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Chapter 1
Introduction

1.1 Introduction

100 years after K. Onnes observed the superconductivity phenomenon in Mer-
cury [142], this phase of matter remains one of the most fascinating, mysterious,
debated and intriguing problems in the condensed matter physics. From its
discovery and for many decades, little progressess have been made, and the
maximum transition temperature to the superconducting state was set around
20 K. In 1957 Bardeen, Cooper and Schrieffer formulated the BCS theory, ca-
pable to explain the physical behavior and the microscopic mechanisms behind
these conventional superconductors. Only in 1986 Bednorz and Muller [21] dis-
covered that layered copper oxide compounds could sustain superconductivity
at unsuspectedly high temperatures (∼30 K). Soon after, the critical temper-
ature Tc of these doped copper oxide-based compounds exceded the boiling
temperature of the liquid nitrogen and soon after it raised singnificantly above
100 K. For this reason these materials are nowadays known as high temperature
superconductors (HTSCs). Among high temperature superconductors, beyond
cuprates, other superconducting families exist: pnictides and calchogenides
(Iron based superconductors, discovered in 2006 [103]), Fullerenes (Cs3C60 has
Tc=38 K), Heavy Fermion Systems (UPt3) and Organic Superconductors. The
term high-temperature in this classification refers mainly to the unconventional
physics beyond them, rather than to the actual Tc, that is often lower than
that of conventional superconductors. Within this thesis work, however, the
term high temperature superconductors / superconductivity will be referred
to cuprates. The high transition temperature of cuprates cannot be explained
in the frame of the BCS theory and today, 25 years later, a comprehensive
microscopic theory capable to explain the phenomenon of superconductivity
in copper-oxide based superconductors is still lacking. This despite the huge
efforts of the scientific community to solve this intriguing problem. Nowadays,
more than 100.000 scientific papers related to the superconductivity has been
published since 1911, and new interesting experimental findings are paving the
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1. Introduction

road to the knowledge of the HTSCs physics.
Following a novel approach started about 10 years ago, my PhD thesis faces
the high-temperature superconductivity problem from the perspective of non-
equilibrium physics.
High-temperature superconductors obey to the general electro-dynamics phe-
nomenology of the conventional superconductors, but the microscopic mecha-
nisms that give rise to the superconducting state remain an open question.
Before discussing this problem, let me remind here that the key breakthrough
in understanding the mechanism leading to superconductivity was obtained
by L. Cooper in 1956 [40]. An intuitive and over-simplified picture can be
gained by considering that an electron moving through a crystal lattice at-
tracts the positively charged ions, while a second electron can feel a surplus
of positive charge from which it is attracted. If the the attractive potential is
larger than the Coulomb repulsive potential between the two electrons, then an
electron-electron effective attractive interaction is established. Electrons are
thus coupled, forming bound pairs known as Cooper Pairs (CPs). In BCS sys-
tems, the pairing is mediatd by phonons (i.e., lattice vibrations). To gain the
lowest energy state, the two paired electrons must have opposite spin (S=0).
This pairing mechanism has the characteristic of transforming a fermionic par-
ticles system into a bosonic particle system obeying to a different distribution
statistic. The main result is that an infinite number of particles can occupy
the same quantum state. This state is the key element of the superconduc-
tivity in condensed matter. In BCS theory, the pairing process and the pairs
condensation into a collective state (the superconductive state) extending over
macroscopic dimensions are simultaneous effects, to some extents similar to
the condensation of bosons in a ground state characterized by a wavefunction
extending over macroscopic dimensions, i.e., a wavefunction with a phase co-
herent over macroscopic lenghtscales.
The phase transition to the superconducting state, occurring at the character-
istic temperature Tc, is accompanied by an energy gain for the system, and
an energy gap, ∆, opens between the occupied and the unoccupied electronic
states. This is the so-called superconducting gap, and its magnitude is equal to
the pair binding energy. ∆ is of the order of few meV in BCS superconductors
[175]. The energy difference between the normal and the superconductive phase
is termed condensation energy, and is proportional to N(EF )∆

