National Synchrotron Light Source II

Diffraction-limited reflective optics development at NSLS-II

Lei Huang coPl

<u>Support from</u> Nathalie Bouet Thin Film

Mourad Idir Pl

midir@bnl.gov

Yi Zhu Engineering

Tianyi Wang coPl

OUTLINE

Diffraction-limited reflective optics development at NSLS-II

NSLSII mirror metrology

- Ion Beam Figuring @ NSLSII
 - Principle Capabilities
 - <u>Examples</u>

$\lambda = 0.1 \text{ nm}$ $\theta = 3 \text{ mrad}$ D = 100 mm F = 100 mm

Slope < 100 nrad rms Height < 1.1 nm rms

Mirror Shape error λ/28θ rms

4

NSLSII Optics R&D and metrology lab

Slope measuring devices

2

Object

CCD

Plane

Penta-prism

Ref. RF

IPR C

Temperature controlle

Current controlle

Phase Plate

Laser

Stitching Shack Hartmann Optical Head : SSHOH

Nano Surface Profiler

Flipping Mirror NSP to NOM

Easy switching between NSP and BNL-NOM

NOM

LTP

ELCOMAT 3000

Deflectometry based Optical Metrology Station Nano Surface Profiler : <u>NSP (Shinan Qian – Bo Gao)</u>

<u>Nano Surface Profiler : NSP (Shinan Qian – Bo Gao)</u> Flipping Mirror NSP to NOM

Easy switching between **NSP** and BNL-**NOM**

KB mirror inspection by using NSLS-II vertical NSP

Excellent instrument but

• 1D

Limited to 10 mrad Systematic errors

National Synchrotron Light Source II

NSLS-II FIP (metrology upgrade)

Lei Huang (PI), Lukas Lienhard, Tianyi Wang, Steven Hulbert, and Mourad Idir

Challenges

Inspection of >10 mrad X-ray mirrors

Before upgrade	Upgrade objective
0 mrad measuring range with uncalibrated instrument errors	>10 mrad measuring range with self- calibration and stitching capability

Our solution

Multi-Pitch NSP (MPNSP) upgrade

Huang L, Wang T, Nicolas J, Polack F, Zuo C, Nakhoda K, et al. Multi-pitch self-calibration measurement using a nano-accuracy surface profiler for X-ray mirror metrology. Opt Express (2020)

Multi-pitch NSP (MPNSP)

- 1. F. Polack, M. Thomasset, S. Brochet, and A. Rommeveaux, Nucl. Instrum. Methods Phys. Res., Sect. A (2010)
- 2. L. Huang, T. Wang, J. Nicolas, F. Polack, et al. Opt Express (2020)
- 3. L. Huang, T. Wang, F. Polack, et al. Frontiers in Physics (2022)

Test example by using the MPNSP technique

- Si mirror fabricated by JTEC Corp
- Circular cylinder, RoC ≈ 15 m
- The length of optical area is 141 mm
- Total slope range is around 10 mrad

This mirror are measured with **MPNSP** in both **A-to-B** and **B-to-A** orientations

Data acquisition in the MPNSP

National Synchrotron Light Source II

Huang L, Wang T, Nicolas J, Polack F, Zuo C, Nakhoda K, et al. Multi-pitch self-calibration measurement using a nano-accuracy surface profiler for X-ray mirror metrology. Opt Express (2020)

Compare A-to-B and B-to-A scans

The A-to-B and B-to-A scans show excellent self-consistency!

180

Facility Improvement: compare MPNSP and NSP results

Height residuals

Slope residuals

National Synchrotron Light Source II

National Synchrotron Light Source II

Why do we need 2D information?

EN ORY

Grazing Incidence Interferometry

Stitching

The 2D stitching interferometer prototype

L. Huang, T. Wang, K. Tayabaly, D. Kuhne, W. Xu, W. Xu, M. Vescovi, and M. Idir, "Stitching interferometry for synchrotron mirror metrology at National Synchrotron Light Source II (NSLS-II)," Optics and Lasers in Engineering 124, 105795 (2020).

The 2D stitching interferometer prototype

L. Huang, T. Wang, K. Tayabaly, D. Kuhne, W. Xu, W. Xu, M. Vescovi, and M. Idir, "Stitching interferometry for synchrotron mirror metrology at National Synchrotron Light Source II (NSLS-II)," Optics and Lasers in Engineering 124, 105795 (2020).

