STITUTO NAZIONALE DI ASTROFISICA



# **BEaTriX,** the new facility to measure the modular X-ray optics of the ATHENA telescope with an expanded and parallel X-ray beam

Bianca Salmaso, on behalf of the BEaTriX team





Agenzia Spaziale Italiana

INAF
 ISTITUTO NAZIONALE
 DI ASTROFISICA
 NATIONAL INSTITUTE
 FOR ASTROPHYSICS

INAF

**BEaTriX: Beam Expander Testing X-ray facility** 

ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTRONOMICO DI BRERA





G.Pareschi









BEaT

M.Sanchez delRio

F.Christensen



**B.Salmaso** 



S.Basso

D.Spiga





M.Ghigo



C.Ferrari



V.Burwitz



G.Parodi



G.Vecchi

E.Redaelli



L.Paoletti

G.Sironi

D.Sisana

E.Giro







N.C.Gellert





S.Massahi

D.D.M.Ferreira





**BEaTriX: Beam Expander Testing X-ray facility** 

V.Cotroneo

C.Pelliciari



STITUTO NAZIONALE DI ASTROFISICA

INAF

**BEaTriX** is located in Merate, close to Milano, at the Brera Observatory





At 20 km distance from Media Lario, where the AIT and VERT-X facilities for **ATHENA** are under development





BEat

**BEaTriX: Beam Expander Testing X-ray facility** 







### **NewATHENA**

Advanced Telescope for High Energy Astrophysics

**ESA** mission to study the hot and energetic universe

Parameter NewAthena Athena NewATHENA X-IFU telescope effective area > 1.1 m<sup>2</sup> @ 1 keV 1.5 m<sup>2</sup> @ 1 keV X-IFU Energy resolution requirement  $< 4 \, \text{eV}$ 2.5 eV X-IFU Field of view 5 arcmin > 4 arcmin X-IFU pixel size 5 arcsec (> 2300 pixels) 5" (3600 pixels) WFI telescope effective area > 1.1 m<sup>2</sup> @ 1 keV 1.5 m<sup>2</sup> @ 1 keV WFI Field of View TBD, comparable to old 40'x 40' XMM-Newton Athena Optics angular resolution (on axis HEW @ 5 arcsec < 9 arcsec 1 keV) Target of Opportunity (ToO) capability Yes Yes [Bavdaz, Proc. SPIE 2023]

PhotonMEADOW 2023

### Silicon Pore Optics by cosine B.V. in NL



INAF



BEat

ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTRONOMICO DI BREF

INAF









BEatr

#### MINERVA @ ALBA



PANTER @ MPE

### .... and BEaTriX

PhotonMEADOW 2023

BEaTriX: Beam Expander Testing X-ray facility

6

ISTITUTO NAZIONALE DI ASTROFISICA

INAF

|         | Facility                           | Source<br>distance | Beam<br>divergence<br>on 60 mm | V                   |
|---------|------------------------------------|--------------------|--------------------------------|---------------------|
| BEaTriX |                                    | 4.7 m              | ~ 2 arcsec                     | in<br>be<br>so<br>≻ |
| PANTER  | Instruct Chanter<br>and Claim Room | 120 m              | 103 arcsec                     |                     |
| XRCF    |                                    | 518 m              | 24 arcsec                      |                     |

#### What special in BEaTriX

BEatr

#### In a small lab, we create an X-ray beam that simulates an astronomical source

- Expanded (60 x 170 mm): to illuminate the entire entrance pupil of the optic
- Collimated (~ 2 arcsec): to have double reflection from the entire optic

#### Conventionally this is obtained by placing the source at very large distance

- Large volumes to be evacuated
- Residual beam divergence at the existing facilities



A&A 664, A173 (2022) https://doi.org/10.1051/0004-6361/202244028 © S. Basso et al. 2022



