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Across the globe, synchrotron facilities are embracing 4th generation storage rings based on multi-bend achromats.
Since 2020, the ESRF operates the Extremely Brilliant Source (EBS). The EBS boasts impressive brilliance and
coherence thanks also to the long undulators (~2 m) with short magnetic periods (less than 18 mm), in-vacuum
cryogenic permanent magnets (CPMU) and reduced gaps. These features result in a significant amount of heat
being deposited onto the components of the beamline, necessitating efficient cooling mechanisms. It is imperative to
thoroughly assess and minimize the surface deformations induced by the absorbed heat and to study how these
deformations impact the properties of the photon beam (size, flux, coherence fraction, etc.). In this context, this work
introduces simulations and tools that have been developed and employed by the ESRF-Mechanical Engineering
Group to tackle various challenges encountered in the EBS beamlines.

EBS and new Insertion devices at the ESRF

-EBS:

-CPMU: short period Insertion

Devices (ID  18 mm)

-Small gap ID: mini-beta sections [1]

(gaps 5 mm)

Photon propagation

Using ray-tracing we have been modeling the beamlines 

under different circumstances, for example:

- Mirrors and crystal surface profile errors and deformations.

- Misalignment or vibrations issues.

*All X-ray optics calculation were performed with OASYS tools.
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Power management

Optical elements from the beamline must be designed to

handle the high heat load from new sources, e.g.: Slits,

Mirrors and Crystals.

• High heat-load crystal monochromator [2].

• Optimization of high heat-load multilayer monochromator 

for the new hard X-ray microscope at ID03 [3].

Higher photon flux

and coherence

Coherence propagation

We developed different tools to simulate the coherence

propagation trough the beamlines, e.g. WOFRY1D [4].

Heat-load review

During the transition to EBS we performed a power

calculation campaign to identify possible issues in the

beamlines front end components.
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FEA

Negligible effects on vertical plane due thermal

load over the crystal, will be implemented in

the refurbish nuclear resonant ID14 beamline.
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