2 (N(EF ) being
the density of states at the Fermi Energy). In BCS superconductors, where the
pairing is mediated by phonons, the gap is isotropic in the k-space, showing
an s-wave like symmetry and a magnitude that depends on the temperature,
being zero at T=Tc, and maximum at T=0. The ∆(T ) value is governed by
the so-called ’gap equation’.
Instead, for HTSC it is not clear the nature and the origin of the micro-
scopic mechanism leading to an attractive interaction among electrons, to form
Cooper Pairs. The phonon mediated attraction, alone, seems not enough to
justify such high critical temperatures. The point is whether phonons are in-
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1.1. Introduction

volved in the pairing mechanism together with other mediators, or whether the
pairing is purely mediated by a bosonic glue of electronic origin. It must be
pointed out that, in contrast to BCS superconductors, HTSCs show a pairing
gap with a d-wave like symmetry [49].
In order to clarify the microscopic mechanisms leading to high-temperature su-
perconductivity in cuprates, a huge effort has been done in these last decades,
using mostly spectroscopies in the frequency domain or other probes at equilib-
rium. These studies have produced several important information but leaving
the main physics behind the HTCS phenomenon unveiled. Only in this last
decade, spectroscopies in the time domain have been considered to study the
superconducting phase transition out of equilibrium with the aim of identify-
ing, through different lifetimes, mechanisms having close energy scales. In par-
ticular, these experiments started by considering that in copper-oxyde based
superconductors it exists a clear interplay between high (few eV) and low
(few meV) energy scale physics, as evidenced by the spectral weight transfer
between interband and intraband spectral regions observed by conventional
optical measurements. This behavior, which has only recently been addressed
[80], is typical of HTSC, whereas it is absent in conventional superconductors,
where the spectral weight removed from the gap spectral region is enterely
recovered by the condensate contribution at zero frequency.
In addition, for HTSC also the normal state is not completely understood. In
fact, the ground state is a non-Fermi Liquid. HTSC are strongly correlated
electronic materials, and the strong electronic correlations make them charge-
transfer insulators, when undoped.
The nature of the pseudogap phase and of the phase diagram of HTSCs (that
probably can only be understood together), are the very elusive aspects.
Therefore, here I am going to face the problem of high temperature super-
conductivity by a non-equilibrium approach, using the ultrafast optical pump-
probe technique, in the time and frequency domain. The scope is to disentangle
the electronic dynamics from the thermal dynamics, since the first happens on
timescales much shorter than thermal heating, being the latter related to the
phonons thermalization.
In the recent past, the all-optical pump-probe technique, though powerful in
providing information about the temporal dynamics of the excitations under-
lying the different physical phases under scrutiny, failed to address the micro-
scopic mechanism at the origin of the observed signals and dynamics. The main
reason being the lack of energy resolution. Usually, pump-probe measurements
have been performed at fixed energy (1.55 eV, i.e., 800 nm, the fundamental
of conventional Ti:Sapphire lasers). The knowledge of the dynamics at only
one wavelength is not sufficient to explore the microscopic mechanisms at the
origin of the time-resolved optical signal. With this thesis work, I tried to
overcome this limit.
In fact, an important part of my research has been devoted to develop differ-
ent pump-probe setups, in which the monochromatic probe has been replaced
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1. Introduction

by broadband or tunable probe pulses. This novel technique will be termed
time-resolved spectroscopy.
This technique allows revealing the quasiparticles dynamics with a spectral
resolution typical of the conventional optical spectroscopies. Therefore, these
experiments unlocked the gate to observe the time evolution of the dielectric
function in the 0.5-2.2 eV spectral range, with a temporal resolution of ∼100
fs. The information that can be extracted from such kind of measurements are
much more with respect to that achieved by the conventional, one-color time
resolved approach.
Thanks to the richness of the non-equilibrium spectroscopic information ob-
tained, I have been able to characterize the three most important phases com-
posing the phase diagram of a copper-oxide based high-temperature supercon-
ductor, i.e., the normal state, the pseudogap phase, and the superconducting
phase. As a result, an all-optical formulation, based on non-equilibrium spec-
troscopic measurements, of the phase diagram of a hole-doped copper oxide
based superconductor, has been proposed.

1.2 Overview

My PhD thesis work tackles some open questions in the field of unconven-
tional superconductivity in cuprates. The results I obtained come from the ex-
perimental evidences emerged by probing different Y-Bi2212 superconducting
samples (Bi2Sr2Y0.08Ca0.92Cu2O8+δ, being δ the doping) in the normal, pseu-
dogap and superconducting phases, by the novel time-resolved spectroscopy
technique I developed. Each phase is characterized by a peculiar time-resolved
optical signal in the time and energy domains. In particular, the following
points have been addressed:

• The mechanisms leading to electron pairing and to the formation of
Cooper Pairs in HTSCs are object of debate since long time. I analyzed
the problem of electron-boson coupling in HTSCs starting from the ex-
perimental evidences of time-resolved spectroscopy in the normal state of
Y-Bi2212. A clear indication is that electrons are strongly coupled with
bosonic excitations of electronic origin, characterized by a small specific
heat. The simultaneous analysis of experimental data in both the time
and the energy domains revealed that the subset of bosonic excitations
of electronic origin can account, alone, for the high critical temperature
of the material. This finding suggests that pairing in HTSC is mainly of
electronic origin. Possible candidates for the bosons of electronic origin
are antiferromagnetic spin flucutations or current loops.

