796      | 159.155           | 5.000             |        |  |
| 0.1                                                                                       | 12.398       | 3.183             | 1.592             |        |  |
| 0.05                                                                                      | 24.796       | 1.592             | 0.796             |        |  |
| Gaussian source: $\omega_0 = \frac{\lambda}{-\lambda}$ Source size $= \frac{\omega_0}{2}$ |              |                   |                   |        |  |

 $\pi * \Delta$ 



2



#### **Oasys** Canvas

WISEr Height Profile Simulator



WISEr side

Ell - 2

| amlir                             | ne Info                                                                                                                                                                                                                                                             |                                                                                                                                     |                                                 |                                      |                   |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|-------------------|
| nfo                               | Sys Plot (Side View)                                                                                                                                                                                                                                                | Sys Plot (Top Vi                                                                                                                    | iew) OE Info                                    | Source Info                          | Distances Summary |
| ***                               | SUMMARY OF DI           DISTANCES FOR ALL O.           OE         TYPE           1         MIRROR           2         MIRROR           3         MIRROR           OE         SHAPE           OE         SHAPE           2         ELLIPSE           80.80         3 | STANCES *******<br>E.[m] **<br>m] q[m]<br>0000 0.0000<br>0000 0.0000<br>8000 0.8000<br>**<br>q_foc 1/M<br>1.60 50.00<br>0.80 101.00 | src-oe src-scr<br>60.0000<br>80.0000<br>80.8000 | een<br>60.0000<br>80.0000<br>81.6000 |                   |
| Sum<br>Sum<br>Sum<br>Tota<br>Tota | of Alphas [deg]: 9<br>of Alphas Mod 180 [de<br>of Alphas Mod 360 [de<br>I deflection angle H =<br>I deflection angle V =                                                                                                                                            | 0.000000<br>g]: 90.000000<br>g]: 90.000000<br>0.006000 rad =<br>0.012000 rad =                                                      | 0.344 deg<br>0.688 deg                          |                                      |                   |

Be

| Acce<br>Acce | ptance Slit apertu<br>ptance Slit points<br>ptance Slit distar | ire (h x v)<br>(h x v)<br>(h x v) | : 0.001000<br>: 500 x<br>0 m | x 0.0010<br>500 | 000 m      |
|--------------|----------------------------------------------------------------|-----------------------------------|------------------------------|-----------------|------------|
| ****         | **** SUMMARY OF I                                              | ISTANCES *                        | *****                        |                 |            |
| **           | DISTANCES FOR ALL                                              | O.E. [m] *                        | *                            |                 |            |
| DE#          | TYI                                                            | PE p[m]                           | q [m]                        | src-oe          | src-screen |
| 1            | Scree                                                          | n 50.0000                         | 0.0000                       | 60.0000         | 60.0000    |
| 2            | PlaneMirro                                                     | or 0.0000                         | 0.0000                       | 60.0000         | 60.0000    |
| 3            | Scree                                                          | n 10.0000                         | 10.0000                      | 70.0000         | 80.0000    |
| 4            | EllipticalMirro                                                | or 0.0000                         | 0.0000                       | 80.0000         | 80.0000    |
| 5            | Scree                                                          | n 0.8000                          | 0.0000                       | 80.8000         | 80.8000    |
| 6            | EllipticalMirro                                                | or 0.0000                         | 0.0000                       | 80.8000         | 80.8000    |
|              | Scree                                                          | en 0.8000                         | 0.0000                       | 81.6000         | 81.6000    |
| 7            |                                                                |                                   |                              |                 |            |
| 7            | **** FLLTPTCAL                                                 | TEMENTS *                         | ******                       |                 |            |

E = 12398 eV

E = 24796 eV

Λ

E = 247.96 eV

E = 24796 eV

CERTIQUALITY

Plane Mirror

Ell - 1

•

Final Screen



#### Some more sims parameters

Basic Setting Calculation Para Diffraction by Diffraction by

Diffraction by 0 Diffraction by 0 Diffraction by 1 Number of bins Number of diffra Number of point