BEa



TITUTO NAZIONALE DI ASTROFISICA

INAF

#### First light of BEaTriX, the new testing facility for the modular X-ray optics of the ATHENA mission

S. Basso<sup>1</sup>, B. Salmaso<sup>1</sup>, D. Spiga<sup>1</sup>, M. Ghigo<sup>1</sup>, G. Vecchi<sup>1</sup>, G. Sironi<sup>1</sup>, V. Cotroneo<sup>1</sup>, P. Conconi<sup>1</sup>, E. Redaelli<sup>1</sup>,
A. Bianco<sup>1</sup>, G. Pareschi<sup>1</sup>, G. Tagliaferri<sup>1</sup>, D. Sisana<sup>2</sup>, C. Pelliciari<sup>3</sup>, M. Fiorini<sup>4</sup>, S. Incorvaia<sup>4</sup>, M. Uslenghi<sup>4</sup>, L. Paoletti<sup>5</sup>,
C. Ferrari<sup>6,1</sup>, R. Lolli<sup>6</sup>, A. Zappettini<sup>6</sup>, M. Sanchez del Rio<sup>7</sup>, G. Parodi<sup>8</sup>, V. Burwitz<sup>9</sup>, S. Rukdee<sup>9</sup>, G. Hartner<sup>9</sup>, T. Müller<sup>9</sup>,
T. Schmidt<sup>9</sup>, A. Langmeier<sup>9</sup>, D. Della Monica Ferreira<sup>10</sup>, S. Massahi<sup>10</sup>, N. C. Gellert<sup>10</sup>, F. Christensen<sup>10</sup>,
M. Bavdaz<sup>11</sup>, I. Ferreira<sup>11</sup>, M. Collon<sup>12</sup>, G. Vacanti<sup>12</sup>, and N. M. Barrière<sup>12</sup>



MM-0042





#### **The BEaTriX X-ray beam**



Large beam:V60 mm × H170 mmMonochromatic: $\Delta \sim 36$  meVCollimation:Vert. < 2 arcsec</td>Hor. < 2.5 arcsec</td>Compact lab: ~ 9 m × 18 mSmall volumes to be evacuated

Fully covering the MM entrance pupil

PhotonMEADOW 2023

ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTRONOMICO DI BRER.

INAF

4.51 keV beamline

### The BEaTriX recipe



BEaTr

#### 4.51 keV beamline



### The BEaTriX recipe for beam expansion Asymmetrically cut crystal



BEaTri

### The BEaTriX recipe for monochromation Symmetrically cut crystals

The Si(220) reflectivity has a point like peak close to 100% => the reflectivity peak is almost unchanged after several diffractions



[Pelliciari, C. et al, Proc. SPIE 9603, 96031P ( 2015]

#### The needed monochromation is obtained with 4 diffractions on silicon crystals with symmetric cut wrt (220) planes



STITUTO NAZIONALE DI ASTROFISICA

INAF

Channel cut crystals: Si (220) symmetrically cut

#### 4.51 keV beamline

### Two configurations are possible high flux – high collimation





By changing the pitch of CCC-2, the X-ray beam bandwidth decreases and the horizontal collimation improves, at the expenses of the flux

|                                                                | Flux                    | HEW-vert   | HEW-hor      |
|----------------------------------------------------------------|-------------------------|------------|--------------|
| High flux / mid-collimation<br>(CCC2 pitch = 0)                | 60 ph/s/cm <sup>2</sup> | < 2 arcsec | ~ 4 arcsec   |
| Low flux / <u>high-collimation</u><br>(CCC2 pitch = 10 arcsec) | 10 ph/s/cm <sup>2</sup> | < 2 arcsec | ~ 2.5 arcsec |

BEat

ISTITUTO NAZIONALE DI ASTROFISICA

#### 4.51 keV beamline

## 4.51 keV beam line – commissioning completed

#### Flux and divergence

INAF

Measured with Hartmann test





-2

0

Angle (arcsec)

2

4

$$HEW = \sqrt{HEW_{centr}^2 + HEW_{hole}^2}$$

0.00 -

-10

-6

-4

6

10

BEatr

STITUTO NAZIONALE DI ASTROFISICA

#### 4.51 keV beamline



### 4.51 keV beam line – commissioning completed

#### Flux and divergence

INAF

Measured with Hartmann test



#### **HEW and Effective Area**

Capability to measured PSF and Eff.Area 8min to reach 10<sup>5</sup> ph





#### Throughput

> Capability to measured PSF and Eff.Area for 2 energies at 3 MM/d

#### **Thermal test**

Capability to measure in the temperature range of 20±25°C





#### Basso – Spiga – Ghigo - Salmaso

PhotonMEADOW 2023

**BEaTriX: Beam Expander Testing X-ray facility** 



### 4.51 keV beam line – open to user

Free of cost until June 2024

AHEAD 2020 program (Integrated Activities in the High Energy Astrophysics Domain)

