A Diamond Sensor for Position Resolving Measurements at the European XFEL

Tuba ÇONKA YILDIZ European XFEL X-ray Photon Diagnostics (XPD)

PhotonMEADOW 2023 Trieste, 14.09.2023

EuXFEL XPD Diamond Team: W. FREUND, J. LIU and J. GRÜNERT

Diamond: Sensor Material

Superior Properties^[1]

- Large band-gap (5.48 eV) \rightarrow low intrinsic charge density \rightarrow high T operation
- High intrinsic resistivity (>>10¹¹ Ω/cm) \rightarrow low leakage current
- High electron (1900-4500 cm²/Vs) / hole mobilities (1800-3500 cm²/Vs) → fast collection of charge carriers
- Low dielectric constant $(5.72) \rightarrow$ low capacitance
- High displacement energy $(43 \, eV) \rightarrow$ radiation-hardness
- High dielectric strength ($10^7 V/cm$) \rightarrow high field operation
- High thermal conductivity (2000 $Wm^{-1}K^{-1}$) \rightarrow quick heat dissipation
- Low Z (tissue equivalent), low absorption
- High sensitivity

^{1.} M. Pomorski, "Electronic Properties of Single Crystal CVD Diamond and its Suitability for Particle Detection in Hadron Physics Experiments", PhD Thesis, Johann Wolfgang Goethe Universität, Frankfurt, Germany (2008).

Diamond: Particle Detection

Charged Particles

Alpha, beta, high energy ions

Neutral Particles

12000

8000

6000

4000

2000

5350

Counts

Neutrons ($E_n > 5.8$ MeV high cross section)

Photons ($E_{\gamma} > 5.5 \text{ eV}$)

^[2] Deposited E spectrum of ²³⁸Pu

5450

Thermal neutrons

¹⁰⁰⁰⁰ α -source in diamond.

40

60

Deposited energy [keV]

100

80.

5550

Deposited energy [keV]

5500

Measurement

© CIVIDEC

5600

 10^{-6}

20

Simulation

Tuba ÇONKA YILDIZ, PhotonMEADOW Trieste, 14.09.2023

0.2

5400

A Diamond Sensor for Position Resolving Measurements at the European XFEL

Diamond: Detector Development

Natural Diamond			
1920's 1940's 1950's	Naturals demonstrate UV response. Naturals used to detect ionising nuclear radiation		
1960's 1962 1970's 1980's	Photoconductivity of naturals investigated Advances made in forming electrical contacts to diamond Commercial xray dosimeters for medical applications.		
Polycrystalline CVD Diamond			
early 1990's late 1990's	Advances made in quality of polycrystalline CVD diamond Suggested use of pCVD in Super Conducting Super Collider. Commercial solar blind UV detector. Beam position monitors for synchrotrons Charge Collection distance > 200 microns achieved suitable		
Single Crystal CVD 2000's	for high energy physics detector applications. Diamond High purity single crystal CVD diamond with superior electronic		
	characteristics.		

©Diamond Detectors Limited

Diamond Detector Applications

- Particle Physics: tracker, beam monitor
- Dosimetry: hadron radiotherapy, radiation exposure monitoring, calibration
- Nuclear applications: neutron spectrometry, reactors, homeland security, nuclear fusion experiments
- Synchrotrons: beam monitor
- UV detection: flame detectors, solar applications (ESA), photolithography, military application
- α/β : air flow, nuclear waste incineration, military
- FEL: beam diagnostics

Overview of Diamond Detectors

Diamond detectors used as

HEP detectors (e.g. CERN, FermiLab)

Heavy Ion Detectors (e.g. GSI, Nordhia)

X-ray detectors at synchrotrons (e.g. DLS, ESRF)

Neutron detectors (e.g. CEA, Los Alamos, ITER)

At XPD we call it a diamond sensor to distinguish it from diamond particle detectors

- At FELs: huge pulse energy, short pulses
 - Current diamond detectors are too sensitive
 - High Z coating materials \rightarrow radiation damage
 - Structured electrodes \rightarrow distortion of coherent beam

 \rightarrow Diamond sensors must be adapted for FEL applications

Diamond Sensors for X-ray Photon Diagnostics

Requirements for continuous measurements

- Position: required beam stability ~10% of beam size
- Intensity: accuracy and linearity required to be $\leq 1\%$
- Timing: 10 Hz (train resolved) or MHZ rate (pulse resolved)

The dedicated sensor should have

- Minimal beam interference
- Reliable functioning with almost no maintenance
- Compatibility to beamline
- Long lifetime under radiation load

XFEL.EU Facility Layout (photon part)

European XFEL

FEL beam properties (SASE1 and SASE2 undulators)

Example of three adjacent FEL pulses after monochromator – each pulse can even have different LASER modes