#### SRW source (i.e. @ 12398 eV)

| Light Source Setting           | Wavefront Setting  |           |  |  |  |  |  |  |
|--------------------------------|--------------------|-----------|--|--|--|--|--|--|
| Gaussian Source Parameters     |                    |           |  |  |  |  |  |  |
| Beam center at waist x [m] 0.0 |                    |           |  |  |  |  |  |  |
| Beam center at waist           | y [m]              | 0.0       |  |  |  |  |  |  |
| Beam center at waist :         | z [m]              | 0.0       |  |  |  |  |  |  |
| Average angle at wais          | t x [rad]          | 0.0       |  |  |  |  |  |  |
| Average angle at wais          | 0.0                |           |  |  |  |  |  |  |
| Energy per pulse [J]           | 0.001              |           |  |  |  |  |  |  |
| Repetition rate [Hz]           | 1                  |           |  |  |  |  |  |  |
| Polarization                   | Linear Horizontal  | •         |  |  |  |  |  |  |
| σx at waist [m]                |                    | 1.592e-06 |  |  |  |  |  |  |
| σy at waist [m]                |                    | 1.592e-06 |  |  |  |  |  |  |
| Pulse duration [s]             | 1e-06              |           |  |  |  |  |  |  |
| Transverse Gauss-He            | 0                  |           |  |  |  |  |  |  |
| Transverse Gauss-He            | rmite mode order y | 0         |  |  |  |  |  |  |
|                                |                    |           |  |  |  |  |  |  |

| Light Source Setting Wavefront Setting                 | 9       |
|--------------------------------------------------------|---------|
| Propagation                                            |         |
| Wavefront Parameters                                   |         |
| Photon Energy [eV]                                     | 12398.0 |
| H Slit Gap [m]                                         | 0.001   |
| V Slit Gap [m]                                         | 0.001   |
| H Slit Points                                          | 500     |
| V Slit Points                                          | 500     |
| Propagation Distance [m]                               | 10.0    |
| Intensity Units phot/s/0.1%bw/mm <sup>2</sup>          | ~       |
| Precision Parameters                                   |         |
| Sampling factor for adjusting nx/ny (effective if > 0) | 0.0     |
|                                                        |         |
|                                                        |         |

#### Hybrid screen example

| Run HYBRID                                                                            |             | Run HYBRID                     |                  |  |  |  |
|---------------------------------------------------------------------------------------|-------------|--------------------------------|------------------|--|--|--|
| dvanced Setting                                                                       |             | Basic Setting Advanced Set     | tting            |  |  |  |
| ple Aperture                                                                          |             | Diffraction Plane              | Tangential 👻     |  |  |  |
| ror Size + Figure Errors                                                              |             | Calculation                    |                  |  |  |  |
| ating Size + Figure Errors<br>ns/C.R.L/ Transf.Size<br>ns/C.R.L/ Transf.Size + Thicki | ness Errors | Diffraction by Mirror Size + F | igure Errors 🔹   |  |  |  |
| I(Tangential) histogram                                                               | 50          | Number of bins for I(Sagittal) | histogram 50     |  |  |  |
| on peaks                                                                              | 20          | Number of bins for I(Tangentia | al) histogram 50 |  |  |  |
| or FFT                                                                                | 100000      | Number of diffraction peaks    | 20               |  |  |  |
|                                                                                       |             | Number of points for FFT       | 100000           |  |  |  |
|                                                                                       |             | Optional file output           |                  |  |  |  |
|                                                                                       |             | Files to write out             | Nepa             |  |  |  |

#### only far field calcs!

#### SHADOW sources: 1Mrays





#### Mirror figure error generation

$$z(x) = \sum_{f_1 = f_{min}}^{f_{max}} f^{-\beta} \sin(2\pi f x + \varphi_r) \qquad f_{min} = \frac{1}{L} \qquad f_{max} = \frac{1}{2x_s}$$

Sanchez del Rio, M., et al, J. Synchrotron Rad. 23, 665-678.

| Slope error<br>(µrad, tang) | step<br>(mm, tang) | MC seed (tang),<br>PM/EII1/EII2 | Slope Error<br>( µrad, sag) | stepMC seed (sag), PM/(mm, sag)Ell1/Ell2 |                | Beta |
|-----------------------------|--------------------|---------------------------------|-----------------------------|------------------------------------------|----------------|------|
| 1.0                         | 0.01               | 548/549/550                     | 2.0                         | 1.5                                      | 2548/2549/2550 | 2.7  |
| 0.3                         | 0.01               | 2198/2199/2200                  | 0.6                         | 1.5                                      | 1523/1524/1525 | 2.5  |
| 0.1                         | 0.01               | 41005/41006/41007               | 0.2                         | 1.5                                      | 1152/1153/1154 | 2.2  |







