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Abstract – Frequency pulling is a well-known phenomenon leading to an output frequency shift
in a conventional laser, when the cavity and the maximum gain frequencies are detuned. We
demonstrate that a similar mechanism is at play in a seeded free-electron laser (FEL), when
the seed frequency is out of resonance. Frequency pulling thus may give the possibility of fine-
tuning the FEL frequency. On the basis of numerical simulations, we provide a general formula
for the FEL output frequency. Such a formula generalizes the one normally used when treating
the frequency pulling in conventional lasers.
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Introduction. – Free-electron lasers (FELs) are widely
recognized as one of new breed of the next-generation light
sources. This is mainly due to the fact that FELs combine
typical characteristics of synchrotron radiation, like short
(X-ray) wavelengths and full tunability, with those usually
pertaining to lasers, such as coherence, high brilliance and
short pulses [1–8].
We concentrate our attention on single-pass FELs,

for which two different schemes can be distinguished,
depending on the origin of the optical wave that is used
to initiate the process. In the self-amplified spontaneous
emission (SASE) configuration [1,2,9], the initial seed is
generated by the spontaneous emission of the electron
beam. SASE-based devices produce tunable radiation at
short (X-ray) wavelengths with several gigawatt peak
power, excellent spatial mode, but rather poor temporal
and spectral stability and coherence. Recently, new ideas
have been proposed to produce fully coherent hard-
X-ray SASE pulses, see, e.g., [10]. A way to overcome the
limits of the SASE configuration is to initialize the FEL
process by means of an external coherent source [11–15].
This stabilizes FEL pulses and drastically improves their
coherence.
However, the use of seeding has the intrinsic disadvan-
tage that the tunability of the FEL is limited by that of
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the available seed source. When the seed wavelength is in
the visible-UV range, such a problem may be easily over-
come by using an Optical Parametric Amplifier [6]. On
the contrary, when the seed is at shorter wavelengths, e.g.
when it is produced by a process of high-harmonic gener-
ation in gases [11,16], the seed tunability is more difficult
and, as a consequence, the same holds for the tunabil-
ity of the FEL radiation. Recently, it has been suggested
that some tunability may be recovered by using a short
(i.e., broad-band) seed pulse [17,18]. However, a precise
estimate of the wavelength shift that such a method can
provide has not been yet done, and the availability and
utility of such a tuning is an argument of debate within
the FEL community.
In this work we investigate in more detail the seeding
process with short pulses, providing an explanation of the
mechanism responsible for the FEL frequency shift with
respect to both the resonant and the seed frequencies. Such
a mechanism shares many similarities with the frequency
pulling phenomenon, well known in the theory of conven-
tional lasers [19]. In the following, after a brief reminder
of the general method and the theory on which seeded
FELs rely, we will focus on a case study by considering the
parameters of the first stage of FERMI FEL [6]. FERMI
is presently under construction at Sincrotrone Trieste and
will initially produce coherent radiation in the 80–20 nm
spectral range. The FEL process is studied by means of
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Fig. 1: (Colour on-line) Analogy between coherent FEL (a) and
laser (b and c) emission processes. See text for an explanation
of the symbols.

numerical simulations with the FEL code GINGERH [20],
that has been demonstrated to provide results in good
agreement with experiments [21].

Detuning effect in seeded FELs and lasers. – The
scheme we consider is called High-Gain Harmonic Genera-
tion (HGHG) and is based on the frequency up-conversion
of a UV high power seed laser [13–15]. In such a configu-
ration, electrons interact first with the seed laser within a
short undulator, called the modulator. The result of this
interaction is the creation of a coherent electron-density
modulation, called micro-bunching, at the seed frequency
ν0. When passing through the second undulator, called
the radiator, the bunched electron beam produces FEL
radiation through coherent emission, see fig. 1a. Taking
advantage of the fact that the electron-density modu-
lation shows Fourier components also at the harmonics
νs =Nh · ν0 (where the harmonic number Nh is an inte-
ger) it is possible to produce coherent FEL radiation not
only at the original seed frequency, but also at its Nh-th
harmonic [13]. When looking at the radiator, the coherent
emission from these already micro-bunched electrons will
occur only if their emission frequency, νFEL, is close to νs.
In particular, in the simple view of having coherent emis-
sion from these bunches, one can expect that the larger
the number of micro-bunches involved in the process, the
closer νFEL will be to νs. This means that the frequency
of the FEL emission depends on the number of micro-
bunches, that is on the length of the seed pulse. On the
other hand, the frequency of the emitted radiation also
depends on the gain curve of the radiator: if νs is detuned
with respect to the center of the gain curve of the radia-
tor, νu, and positioned on a steep slope of the gain curve,
see fig. 2a, νFEL will tend to be shifted towards the higher

Fig. 2: (Colour on-line) a) Interplay between undulator (i.e.,
gain) and seed spectra, leading to frequency pulling in a FEL.
b) Interplay between active medium (i.e., gain) and cavity
mode spectra, leading to frequency pulling in a conventional
laser. For symbols’ explanation, see text.