• The pseudogap phase is the most elusive phase of the HTSC phase dia-
gram. Here, by the novel non-equilibrium spectroscopic approach, I dis-
entangled the various effects taking place in this phase, when the system
is brought out of equilibrium by an ultrashort laser pulse. In particular,
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1.2. Overview

three contributions have been revealed: a thermal heating, a filling of
the gap in the density of states, and an intensity-dependent modification
of the electron-boson coupling. These effects helps in the interpretation
of the nature of the pseudogap. In particular, the fact that the pseu-
dogap is indeed one phase, with relative long-range order, is argued by
the evidence of a magnetic excitation mode which originates and couples
with electron at temperature T ∗, which scales with doping. This T ∗ line
delimits a region of p-T space in which the electron-boson coupling is
temperature-dependent.

• In HTSCs, in contrast to BCS superconductors, an interplay between
physics at very different energy scales, namely, the one related to the
condensate formation, and the one related to interband transitions, has
been revealed by static spectroscopies. Nevertheless, the origin of this
interplay remained elusive. Here, thanks to the non-equilibrium approach
and the spectroscopic information, I have been able to reveal the origin
of such interplay. In particular, I demonstrated that two high-energy
optical transitions, at 1.5 and 2 eV, are modified by the condensate
formation. This finding is precluded to equilibrium techniques, since
thermal heating effects overwhelm the small contibution to the signal
originating from the condensate formation. Moreover, I revealed that the
spectral weight transfer from interband transitions to low-energy scales,
accounts for a direct, superconductivity-induced carriers kinetic energy
gain in the underdoped side of the phase diagram, which changes in a
BCS-like, superconductivity-induced carriers kinetic energy loss in the
overdoped side of the phase diagram. This change happens close to the
optimal doping level required to attain the maximum Tc.

• Different scenarios exist in the literature about the phase diagram of an
High-Tc. In this respect, our findings regarding i) a T ∗ line delimiting
a region with temperature-dependent electron-boson coupling, and ii)
a different direction for the superconductivity-induced spectral weight
transfer from high- to low-energy scales, changing exactly at the optimal
doping level, suggest that the phase diagram of an High-Tc is governed
by a quantum critical point at T=0, inside the superconducting dome.

Finally, I briefly summarize the content of the chapters:

• Chapter 2 contains an overview of the basic physics and of the main open
questions in the field of HTSCs. In particular, the different scenarios for
the copper-oxide-based compounds phase diagrams are discussed.

• Chapter 3 contains a short review of the equilibrium optical properties
of HTSCs. The relevant models for the dielectric function are discussed,
with particular emphasis on the formalisms of the Extended Drude model
(EDM). The main focus is the interpretation of the equilibrium optical
properties of cuprate superconductors.
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1. Introduction

• Chapter 4 reports on the non-equilibrium physics of HTSCs. The estab-
lished results in the field of time-resolved optics on cuprates are briefly
reviewed. The models commonly used to interpret the non-equilibrium
dynamics in metals and superconductors in the normal state, namely, the
two/three temperature models, are analyzed in detail. Finally, the novel
differential dielectric function approach, that is at the base of this work,
being used to interpret all the experimental evidences, is formulated and
commented.

• Chapter 5 describes the different time-resolved setups developed to per-
form non-equilibrium measurements. The steps toward the implementa-
tion of the spectral resolution in addition to conventional time-resolved
measurements are presented. In particular, two complementary setups,
based respectively on a visible supercontinuum probe pulse and on an in-
frared tunable probe pulse, are described in detail. Time-resolved optical
spectroscopy is presented. Finally, a section aimed at the description of
the various methods developed for the characterization of the ultrashort
white light pulses concludes this chapter.

