Photon MEADOW 2023

Development of X-ray Ionization Beam Position Monitor for PAL-XFEL Soft X-ray

September 14, 2023

<u>HyoJung Hyun¹</u>, Seonghan Kim¹, Sunmin Hwang¹, Seungcheol Lee¹, Hoyoung Jang¹, Garam Hahn²

hjhyun@postech.ac.kr

¹XFEL Beamline Division and ²PLS-II Accelerator Division Pohang Accelerator Laboratory

Contents

- Introduction of PAL-XFEL
- X-ray Ionization Beam Position Monitor : Design, Manufacture & Assembly, Installation
- Test at PAL-XFEL Soft X-ray Beamline
- Simulation Study
- Summary and Plan

Introduction of PAL-XFEL

- The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) is being operated
 - Provide intense ultrashort X-ray pulses based on the self amplified spontaneous emission (SASE) process
 - X-ray Free-Electron Laser (XFEL) is characterized by strong pulse-to-pulse fluctuations due to the SASE process
 - Online photon diagnostics are very important for the experiments

	Hard X-ray	Soft X-ray	
Photon energy	2.0 ~ 15 keV (0.6 ~ 0.08 nm)	250 ~ 1250 eV (5 ~ 1 nm)	
Repetition rate	10 Hz, 30 Hz, 60 Hz	10 Hz, 30 Hz, 60 Hz	
Band width of pink beam ($\Delta E/E$)	~ 0.4 %	~ 0.5 %	
Photon flux (pink beam)	> 1.0 × 10 ¹¹ phs/pulse	> 1.0 × 10 ¹² phs/pulse @ 800eV	
	3		

X-ray Ionization Beam Position Monitor (XIBPM) : Design

POHANG ACCELERATOR LABORATORY

X-ray Ionization Beam Position Monitor (XIBPM) : Manufacture and Assembly

Detector side_

CCD camera with Lenz (Manta G046)

Phosphor MCP (F2223-21P including P43 Phosphor screen)

Ruller for calibration

_E-field creation side _____

Tungsten mesh pairs and repeller plate for electric field creation

X-ray Ionization Beam Position Monitor (XIBPM) : Installation

Tests at PAL-XFEL Soft X-ray Beamline

- The XIBPM was tested with various conditions as changing beam energy, electric field, MCP gain, and etc.
 - Pink and monochromatic X-ray : 500 eV 1100 eV
 - Exit slit size in mono-beam mode : 0.2 mm, 1 mm
 - Residual gas mode (10⁻⁸ Torr) and Kr gas mode (10⁻⁶ Torr)
 - Grid (Mesh1 & Mesh2) voltage adjusted depending on voltages for MCP gain and Repeller plate

Trajectory of the beam at 500 eV mono-beam w/1 mm exit slit, residual gas mode, & E-field 885 V/cm : (a) one pulse, (b) 10 pulses averaged, and (c) 100 pulses averaged

Tests at PAL-XFEL Soft X-ray Beamline : Vacuum Quality Control

Tests at PAL-XFEL Soft X-ray Beamline : Displacement Comparison

- Beam position change mimic
 - Horizontal : using chopper at mono-beam mode
 - Vertical : using grating pre-mirror at pink-beam mode

- For each step, data for 600 shots saved
- Each profile obtained via averaging 600 shots

Tests at PAL-XFEL Soft X-ray Beamline : Displacement Comparison

Ratio $\frac{d}{c}$ (relative % error)		864 V/cm (R +3000 V, G -1400 V)	885 V/cm (R +3000 V, G -1600 V)	923 V/cm (R +3000 V, G -1800 V)
500 eV Pink	Shot-to-shot	1.86 (6.29 %)	1.66 (5.14 %)	1.67 (4.57 %)
	Every 60 shots averaged	1.66 (5.14 %)	1.66 (5.14 %)	1.66 (5.14 %)
	All shots averaged	1.64 (6.29 %)	1.66 (5.14 %)	1.66 (5.14 %)
900 eV Pink	Shot-to-shot	3.73 (113 %)	1.63 (6.86 %)	1.67 (4.57 %)
	Every 60 shots averaged	1.65 (5.71 %)	1.66 (5.14 %)	1.65 (5.71 %)
	All shots averaged	1.66 (5.14 %)	1.62 (7.43 %)	1.62 (7.43 %)

Tests at PAL-XFEL Soft X-ray Beamline : Linearity

- From the chopper scan data, linearity of the XIBPM could be checked
 - The data points are obtained by either averaging maximum amplitude of pulse by pulse or averaging every 10 pulses' profile grouped
 - \checkmark They are fitted using linear function ; y = ax
 - At 700 eV and 900 eV mono-beams, PM shows saturation feature
 - At 500 eV and 1100 eV mono-beams, XIBPM and PM shows linear correlation

Tests at PAL-XFEL Soft X-ray Beamline : Beam Size Estimation from Profile Width

- Wire scanner with W wires of 500 um & 200 um diameters is recently installed just before the exit slit
- We could compare width of the Y profile obtained from the XIBPM and beam size measured by knife edge method via wire scanner
- The widths of the XIBPM's Y profile at the residual gas mode are about 7 times and 20 times larger than beam size measurement results for 500 eV pink and 900 eV pink beams, respectively

Simulation Study

- Electrostatic field-map of the XIBPM and multiparticle tracking studies on the obtained filed-map is ongoing using the CST (Computer Simulation Technology) Studio Suite
 - To quantitatively analyze and identify error components such as a non-flat mesh electrodes or protruded connectors for the potential setup, in order to improve a measurement precision

Ideal case

- No miss-aligned between structures
- W meshes in Grid so flat
- No lead for MCP IN plate
- Almost equipotential
 → R +2500 V, G -1800 V
- Source is assumed to be Kr¹⁺ ion in a cylinder of 1 um radius, and Kr¹⁺ ions are in rest at the source point

Simulation Study

POHANG ACCELERATOR LABORATORY

Simulation Study : Electric Field Distributions

PAL POHANG ACCELERATOR LABORATORY

15

Simulation Study : Example - Source Variations

Summary and Plan

- The XIBPM using ionization of residual gas or added Kr and the MCP with phosphor screen developed
- The XIBPM was tested using soft X-ray FEL beams
 - Trajectory of the beam was detected apparently
 - The change of the beam center position was also measured
- The particle tracking study was done to figure out field error sources
 - MCP In plate's lead is most significant systematic error component

- The simulation with various source condition will be followed
- And also, additional test of the XIBPM at PAL-XFEL soft X-ray beamline is scheduled in next week
- The length of the lead will be made shorten to improve the performance

Acknowledgements

Diagnostic group at PAL-XFEL: Seonghan Kim (Mechanical engineer) Sunmin Hwang (Electronic engineer) Seungcheol Lee (Post-doctor)

SSS beamline – RSXS endstation : Hoyoung Jang (PhD. Beamline staff)

Thank you for your attention!