gain. The resulting FEL wavelength will be determined by
the interplay of the two above mechanisms.
A similar behavior can be found in the operation

of conventional laser oscillators, and is usually termed
frequency pulling. In a conventional laser, the parameters
of the laser emission are defined by the laser cavity
(resonator) and the gain medium. The role of the resonator
is to provide an optical feedback, by forcing multiple
roundtrips of the radiation through the gain medium,
see fig. 1b. As a result of these multiple passages, the
radiation interacts several times with the gain medium.
As shown in fig. 1c, this can be also viewed as a sequence
of interactions with a number of consecutive gain media.
Note the analogy with the FEL process illustrated in
fig. 1a. A steady-state laser operation is reached only for
wavelengths at which the phase-shift in a roundtrip is
a multiple of 2π, which, in the case of a “cold” cavity
(i.e., in the absence of active medium), leads to the well-
known relation between cavity length and frequency of
allowed laser modes. Similarly to the FEL case, the larger
the number of roundtrips in a “cold” cavity (high cavity
finesse), the closer the laser frequency will tend to be to
that of a cavity mode. On the other hand, the presence
of an active medium induces a gain mechanism which
tends to select the “cold” cavity modes that can reach
threshold and laser action. Also in this case, if the cavity
and the maximum gain frequencies are detuned, the two
phenomena are in competition, see fig. 2b, resulting in a
shift of the final laser wavelength [19,22].
An approximate formula which is normally used in

literature for frequency pulling in conventional lasers is
the following [19]:

νlas = νc− (νc− νg)
σc
σg
. (1)

Here νc and νg are, respectively, the cavity and the
maximum gain freqsuencies, while σc and σg are their
FWHM bandwidths.
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This equation is valid with good accuracy for the case
σg≫ σc, a situation often encountered in conventional
lasers where high cavity finesse is used, and usually leads
to a very small shift of the cavity mode frequencies towards
the peak of the gain curve. Due to the similarity with the
HGHG process, on may expect a similar expression to hold
also in the latter case.
In the case of the FEL, however, the above mentioned
approximation is not valid: the widths of the two curves
are in general comparable. A more general formula exists
for conventional lasers which could be used in such
situation [22]:

νlas = νc− (νc− νg)
σc

σc+σg
, (2)

which reduces to eq. (1) in the limit case σc≪ σg. It is
important to point out that eq. (1) gives unphysical results
for σc � σg and that in this case eq. (2) must be used.
Equation (2) shows that the laser oscillates at a frequency
that lies between the peaks of the cavity resonance and
gain curves, and is closer to the center of the narrower
one.

Numerical results of frequency mismatch in

seeded FEL. – Based on results of numerical simula-
tions, in the following we attempt to determine a formula
for frequency pulling in the case of an FEL. Predictions
obtained using such a formula will be compared with
those provided by eq. (2). As a paradigmatic example,
we will study the case of the first stage of the FERMI
FEL [6].
In the case of a tuned HGHG FEL, the harmonic of
the seed frequency, νs, coincides with the peak of the gain
curve, νu. This occurs when

νs = νu ≡

[

λw
2cγ2

(

1+ aw2
)

]

−1

, (3)

where γ is the electron-beam relativistic Lorentz factor,
λw is the undulator period, aw is the undulator parameter
and c the speed of light. The relative bandwidth of the gain
medium σu is instead approximately equal to the Pierce
parameter ρ [23], which is in the range 1–3 ·10−3 for the
case study considered here.
In order to study the role of the seed bandwidth,
σs, in the simulations we considered seed pulses with
different durations. In this work, we concentrated on
Fourier transform limited seed pulses, the effects of the
nonlinear phase evolution along the seed pulse that may
be present in very short seed pulses are not considered
here and will be the subject of future studies.
The detuning on the radiator with respect to the reso-

nant condition has been instead induced by varying the
energy of the electron beam, i.e. γ in eq. (3). Although the
electron beam energy is entering through the resonance
condition into the equations that rule the process respon-
sible for creating in the modulator the micro-bunched
structure at ν0, its effect is marginal as the modulator is
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Fig. 3: (Colour on-line) FEL Spectrum for two different
electron-beam energies (continuous curve: γ = 2225, dotted
curve: γ = 2235), when the radiator is tuned at 60 nm (corre-
sponding to a resonant energy γ = 2231). The seed pulse has a
duration of 18 fs (FWHM), a wavelength of 240 nm and a power
of about 100MW. The other relevant electron-beam parame-
ters used in the simulations are the following: peak current:
750 A; emittance: 1.5mm mrad; energy spread: 150 keV.
The radiator period is 55mm, the radiator length is about
14.5m. Additional information about the FERMI setup may be
found in [6].