• Chapter 6 describes the results of the non-equilibrium spectroscopic tech-
nique in the normal state of Y-Bi2212 superconductors. The unambigu-
ous experimental evidence is that, after a time shorter than the electron-
phonon thermalization, the observed time-resolved optical signal in the
energy domain is only explained by a scenario in which electrons are al-
ready thermalized with some bosonic degrees of freedom, having a small
specific heat and a strong coupling with the electrons. The transient
spectral response is interpreted within the differential dielectric function
approach. Through a model constraining the temporal and spectral evo-
lution of the time-resolved optical signal, I proved that the coupling
strenght and spectral distribution of these modes is compatible with
bosons of electronic origin. This boson subset, alone, justifies the high
critical temperature of the compound. This suggests that the pairing in
cuprates is mainly of electronic origin.

• Chapter 7 reports on the interpretation of the transient spectral signal
observed in the pseudogap phase of cuprates. Here I argue that several
spectral contributions, arising from different physical mechanisms, add
to produce the observed signal. By disentangling them, I proved that
beyond a thermal contribution arising from the simple heating of the
system, a transient modification of the glue function and an impulsive
closing of the pseudogap gap are enough to reproduce the observed signal.
In the pseudogap, the electron-boson coupling is fluence-dependent.

• Chapter 8 reports on the experimental evidences of time-resolved spec-
troscopy in the superconducting phase of Y-Bi2212. The spectrally and
temporally resolved measurements clearly demonstrate that below Tc,
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1.2. Overview

two high-energy interband oscillators (at 1.5 and 2 eV) are entangled
with the superconducting condensate formation: the interplay between
high- and low-energy physics in cuprates is confirmed; moreover, its ori-
gin has been revealed. An important result is that the modification of
the high-energy states accounts for a superconductivity-induced carriers
direct kinetic energy gain, in the underdoped side of the phase diagram,
evolving toward a BCS-like carriers kinetic energy loss on the overdoped
side of the phase diagram. The transition happens close to the optimal
doping level. This information, together with the knowledge of the on-
set temperature of the temperature-dependent electron-boson coupling,
lead us to argue that the High-Tc phase diagram is characterized by a
quantum critical point at T=0, inside the superconducting dome. The
critical line of such phase diagram delimits a region in which the glue
function acquires a temperature dependence.

• Chapter 9 finally contains the conclusion of this thesis work, summarizes
the most important results and delineates the perspective of this work,
with emphasis on the questions that need a further clarification.
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Chapter 2
Superconductivity with High
Critical Temperature

2.1 Introduction

In this chapter I will briefly describe the electronic structure of copper-oxide
based superconductors, that leads to many phenomena, such as the supercon-
ductivity at high critical temperature and the pseudogap phenomenon. I will
present the leading models and scenarios for the pseudogap phase and the pro-
posed phase diagram of these compounds, which will be relevant in supporting
our experimental findings. I will then introduce the formalisms developed to re-
late the superconducting critical temperature Tc to the electron-boson coupling
strength, λ. This chapter ends with a description of the physical properties of
Bi2Sr2CaCu2O8+δ (also termed as Bi2212), and in particular of the Yttrium
substituted compound Y-Bi2212, which is the compound investigated in this
work.

2.2 Electronic properties of copper-oxide based

superconductors

After 25 years have passed since the discovery of high temperature supercon-
ductivity in cuprates [21], no consensus has been reached yet on its physical
origin. This is due mainly to a lack of understanding of the state of matter from
which the superconductivity arises [140]. In optimally (OP) and underdoped
(UD) materials, the ground state exhibits a pseudogap at temperatures large
compared to the superconducting transition temperature Tc [186, 83]. On the
contrary, overdoped (OD) materials do not exhibit a pseudogap. The physical
origin of the pseudogap behavior, and whether it constitutes a distinct phase
of matter is still an open question.
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2. Superconductivity with High Critical Temperature

In spite of the apparent complexity of their unit cell, cuprates turn out to
be simple materials from the structural point of view. The structure is com-
posed of Cu-O planes (where each Copper ion is fourfold coordinated with
Oxygen ions), which are separated by spacer layers. Despite the complications
arising from the different kinds of crystal structures supporting superconduc-
tivity, the essential structure for superconductivity at high critical temperature
is that of the Cu-O planes. The transition temperature Tc varies considerably
from structure to structure, and in general it is higher the more the number
of Cu-O planes per unit cell is (this is true up to three Cu-O planes per unit
cell). The low energy electronic structure of the planes is characterized by a
single energy band [147]. This single two-dimensional energy band near the
Fermi Energy is what makes cuprates attractive from a theoretical point of
view. From this apparently simple electronic structure, a lot of phenomena
arises, as can be argued by looking at the general phase diagram of a cuprate
superconductor, presented in Fig. 2.1. Superconductivity is effective in the
so-called ’superconducting dome’, delimited by the solid blue line. The maxi-
mum critical temperature Tc is reached at the so-called optimal doping (OP),
popt. Two regions are naturally defined as the underdoped region (UD, p<popt)
and the overdoped region (OD, p>popt).