L. Huang, T. Wang, K. Tayabaly, D. Kuhne, W. Xu, W. Xu, M. Vescovi, and M. Idir, "Stitching interferometry for synchrotron mirror metrology at National Synchrotron Light Source II (NSLS-II)," Optics and Lasers in Engineering 124, 105795 (2020).

Comparison with ESRF stitching results in height

L. Huang, T. Wang, K. Tayabaly, D. Kuhne, W. Xu, W. Xu, M. Vescovi, and M. Idir, "Stitching interferometry for synchrotron mirror metrology at National Synchrotron Light Source II (NSLS-II)," Optics and Lasers in Engineering 124, 105795 (2020).

Micro-stitching interferometry

Residual [nm]

1D stitching with angular measurement

L. Huang, J. Xue, B. Gao, M. Idir, One-dimensional angular-measurement-based stitching interferometry, Opt. Express, 26 (2018) 9882-9892.

Lenses or Glasses

Brookhaven Science Associates

Wavefront-guided LASIK = Surgery

LASIK Laser-Assisted in SItu Keratomileusis

<u>Wavefront-guided</u> LASIK is a variation of LASIK surgery in which, rather than applying a simple correction of only long/short-sightedness and astigmatism (only lower order aberrations as in traditional LASIK), an ophthalmologist applies a spatially varying correction, guiding the computer-controlled excimer laser with measurements from a wavefront sensor. The goal is to achieve a more optically perfect eye.

Wikipedia

Wavefront-guided LASIK

Wavefront-guided LASIK Laser-Assisted In Situ Keratomileusis

National Synchrotron Light Source II 🔳

Ion Beam Polishing Step by Step

Process

R&D : Ion Beam Polishing

Internal NSLS II Collaboration : optical Metrology and Optical Fabrication Groups

Ion Beam Figuring (IBF)

- Last step in figuring/polishing process of optics
- Sputtering of unwanted material
- Correction of long spatial wavelengths (X ~ cm)
- Correction of small thickness (Z < μm)

Brookhaven Science Associates

ay 25, 2010

R&D : Ion Beam Polishing

Internal NSLS II Collaboration : optical Metrology and Optical Fabrication Groups

Ion Beam Figuring (IBF)

Brookhaven Science Associates

av 25, 2010

Before IBF

After IBF

Brookhaven Science Associates

Ion Beam Figuring – Flat Sample - 1st run (9 minutes)

LDRD: Diffraction-limited and wavefront preserving reflective optics development

Mourad Idir (PI), Lei Huang (Co-PI), Nathalie Bouet (Co-PI) <u>Tianyi Wang (Post Doc)</u>, Matthew Vescovi, Yi Zhu, Dennis Khune

35

Improved the 1D-IBF system

1D-IBF system

Developed the 2D-IBF system

2D-IBF system

National Synchrotron Light Source II

Diffraction-limited reflective optics development at NSLS-II

National Synchrotron Light Source II

The Surface roughness not affected by the IBF process

Low blaze angle grating #C11 for IBF tests

- 200 lines/mm
- Blaze angle 0.22°

100 mm x 40 mm x 20 mm

Goals:

- To fix the non-planarity of the grating surface by IBF
- To investigate groove smoothing during the IBF, which i expected to be minimal

Dmitriy Voronov 01/17/2023

National Synchrotron Light Source II

National Synchrotron Light Source II

Efficiency simulations before and after IBF 100 50 80 0 60 ³⁰20₁₀ 40 #C11-NIL52-...-.3.140 - best groove 20 0.40 #C11-IBF#1-X=20-Y=50.17.765 - best groove (deg) From smothing SiO2_PECVD_2min film by Ar 200W plasma we can 0.35 estimate v2 to be from 6 to 12 slope 50 3 45 surface 0.30 40 $v_2 = 12$ 10 11 12 13 14 15 16 Efficiency 4 5 6 ġ. 8 0.25 Δh = 40 nm 35 -Length, µm Height, m 25 -20 -Length, µm Akima spline interp of "#C11-NIL52-...-.3.140" 0.20 #C11-IBF#1-X=20-Y=50.17.765 - best groove IFFT of [Book16]FFTResultData1!(N"Real - smoothed",O"Imaginary - smoothed") 0.15 $v_2 = 12 \text{ nm}$ 15 -∆h = 40 nm 0.10 10 -5 -0.05 0 0.00 13 9 10 11 12 14 15 16 200 400 600 800 1000 1200 Length, µm photon energy (eV) BERKELEY LAB ADVANCED LIGHT SOURCE Dmitriy Voronov 01/17/2023