usually characterized by a very large bandwidth. The same
results could be obtained if the detuning were obtained
by changing the aw of the radiator. We also considered
cases with different bandwidths, σu, of the gain medium,
by considering FEL setups with different ρ. We focus
on the specific configuration with λ0 = c/ν0 = 240 nm and
λs = c/νs = 60nm.
An example of the effect of a frequency detuning by

changing the electron-beam energy (while keeping the seed
frequency fixed) is shown in fig. 3. In this case the seed
pulse has a duration of 18 fs (FWHM).
A more detailed analysis can be done by determining the

FEL frequency as a function of the resonant frequency νu,
for various seed pulse durations. The results of this series
of simulations are reported in fig. 4. As expected, data
show a linear dependence of the FEL frequency on detun-
ing. For longer seed pulses (i.e., narrower bandwidth),
the FEL frequency displays a weak dependence on the
resonant frequency, keeping close to the seed harmonic
frequency. Instead, for shorter FEL pulses (i.e., larger
seed bandwidths) the dependence becomes stronger. The
results of our simulations indicate that the produced FEL
pulses preserve their properties in terms of pulse length
and bandwidth also when the FEL is strongly detuned
and the wavelength shifted. In order to derive an equation
providing νFEL as a function of the νu and νs, as well as
of their bandwidths, we need to determine the dependence
of the slopes of the curves reported in fig. 4 on the latter
parameters.
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Fig. 4: (Colour on-line) FEL frequency vs. resonant frequency
νu (varied by changing the electron-beam energy), for different
bandwidths (varied by changing the seed pulse duration, ∆t).
The harmonic seed frequency is fixed at νs = c/λs with λs =
60nm.

According to eq. (2), the expected dependence of the
laser frequency on the gain-medium frequency is given by

dνlas
dνg

=
σc

σc+σg
. (4)

This equation can be easily adapted to the case of a
FEL:

dνFEL
dνu

=
0.44/(∆T )s

0.44/(∆T )s+2.35ρνu
, (5)

where 0.44/(∆T )s is the FWHM bandwidth associated
to a transform limited Gaussian pulse, whose duration is
(∆T )s; 2.35ρνu is the FWHM bandwidth associated to the
FEL pulse.
By performing a linear fit of the data reported in fig. 4
one gets the tunability slope dνFEL/dνu for different
seed pulse durations. Results are shown in fig. 5 (crossed
dots), together with the prediction obtained from the
eq. (5) (black continuous line). As can be seen, the
theoretical prediction does not fit with numerical results.
The disagreement is particularly evident in the case of
longer seed pulses.
Instead, data fit quite well with a different frequency

pulling equation, whose prediction is shown by the contin-
uous red line in fig. 5. Such an equation reads

νFEL = νs− (νs− νu)
σ2s

σ2s +σ
2
u

, (6)

and has a straightforward physical motivation. In fact,
according to the standard formula, eq. (2), the laser
frequency is given by the weighted average of the two
frequencies, νc and νg, with the weighting factors propor-
tional to the inverse of the corresponding linewidths [22].
The formula we propose, eq. (6), is the result of a more
careful weighting, which takes into account the Gaussian
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Fig. 5: (Colour on-line) Tunability slope as a function of the
seed pulse duration: numerical results (crossed dots), data
obtained from the standard frequency pulling equation (5) and
from the modified equation (6).

profiles of both the gain and the loss curves. The output
frequency, which is here the weighted average using the
squares of the bandwidth, corresponds to the maximum
of the function given by the product between the two
Gaussian curves representing the gain and the losses for
the laser process. It is also important to note that the
standard formula for frequency pulling can be obtained
from eq. (6) in the limit case in which σu≫ σs (σg≫ σc
in the case of conventional lasers) and (νu− νs)≪ σu
(νg − νc≪ σg in the case of conventional lasers), that is
normally the case for conventional lasers.
Results of the numerical simulations differ slightly from
the prediction given by eq. (6) only in the case of very
short pulses, see fig. 5. This can be explained by taking into
account the effect of light-electron slippage, that slightly
increases the length of seeded part of the electron bunch.
The presented results refer to the case of HGHG.
However, additional studies (not reported here) show that
eq. (6) can be successfully applied also to the case of direct
seeding. An additional confirmation for the validity of
eq. (6) dsespite eq. (2) for describing the frequency pulling
comes from an experiment [24] that has been recently
performed in the Elettra storage ring FEL [15].

Conclusions. – In conclusion, on the basis of the
results of numerical simulations, we have demonstrated
and characterized the frequency pulling effect for seeded
FELs. With these results we have fixed that the tuning of
a FEL in the case of a UV seed laser is very limited and has
not practical utility for standard seed pulse lengths. The
only possibility of using the frequency pulling for a useful
tuning of a FEL is limited to the case of very short pulses
(few fs) and may be useful in the case of seeding with the
short pulses of an HHG source. We also found a general
formula providing the output FEL frequency as a function
of the system parameters. Such a formula generalizes the
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one normally used when considering the frequency pulling
in conventional lasers.
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