Diamond Sensor at XFEL.EU for pulse resolved position measurements

Goal^[1,2]:

Position and intensity measurement at 4.5 MHz for hard X-rays

- ▶ Position: required beam stability $\sim 10\%$ of beam size ($\sim 0.1 1$ mm)
- ▶ Pulse energy: accuracy and linearity required to be \leq 1%, from 100 µJ to 2 mJ
- ► Timing: MHZ rate (pulse resolved) and train averaged (10 Hz)
- ▶ Photon energy: from below 10 keV up to > 50 keV

Non-invasive, avoiding of wavefront distortion

- 3. W. Freund, "First Tests of a Diamond Detector at European XFEL", Adamas Workshop, GSI, Germany (2019).
- 4. T. Roth, W. Freund, U. Boesenberg, G. Carini, S. Song, G. Lefeuvre, A. Goikhman, M. Fischer, M. Schreck, J. Grünert & A. Madsen, A. "Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors", J. Synchrotron Rad. 25, 177-188 (2018).

Diamond Position Sensitive Sensor

Diamond Slab

Electronic grade scCVD diamond

- Resistive Layer (e.g. DLC)
 Only non-structured carbon in beam
- Metal Collecting Electrodes
 Sputter coated Al

Diamond Position Sensitive Sensor

Working principle: solid state ion chamber

Duo-lateral PSD

Position coordinates from signal division

$$X = \frac{A(x_1) - A(x_2)}{A(x_1) + A(x_2)} \cdot \frac{L}{2}$$
$$Y = \frac{A(y_1) - A(y_2)}{A(y_1) + A(y_2)} \cdot \frac{L}{2}$$
$$\sigma_{pos} \sim \frac{L \cdot \sigma_{ele}}{I0}$$
$$I0 = A(x_1) + A(x_2)$$

and/or $IO = A(y_1) + A(y_2)$

12

The First Diamond Sensor Assembly

- 4x4 mm², 40 μm thick single crystal CVD, electronic grade
- DLC layer: surface resistance of 350 Ω and 750 Ω (processed by M. Pomorski, CEA)
- Aluminum contacts at the edges
- Why duo-lateral and not e.g. four-quadrant ?
 SASE-FEL jitters in energy, position, shape: non-gaussian beam with big deviation from the center
 no reliable measurement (4-quadrant)
 - FEL is highly coherent:

non-homogenous contacts introduce wavefront distortion

Diamond Sensor in SASE2 Undulator Tunnel XTD1

- Duolateral detector installed in 2022 after e-beam separation, close to SASE2 undulator (~200 m)
 First functional test in July 2022, three further tests up to now
- Upstream beam optics: only slits, filters, optional mono (no additional source of jitter)

Measurement setup

- µ-TCA crate with FastADC
 Struck ADC board, 108 M samples/s
 Pulse stretchers on RTM board
- Large signal from FEL pulses
 30 dB attenuators, no amplifiers
 test in January: 50 dB attenuation

Diamond Detector at the SASE2 FEL beamline

The measurements were performed mainly under these conditions:

Date	Beam Energy	Pulse Energy	No of Bunches
24.11.2022	20 keV	190 μ J	2
26.11.2022	27 and 30 keV	34-45 μ J	1-150
27.11.2022	9 keV	12-45 μ J	1-30
21.01.2023	7 keV	~ 100 µJ	1-20
13.04.2023	11 and 14.4 keV	~ 130 µJ	1-150

European XFEL

Summary of Measurements

17

Diamond vs FEL Imager and XGM

November measurements (27 keV, 34 uJ) / correlation plots
 FEL-imager position: 2 bunches per train

XGM-pulse energy

Comparison: beam position from FEL imager and Diamond sensor

Comparison: beam position from FEL imager and Diamond sensor

Tests in April

- Beam: 11 keV / ~ 120 μJ
- **30** bunches at 2.2 MHz

Video of 100 trains:

Red dot: fitted COM position from IMG-FEL Green dots: single shot beam position from diamond sensor Ellipse: fitted beam size (2d gaussian fit with angle) Dashed cross: diamond sensor mean over train

T. Çonka Yıldız, W. Freund, J. Liu, M.Pomorski and J. Grünert, *Pulse-resolved beam position measurements of high energy X-ray pulses at MHz rate with a diamond sensor*, Optica **10**, Issue 8, 963-964 (2023) / **DOI** 10.1364/OPTICA.495437

Position measurement uncertainty

21

New Sensors

EuXFEL XPD:W. Freund, T. Çonka Yıldız and J. GrünertUni Augsburg:M. SchreckGSI:M. Kiš and M. Träger