BERKELEY LAB

Dmitriy Voronov 01/17/2023

Eric Gullikson ALS Beamline 6.3.2

APS/HPCAT Diffraction Limited KB System

Mechanical designed by APS HPCAT Beamline

KB mirrors fabricated by NSLS-II

HPCAT vertical KB mirror – specs

Base geometry: best-fit sphere

Shape	Elliptical cylinder, rectangular
Grazing angle, θ	2.2 mrad
Source-to-mirror-distance, p	46420 mm
Mirror-to-focus distance, q	330 mm
Length, L	160 mm
Width, W	28 mm
Thickness, T	40 mm
Active length, L_A	≥ 150 mm
Active width, W_A	≥ 10 mm
Height error RMS	< 0.5 nm
Slope error RMS	< 0.1 µrad
Roughness RMS	< 0.2 nm

HPCAT vertical KB mirror – figuring & finishing

HPCAT vertical KB mirror – validation

Example 3

Roughness

After ion beam figuring: 0.2 nm rms

National Synchrotron Light Source II

Inverse: hybrid height-and-slope optimization

Initial height and slope errors

Hybrid method gives the smallest residual error estimations.

X-ray Diffraction Limited Mirror optical metrology and fabrication procedure is established at NSLS-II.

National Synchrotron Light Source II

Publications

[1] Idir, M., Huang, L., Bouet, N., Kaznatcheev, K., Vescovi, M., Lauer, K., ... & Zhou, L. (2015). A one-dimensional ion beam figuring system for x-ray mirror fabrication. Review of Scientific Instruments, 86(10), 105120.

[2] Zhou, L., Idir, M., Bouet, N., Kaznatcheev, K., Huang, L., Vescovi, M., ... & Li, S. (2016). One-dimensional ion-beam figuring for grazing-incidence reflective optics. Journal of Synchrotron Radiation, 23(1), 182-186.

[3] Zhou, L., Huang, L., Bouet, N., Kaznatcheev, K., Vescovi, M., Dai, Y., ... & Idir, M. (2016). New figuring model based on surface slope profile for grazingincidence reflective optics. Journal of Synchrotron Radiation, 23(5), 1087-1090.

[4] Wang, T., Huang, L., Vescovi, M., Kuhne, D., Tayabaly, K., Bouet, N., & Idir, M. (2019). Study on an effective one-dimensional ion-beam figuring method. Optics express, 27(11), 15368-15381.

[5] Wang, T., Huang, L., Vescovi, M., Kuhne, D., Tayabaly, K., Bouet, N., & Idir, M. (2019, September). One-dimensional ion-beam figuring solution from Brookhaven National Laboratory. In Advances in Metrology for X-Ray and EUV Optics VIII (Vol. 11109, p. 1110909). International Society for Optics and Photonics.

[6] Huang, L., Wang, T., Nicolas, J., Vivo, A., Polack, F., Thomasset, M., ... & Idir, M. (2019). Two-dimensional stitching interferometry for self-calibration of high-order additive systematic errors. Optics express, 27(19), 26940-26956.

[7] Huang, L., Wang, T., Tayabaly, K., Kuhne, D., Xu, W., Xu, W., ... & Idir, M. (2020). Stitching interferometry for synchrotron mirror metrology at National Synchrotron Light Source II (NSLS-II). Optics and Lasers in Engineering, 124, 105795.

[8] Wang, T., Huang, L., Zhu, Y., Vescovi, M., Khune, D., Kang, H., ... & Idir, M. (2020). Development of a position-velocity-time-modulated two-dimensional ion beam figuring system for synchrotron x-ray mirror fabrication. Applied Optics, 59(11), 3306-3314.

[9] Wang, T., Huang, L., Kang, H., Choi, H., Kim, D. W., Tayabaly, K., & Idir, M. (2020). RIFTA: A Robust Iterative Fourier Transform-based dwell time Algorithm for ultra-precision ion beam figuring of synchrotron mirrors. Scientific Reports, 10(1), 1-12.