UNI EN ISO 9001:2015 UNI ISO 45001:2018 Default View

Top View

Lateral View



#### All encompassing, unintellegible results table

#### Ideal mirrors, spot size @ final screen

|                | Shadow      |             | Hyb         | orid        | SRW         |             | WISEr       |             |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                | FWHM X [µm] | FWHM Y [µm] |
| E = 247.96 eV  | 1.5         | 3.4         | 1.8         | 4.1         | 1.8         | 3.8         | 2.04        | 4.2         |
| E = 12.398 keV | 0.03        | 0.07        | 0.03        | 0.08        | 0.04        | 0.08        | 0.04        | 0.08        |
| E = 24.796 keV | 0.015       | 0.035       | 0.019       | 0.042       | 0.02        | 0.04        | 0.02        | 0.04        |

#### "Real" mirrors, spot size @ final screen

|          |                | Shadow      |             | Hybrid      |             | SRW         |             | WISEr       |             |
|----------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|          |                | FWHM X [µm] | FWHM Y [µm] |
|          | E = 247.96 eV  | 3.4         | 9.5         | 2.1         | 4.8         | 2           | 4           | 2.1         | 4.2         |
| 1µrad    | E = 12.398 keV | 3.0         | 8.5         | 0.4         | 1.5         | 0.4         | 0.8         |             |             |
|          | E = 24.796 keV | 3           | 8.6         | 0.06        | 0.92        | 0.2         | 0.5         |             |             |
|          |                |             |             |             |             |             |             |             |             |
|          | E = 247.96 eV  | 1.7         | 4.2         | 1.8         | 4.2         | 1.9         | 3.8         | 2.2         | 4.7         |
| 0.3 µrad | E = 12.398 keV | 0.9         | 2.7         | 0.04        | 0.2         | 0.04        | 0.08        |             |             |
|          | E = 24.796 keV | 0.9         | 2.8         | 0.02        | 0.2         | 0.04        | 0.4         |             |             |
|          |                |             |             |             |             |             |             |             |             |
| 0.1µrad  | E = 247.96 eV  | 1.5         | 3.5         | 1.8         | 4.2         | 1.93        | 3.8         | 2.1         | 4.4         |
|          | E = 12.398 keV | 0.3         | 0.9         | 0.04        | 0.09        | 0.04        | 0.08        | 0.02        | 0.04        |
|          | E = 24.796 keV | 0.3         | 0.9         | 0.02        | 0.05        | 0.02        | 0.04        | 0.02        | 0.04        |



PhotonMeadow 2023, 12th – 14th September 2023, Trieste (Italy)



#### Some interesting results





## 247.96 eV, ideal mirrors





Hybrid



**WISEr** 



13



#### 24.796 KeV, ideal mirrors







12.398 KeV, 1 µrad slope error







#### 12.398 KeV, 1 µrad slope error

 $Z[\mu m] = 0;$  width = 1

ò

X [μm]

2

10 15

0 5 Y [µm]

Ó 5 10 15

S [um]

4

Hybrid

**SRW** 

**WISEr** 







#### 12.398 keV, 0.3 µrad slope error



WISEr



UNI EN ISO 9001:2015 UNI ISO 45001:2018

17



#### 12.398 keV, 0.3 µrad slope error

#### SHADOW





SRW

**WISEr** 







#### 24.796 keV, 0.1 µrad slope error



PhotonMeadow 2023, 12th – 14th September 2023, Trieste (Italy)



#### So, which one wins?





Everyone's a winner!

Within Oasys:

SHADOW: beamline geometry, mirror sizing, crystal diffraction setups, ML setups... and a million more things

Hybrid: pupil diffraction, mirror quality assessment

SRW: pupil diffraction, mirror quality assessment, wavefront quality, partial coherence analysis

WISEr: mirror quality assessment, scattering contributions





## Thank you!







www.elettra.eu