Esercitazione 7 # Potenziali e campi (capitolo 10 Griffiths) 23 Maggio 2016 ## **Esercizio 1** #### Example 10.1 Find the charge and current distributions that would give rise to the potentials $$V = 0, \quad \mathbf{A} = \begin{cases} \frac{\mu_0 k}{4c} (ct - |x|)^2 \,\hat{\mathbf{z}}, & \text{for } |x| < ct, \\ 0, & \text{for } |x| > ct, \end{cases}$$ where k is a constant, and $c = 1/\sqrt{\epsilon_0 \mu_0}$. **Solution:** First we'll determine the electric and magnetic fields, using Eqs. 10.2 and 10.3: $$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} = -\frac{\mu_0 k}{2} (ct - |x|) \,\hat{\mathbf{z}},$$ $$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} = -\frac{\mu_0 k}{4c} \frac{\partial}{\partial x} (ct - |x|)^2 \,\hat{\mathbf{y}} = \pm \frac{\mu_0 k}{2c} (ct - |x|) \,\hat{\mathbf{y}},$$ (plus for x > 0, minus for x < 0). These are for |x| < ct; when |x| > ct, $\mathbf{E} = \mathbf{B} = 0$ **Problem 10.2** For the configuration in Ex. 10.1, consider a rectangular box of length l, width w, and height h, situated a distance d above the yz plane (Fig. 10.2). - (a) Find the energy in the box at time $t_1 = d/c$, and at $t_2 = (d+h)/c$. - (b) Find the Poynting vector, and determine the energy per unit time flowing into the box during the interval $t_1 < t < t_2$. - (c) Integrate the result in (b) from t_1 to t_2 and confirm that the increase in energy (part (a)) equals the net influx. # **Esercizio 2** **Problem 10.4** Suppose V = 0 and $\mathbf{A} = A_0 \sin(kx - \omega t) \hat{\mathbf{y}}$, where A_0 , ω , and k are constants. Find \mathbf{E} and \mathbf{B} , and check that they satisfy Maxwell's equations in vacuum. What condition must you impose on ω and k? #### **Esercizio 3** ## Problem 10.9 (a) Suppose the wire in Ex. 10.2 carries a linearly increasing current $$I(t) = kt$$ for t > 0. Find the electric and magnetic fields generated. ## **Esercizio 4** Figure 10.5 **Problem 10.10** A piece of wire bent into a loop, as shown in Fig. 10.5, carries a current that increases linearly with time: $$I(t) = kt$$. Calculate the retarded vector potential **A** at the center. Find the electric field at the center. Why does this (neutral) wire produce an *electric* field? (Why can't you determine the *magnetic* field from this expression for **A**?) #### **Esercizio 5** Problem 10.3 Find the fields, and the charge and current distributions, corresponding to $$V(\mathbf{r}, t) = 0$$, $\mathbf{A}(\mathbf{r}, t) = -\frac{1}{4\pi\epsilon_0} \frac{qt}{r^2} \hat{\mathbf{r}}$. **Problem 10.5** Use the gauge function $\lambda = -(1/4\pi\epsilon_0)(qt/r)$ to transform the potentials in Prob. 10.3, and comment on the result. ## **Esercizio 6** **Problem 10.13** A particle of charge q moves in a circle of radius a at constant angular velocity ω . (Assume that the circle lies in the xy plane, centered at the origin, and at time t=0 the charge is at (a,0), on the positive x axis.) Find the Liénard-Wiechert potentials for points on the z axis. ## **Esercizio 7** **Problem 10.18** Suppose a point charge q is constrained to move along the x axis. Show that the fields at points on the axis to the *right* of the charge are given by $$\mathbf{E} = \frac{q}{4\pi\epsilon_0} \frac{1}{2^2} \left(\frac{c+v}{c-v} \right) \hat{\mathbf{x}}, \quad \mathbf{B} = 0.$$ What are the fields on the axis to the *left* of the charge?