[10] Wang, T., Huang, L., Tayabaly, K., & Idir, M. (2019, November). Study on the performances of dwell time algorithms in ion beam figuring. In Optifab 2019 (Vol. 11175, p. 111750M). International Society for Optics and Photonics.

[11] T Wang, L Huang, H Choi, M Vescovi, D Kuhne, Y Zhu, WC Pullen, X Ke, ..."RISE: robust iterative surface extension for sub-nanometer X-ray mirror fabrication", Optics Express 29 (10), 15114-15132

[12] L Huang, T Wang, J Nicolas, F Polack, C Zuo, K Nakhoda, M Idir, "Multi-pitch self-calibration measurement using a nano-accuracy surface profiler for X-ray mirror metrology", Optics Express 28 (16), 23060-23074

[13] X Ke, T Wang, H Choi, W Pullen, L Huang, M Idir, DW Kim, "Dual-tool multiplexing model of parallel computer controlled optical surfacing", Optics Letters 45 (23), 6426-6429

[14] N Voznesenskiy, M Voznesenskaia, L Huang, M Idir, "Testing surface form of precision optics by a point diffraction interferometer with two beams", Eighth European Seminar on Precision Optics Manufacturing 11853, 43-50

[15] WC Pullen, T Wang, H Choi, X Ke, L Huang, M Idir, DW Kim, "Parametric Tool Influence Function Size Optimization", Freeform Optics, JTu3B. 2 [16] T Wang, L Huang, M Vescovi, D Kuhne, Y Zhu, VS Negi, Z Zhang, ... »Universal dwell time optimization for deterministic optics fabrication", Optics Express 29 (23), 38737-38757

[17] L Huang, T Wang, F Polack, J Nicolas, K Nakhoda, M Idir, "Measurement uncertainty of highly asymmetrically curved elliptical mirrors using multi-pitch slope stitching technique", Frontiers in Physics, 414

[18] X Ke, T Wang, Z Zhang, L Huang, C Wang, VS Negi, WC Pullen, H Choi, ..."Multi-tool optimization for computer controlled optical surfacing", Optics Express 30 (10), 16957-16972

[19] T Wang, L Huang, X Ke, Y Zhu, H Choi, W Pullen, V Negi, D Kim, M Idir, "Hybrid height and slope figuring method for grazing-incidence reflective optics", Journal of Synchrotron Radiation 30 (1)

[20] T Wang, X Ke, L Huang, V Negi, H Choi, W Pullen, D Kim, Y Zhu, M Idir, "Computer-controlled finishing via dynamically constraint position-velocity-time scheduler", Journal of Manufacturing Processes 87, 97-105, **2023**

Acknowledgements

This research used resources of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.)

Lei Huang, Tianyi Wang, Shinan Qian, Dennis Kuhne, Lukas Lienhard, Steve Hulbert, Yi Zhu, Nathalie Bouet, Evgeny Nazaretski, Weihe Xu, Wei Xu, Oleg Chubar, An He, Maksim Rakitin, Yang Yang, Andrew Kiss, Yong Chu, Wah-Keat Lee, Dieter Schneider, Martin Fuchs, Benjamin Ocko, Andrei Fluerasu, Lutz Wiegart

Amparo Vivo, François Perrin, Raymond Barrett

SOLEIL François Polack, Muriel Thomasset

◆ 大阪大学 OSAKA LINIVERSITY

Imagine Coptic Guillaume Dovillaire

- Bo Gao, Hongxin Luo, Zhongliang Li
- SLAC NATIONAL ACCELERATOR LABORATORY May Ling Ng, Thomas Rabedeau, Andrew Ringwall
 - ALS Grant Cutler, Kenneth Goldberg, Antoine Wojdyla
 - Argonne 合 Lahsen Assoufid, Xianbo Shi, Jun Qian, Matthew Vescovi
- **Josep Nicolas** Lin Zhou SPring- 8 Jumpei Yamada HEPS Ming Li, Fugui Yang **Qiushi Huang** Junpeng Xue THE UNIVERSITY Daewook Kim, Heejoo Choi

And many other colleagues

Thank you for your attention

Time is important and necessary

"No matter how great the talent or efforts, some things just take time. You can't produce a baby in one month by making nine women pregnant" - Warren Buffet

R&D is important and necessary

