An efficient polycapillary beam collimator for laboratory-based soft X-ray metrology

C. Braig¹, J. Probst², H. Löchel², M. Thiel³, S. Bjeoumikhova³, and C. Seifert¹ ¹Institut für angewandte Photonik (IAP) e.V., Rudower Chaussee 29/31, 12489 Berlin

• borosilicate glass (Si₈₁O₂₁₅B₂₆Na₈K₈Al₄) with a density of 2.23 g cm⁻³, • critical angle of total external reflection @ 277 eV: $\theta_c = 5.55^{\circ}$ (CXRO), • acceptance solid angle 26.7×10^{-3} sr with a transmission of ≈ 50 %, • wall thickness $\approx 4 \ \mu m$ & slope error / roughness $\approx \pm 1.8$ arcsec (rms). Experimental setup for Carbon K_{α} (277 eV), evacuated to 10⁻⁵ mbar

ΔΡ

nob

CCD at free-space distance Δx from exit aperture, or slit of width Δh

Geometry of a single capillary tube, used for simulations (Optica[™])

 $\vec{s}_m(x,\psi_m,\xi) = x\vec{e}_x + \left[r_{\text{aper.}}^{(m)}\cos\psi_m + \rho_{\text{cap.}}^{(o)}\cos\xi\right]\mathcal{F}(x)\vec{e}_y + \left[r_{\text{aper.}}^{(m)}\sin\psi_m + \rho_{\text{cap.}}^{(o)}\sin\xi\right]\mathcal{F}(x)\vec{e}_z$

goodness of fit: $\langle R^2 \rangle = (99.73 \pm 0.11) \%$ "coefficient of determination"

Measured angular divergence and gain in photon flux on a sample

 $\mathcal{F}(x) \equiv [1 - a_S^{-2}(L/2 - x)^2]^{1/2}$

#(rays) = 6.6×10^4 , traced through $1 \le m \le 9.5 \times 10^3$ tubes (2 runs)

Simulated intensity patterns for a source size distribution of (5 \pm 3) μ m

y (mm)	y (mm)	y (mm)
far field ($\Delta x \ge 0.53$ m) angular divergence: $\Delta \beta_{sim.}^{(o)} = (7.0 \pm 0.1)$ mrad		

goodness of fit: $\langle R^2 \rangle = (99.5 \pm 0.2) \% \rightarrow \approx applies$ to simulation, too;

Reference

J. Probst, H. Löchel, M. Thiel, S. Bjeoumikhova, C. Braig, and C. Seifert, "<u>Collimation by a polycapillary half</u> lens at 277 eV," Opt. Express **31**, 30379—30389 (2023).

Acknowledgment

The authors remember and thank Alexei Erko[†] for his inspiration and long-term support during this research. **Funding**

EuroNorm GmbH, "INNO-KOM" (no. 49MF190056); Investitionsbank Berlin (IBB), "Pro FIT" (no. 10162112).

Further affiliations

[2] Nano Optics Berlin GmbH, Krumme Strasse 64, 10627 Berlin, Germany (<u>www.nanooptics-berlin.com</u>).
[3] Helmut Fischer GmbH, Rudower Chaussee 29/31, 12489 Berlin, Germany (<u>www.helmut-fischer.com</u>).