

Optical metrology for bender and adaptive optics optimization and characterization

Josep Nicolas, Igors Sics, Albert Van-Eeckhout, Dominique Heinis **ALBA-CELLS**, Barcelona, Spain

nd Beamline Design Workshop

Bender Model

The set of profiles one can generate onto a mirror substrate is given by a • base of functions with dimension N equal to the number of actuators.

$$z(x) = \sum_{n=1}^{N} f_n Z_n(x) + Z_R(x)$$
unit-force deformation response Force-independent response

sidual error

• $Z_n(x)$ can be calculated from the mirror width profile b(x) and the positions a_n of the actuators.

$$Z_n(x) = \frac{12}{Eh^3} \int_{-\frac{L}{2}}^{x} \int_{-\frac{L}{2}}^{x'} \frac{1}{b(x'')} \left[(x'' - a_n) \theta(x'' - a_n) \right] dx'' dx' + c_{0n} + c_{1n} x$$

Figure optimization

Example base OŤ functions for a torpedo shaped mirror with four actuators

The forces f_n "seen" by the mirror are obtained by a simple linear least square fit, with **unique solution**.

adjusted.

- Differences are explained by:
- measurement errors and noise,
- model errors.

Ellipse Map

A representation in which each ellipse is a point, and that gives a measure on the distance to a

ALBA-NOM

Mean curvature -└─► "~Eccentricity"

Representation of the range of a mirror bender.

Representation of the target ellipse accuracy as compared to other tolerances at the beamline.

• Forces depend on motor positions, but there is usually crosstalk between actuators, due to deformations of the mechanics.

$$[f_{...}]$$
 $[f_{...}]$ $[A_{...}]$ $[M_{...}]$

Given its high measurement speed, low noise and accuracy the ALBA-NOM is our main instrument for active optics characterization.

L = 100 mm. $\Delta x = 1 \text{ mm}$. v = 15 mm/s

Contributions to error

more measurements.

Acquisition	250 Hz
Noise	50 nrad / trace
Scan speed	20 mm/s
Estim. accuracy*	down to 0.04 nm
Temp. stability	<0.01 °C
Spatial resolution	~3.5 mm
Mirror Orientation	Up/Down/Side
Features	Continuous scan LEEP/QLEEP

measurement time (number of cycles)

AC error of individual scans.

Example of **stability test** showing slope error vs time and the contributions of the bender and *mirror.*

Repeatability is analyzed equally.

For strong bending curvature benders show errors near the clamps also due to anticlastic bending

Some facts about active optics

The polynomial expansion of an ellipse has an **infinite** number of terms.

The deformation of the substrate is given by a cubic spline. (if section is constant, control points at force application points)

A two end-torque bender provides the optimal approximation up to cubic order. (better than many point actuators)

> Point actuators cannot compensate gravity sag perfectly, since weight is continuously distributed.

The **sharpest** feature one can correct is $1.44\Delta x$ FWHM (Δx being the minimum distance between actuators)

For every pair of large enough forces, there is a width profile for which the substrate bends to the exact ellipse.

www.albasynchrotron.es