- New sensors produced
 - 20 and 40 µm thick sensors
 - Ion-implanted electrodes with lower resistance, processed by Uni Augsburg
 - Electrodes produced at GSI via metallization by sputter deposition
 - New low resistance sensors tested first at our laser lab and then at SASE1 / FXE (June 23) and at SASE2 / MID (August 23)

XPD Diamond Sensor tests at XPD Laser Lab

EuXFEL XPD: W. Freund, T. Çonka Yıldız, J. Liu and J. Grünert

Two new diamond sensors, first tests to check the functionality

Diamond sensor test at the laser lab

Signals from the diamond detector measured by an oscilloscope

XPD Diamond Sensor tests at FXE, beamtime on 18. June

EuXFEL XPD:W. Freund, T. Çonka Yıldız, J. Liu and J. GrünertEuXFEL FXE:D. Khakhulin, H. Yousef and C. Milne

Two new diamond sensors, test at FXE

- Calibration scans with imagers (position) and XGM (intensity)
- I0 monitor, Intensity Position Monitor (IPM) and Beam Imaging Unit (BIU3) to be correlated
 - Beam: 20 and 15 keV, 1-100 pulses per train
 - Beam size at detector ~ 0.5 mm
 - Bunch charge ~ 30 µJ

European XFEL

Diamond detector position vs motor position

Diamond sensor assembly at FXE Hutch

Signals from the diamond detector (DDK, run#93). All channels with baseline correction

XPD Diamond Sensor tests at MID, beamtime on 12. August

- **EuXFEL XPD:** W. Freund, T. Çonka Yıldız, J. Liu, R. Gautam and J. Grünert
- EuXFEL MID: U. Boesenberg, A. Rodriguez-Fernandez, R. Shayduk, A. Zozulya, J. Hallmann, J. Wonhyuk and A. Madsen
- EuXFEL XRO: Silja Schmidtchen and M. Vannoni
 - Two new diamond sensors, test at MID
 - Calibration scans with imagers (position) and XGM (intensity)
 - Beam: 12 keV, 1-100 pulses per train
 - Intra-train pointing instability study
 - DESY (MDI) e-BPM electronics test
 - Mirror vibration test with XRO
 - Horizontal excitation at 1 Hz of mirror M1 with piezo actuator
 - Position measurement with diamond sensor (MHz) and imager (10 Hz)

X-ray Topography Measurements at DLS

EuXFEL XPD:W. Freund, T. Çonka Yıldız and J. GrünertDLS:J. Sutter, V. Dhamgaye, O. Fox, A. Malandain and K. Sawhney

X-ray Topography measurements with two samples from Appsilon:

- 9x9x0.1 mm³
- 6x6x0.05 mm³
- For comparison some samples from E6 (XRO)
- All with an orientation (100)

European XFEL

<section-header><section-header>

XRT Setup at DLS B16

Laue Spots of (100) diamond measurement and LauPt simulation

Signals from the diamond detector (DDK, run#93). All channels with baseline correction

Further developments

- More sensors in production
 - 30 and 50 μm thick sensors (10 μm free-standing slab got broken during processing)
 - < 10 µm with frame, plasma etched (from CEA)</p>
- New RTM board for FastADC and front end, prototype in production
 Remote controllable attenuators (0-50 dB) and bias voltage (250 V)
 Gaussian pulse shaper
- Control software (with data department support)
 Online monitor, auto-calibration, correlation with other devices

Conclusions and outlook

First high-speed position measurements performed at an FEL at MHz rate

- Current detector: too sensitive at high pulse energy or lower photon energy due to space charge effects
 Diamond sensors are good at low pulse energy/standard photon energies (9-12 keV)
 - Saturation effects at higher pulse energy
 - Less sensitive at higher photon energy (> 15 keV) for full beam
- Need faster and less sensitive sensors
 - Lower surface resistance of electrodes (might compromise position accuracy)
 - Thinner detectors ~ 10 µm
- High-speed feedback systems → improvement of beam stability (accelerator/optics)
- Diamond sensors for very hard X-ray FEL (30 80 keV) where gas based devices become insensitive

Acknowledgments

- European XFEL for financing the R&D project for the development of diamond sensors
- MID team for former and current diamond detector tests and collaborations
- FXE team for beamtime enabling the tests of new detectors
- XRO for existing and future collaborations
- EEE for the modifications of the K-mono electronics
- Petr Smirnov for the RTM board development
- DESY MDI and accelerator team at BKR
- University of Augsburg: Matthias Schreck and Wolfgang Brückner
- GSI Darmstadt: Michael Träger and Mladen Kiš
- CEA: Michal Pomorski
- DLS Optics and Metrology Group for Topography Measurements

Tuba CONKA YILDIZ, PhotonMEADOW Trieste, 14.09.2023

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Thank you for your attention