Figure 2.1: The phase diagram of copper-oxyde based superconductors is
reprted. p is the number of doped holes per Copper ion. Solid lines represent
true, thermodynamic phase transitions, while dotted lines indicate crossover
behavior.
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2.2. Electronic properties of copper-oxide based superconductors

Electronic structure of copper-oxide based superconductors
In the parent compound material, that is the undoped material, the lowest-
lying energy band is half filled, which corresponds to a d9 configuration for
the Copper ions. This can be justified by recalling the CuO2 coordination for
Copper and Oxygen in the Cu-O planes, and that each Oxygen ion is strongly
electro-negative, attracting two electrons (O→O2−, having electronic config-
uration 2p6). The result is that Copper ions are left in a 3d9 configuration.
Conventional band theory predicts such compounds to be metals (an odd num-
ber of electrons is present at each Copper site), but the material turns out to
be an insulator instead. The energy gap for the parent compounds is of the
order of 2 eV. The origin of the insulating behavior in strongly correlated elec-
tronic materials was well described by N. Mott [135], as an effect of the strong
electron-electron correlations.
More generally, all transition metal oxides are insulators. This is due to the
fact that the transition metal 3d levels and oxygen 2p levels are separated by
an energy larger than the energy spread of these levels, due to band formation.
Thus separate 3d and 2p energy bands are obtained. The Coulomb repulsion
on the transition metal site is usually very large, and the 3d band undergoes a
Mott-Hubbard splitting into an upper and a lower Hubbard bands, separated
by an energy scale termed U , which is typically 8-10 eV. The gap is thus of the
charge-transfer (CT) type (in contrast to the Mott-Hubbard gap type), sepa-
rating the filled oxygen 2p valence band from the empty 3d conduction band
(the upper Hubbard band) [147]. In cuprates the picture is more involved [161].
Copper ion (d9) 3d energy level is above, but relatively close to, the Oxygen
(p6) 2p energy level. The tetragonal environment of the Cu ion leads to the
single 3d hole having dx2−y2 symmetry. Thus, in cuprates, the dominant energy
is the bonding-antibonding splitting involving a quantum mechanical admix-
ture of the Copper 3dx2−y2 orbital and the planar Oxygen 2px and 2py orbitals
(as sketched in Fig. 2.2a). The final result is that in the parent compound
(undoped material), a half filled band, which is the antibonding combination
of these three orbitals, is obtained, while the bonding, non-bonding, and the
rest of the Cu and O orbitals are filled. As argued by Anderson [151], it is
the copper-oxygen antibonding band which undergoes Mott-Hubbard splitting,
forming an insulating gap of the order of 2 eV in the parent compound. The ef-
fective U is indeed reduced because of the Copper-Oxygen orbital admixture.
Finally, upon doping the compound, a structure reminiscent of the CT gap
moves to higher energies, while the gap is filled by states. The Fermi Energy
lies in the hybridized Copper-Oxygen band, having a bandwidth of about 1.5
eV. Fig. 2.2b summarizes the density of states in this situation.

For the hole-doped compounds, an important electronic configuration is worth
to be described, since it constitutes the ground state. The electronic sys-
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2. Superconductivity with High Critical Temperature

Figure 2.2: a) Cu and O electronic orbitals responsible for the covalent bonding
between Copper and Oxygen atoms in the CuO planes. b) Density of states
for Cu and O bands. EF is the Fermi Energy.

tem can gain energy because of the hole hopping between Cu and O orbitals,
given by the antiferromagnetic superexchange interaction between the holes of
the Cu-O system. In particular, the most stable configuration, known as the
Zhang-Rice singlet (ZRS), is obtained as a fully symmetric linear combination
of the four oxygen holes states around the Copper site, with the Copper hole
spin that couples anti-ferromagnetically to the (shared) Oxygen hole spin. Fi-
nally, this singlet state can hop from site to site like a single hole does in a
simple single-band Hubbard model [188]. A sketch of the ZRS is reported in
Fig. 2.3. Spin-resolved photoemission measurements [23] confirmed that the
lowest energy excitations have a singlet nature, providing a direct support to
the stability of the Zhang-Rice singlet in hole-doped cuprates.