Trans National Access (TNA)

http://ahead.astropa.inaf.it/index.php/facility-tna-call-ahead-2020/ https://ahead.iaps.inaf.it/?page\_id=2503



### BEaTriX, the new facility for X-ray testing with an expanded and parallel beam

The webinar will be held on 17 November 2023, 10:00-12:00



A Webinar is organized to - explain BEaTriX in details - motivate users to access it - collect needs from the X-ray community (what we can do for you / what you can do for us)

### Info and participation form are published in the AHEAD and INAF-OAB WEB page





### 1.49 keV beam line – the challenge

BEaTriX was designed and realized to enable an upgrade, adding the second beamline at 1.49 keV





Sketch of the components inside the Optical Chamber

#### More challenging for:

- X-ray source: high brilliance (35um focal spot, > 5×10<sup>11</sup> ph/s/sr) from Al anode
- crystals for the monochromator: Quartz (100) with asymmetric cut
- crystals for the expansion: APD (101) with asymmetric cut



### **1.49 keV beam line – the expansion stage**



Silicon cannot be used at 1.49 keV because of too small d spacing

ADP (Ammonium Dihydrogen Phosphate) was selected in 2019 after a characterization (mosaicity and planarity) performed by IMEM-CNR-Italy on Saint Gobain samples

[Ferrari, C., et al., J. of Appl.Crystallogr, 52, 599-604 (2019)]



ADP crystal with asymmetric cut wrt (101) planes

$$\Delta \vartheta_{out} \sim \frac{\sin \alpha}{d \sin \vartheta_{out}} \lambda \frac{\Delta E}{E} = 160 \ \Delta E \frac{arcsec}{eV}$$

For  $\Delta \vartheta_{out} = 1$  arcsec  $\bigtriangleup \Delta E = 6$  meV ....3-4 times narrower than required for 4.51 keV !! ( $\Delta E = 21$  meV) [Spiga, D., et al, Proc. SPIE ICSO 12777, 127773E (2023)]

Two ADP crystals are now being produced by Saint Gobain – Luxium 2x: 80-80-20 mm versus 1x:140-70-20 mm

ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTRONOMICO DI BREI

INAF

### **1.49 keV beam line – the monochromator**





This tight monochromation is obtained with

Quartz crystals with asymmetric cut wrt (100) planes



The Quartz crystals are now being manufactured by Saint Gobain – Luxium

BEat



### 1.49 keV beam line – the challenge



Ideal X-ray beam @ 1.49 keV HEW-hor = 3.3 arcsec HEW-vert = 0.86 arcsec Flux = 2.3 ph/s/cm<sup>2</sup> (for source of  $1 \times 10^{11}$  ph/s/sr)

BEa

Ideal X-ray beam @ 4.51 keV HEW-hor = 1.54 arcsec HEW-vert = 0.72 arcsec Flux = 10 ph/s/cm<sup>2</sup> (for source of  $1 \times 10^{11}$  ph/s/sr) with possibility of high flux configuration

 X-ray source with Al anode and high brilliance (35um focal spot, > 5×10<sup>11</sup> ph/s/sr) to have flux 12 ph/s/cm<sup>2</sup>

- crystals for the monochromator: Quartz (100) with asymmetric cut

- crystals for the expansion: APD (101) with asymmetric cut

#### 1.49 keV beamline

### 1.49 keV beam line – the parabolic mirror







BEat

Manufacturing tolerances: aiming at 2 arcsec (no coating needed) 3 arcsec already obtained on the 4.51 keV mirror with Cr+Pt coating









### Feasibility study for a BEaTriX#2 at cosine (NL) with 6.4 and 1.49 keV beamlines

BEaTriX#1 in Merate - Italy

BEaTriX#2 in Sassenheim – The Netherlands



A possible scenario

Quality control tests on selected MM's

Industrial acceptance tests on all MM's before and after vibrational tests





#### Conclusions

1) BEaTriX @ 4.51 keV:

It is operative @ INAF-OAB in Merate (Italy) and open to users Free of cost until June 2024 through the AHEAD project Webinar on 17Nov2023: subscription open

2) BEaTriX @ 1.49 keV:

realization @ INAF-OAB in Merate (Italy) has started

3) BEaTriX#2 @ cosine (NL):

a feasibility study to replicate BEaTriX in cosine at 1.49 keV – 6.4 keV is on-going