Figure 2.3: The atomic structure of the CuO plane is reported. The Zhang-
Rice singlet (ZRS) and the in-plane charge-transfer process between Cu and O
atoms is evidenced. Copper atoms are depicted in blue, while Oxygen atoms in
red. Arrows indicate the direction of the spin in the antiferromagnetic phase.

Hubbard and t-J models
The Hubbard and the t-J models are the simplest models able to catch the
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2.2. Electronic properties of copper-oxide based superconductors

basic physics of strongly correlated materials.
The electronic hopping from one site to the other, required for conductivity
to occur, would cost an energy due to Coluomb repulsion (for electrons in the
same site), which is indicated with U (Hubbard U). In undoped cuprates,
the Hubbard U well exceeds the kinetic energy gain due to hopping (t), and
electrons become localized (the material is thus insulating). The Hamiltonian
representing this picture is the well-known Hubbard Hamiltonian 2.1 (Hubbard
Model) [150].

H = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.C.
)

+ U
∑

i

ni,↓ni,↑ (2.1)

The first term describes the quantum hopping of electrons between nearest-
neighbor sites, while the second term accounts for the strong coulomb interac-
tion for electrons occupying the same site.
In the insulating state, the spins of the Cu ions are arranged antiferromagnet-
ically, forming a Neel lattice. The energy gain due to this ordering is known
as the superexchange energy J , with: J ∝ t2/U [150].
Despite its apparent simplicity, the Hubbard model is very difficult to solve.
For doped materials, a simplification of the (one-band) Hubbard model exists,
by considering its limit for large U . This model is known as t-J model. In
this limit, the upper Hubbard band is projected out (considering a hole-doped
material), and the effect of U becomes virtual [46], leading to a superexchange
interaction between Copper spins (since two parallel spins are not allowed to
occupy the same Copper site, while antiparallel spins can). This leads to the
energy saving of t2/U , from second-order perturbation theory. t-J Hamilto-
nian is:

H = −t
∑

〈i,j〉,σ

(

c†i,σcj,σ +H.C.
)

+ J
∑

〈i,j〉

(−→
Si ·

−→
Sj +

1

4
ni,↓ni,↑

)

(2.2)

The t-J Hamiltonian is widely used as a starting point to describe the elec-
tronic properties of copper-oxide based high-temperature superconductors.

Superconductivity and evidence of a pseudogap
When a cuprate is doped (here I will refer to the case of hole doping), the
physical properties of the material drastically change. These materials exhibit
superconductivity at high critical temperatures and a so-called ’pseudogap’.
Hole doping can be obtained either by chemical substitution of elements in the
spacer layers, or directly by modifying the oxygen content (δ 6=0 for a doped
compound). In both cases, the result is that, to maintain charge neutrality,
electrons are pulled away from the CuO2 planes, forming holes in these planes.
The hole concentration is indicated with p. Upon increasing the doping level p
from zero, the material becomes a bad metal. At about 5% doping (p=0.05),
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2. Superconductivity with High Critical Temperature

a superconducting state emerges at low temperatures. The Tc rapidly in-
creases with further doping, reaching a maximum value at about 16% doping
(p=0.16), termed the optimal doping (OP) level. Further doping makes Tc

to fall to zero, at about 25% doping (p=0.25). Increasing doping further, the
material becomes an ordinary metal.

The superconducting ground state is isomorphic with that of the BCS the-
ory [13, 14], since it consists of a condensate composed of Cooper Pairs [40].
The main difference is the symmetry of the gap. In the original BCS theory,
the pairs have an s-wave symmetry. On the contrary, the cuprate pairing gap
has a d-wave symmetry (the superconducting gap is no more isotropic in k-
space, but it is maximum in the antinodal direction of the Brillouin zone (ΓM),
and zero in the nodal direction (ΓY) of the Brillouin zone), as demonstrated by
several experiments [45, 32]. This fact led to the speculation that the pairing
in the cuprates has a different origin from that of conventional superconductors.

Since superconductivity is an instability of the normal state, to understand its
origin it is mandatory to understand the nature of the normal state from which
it arises. For cuprates, this is where the real controversy begins [140, 137]. In-
deed, measurements of the spin response of cuprates below the optimal doping
level revealed a reduction in the imaginary part of the low frequency dynamic
spin susceptibility, at a temperature larger than Tc [186]. Other magnetic
susceptibility measurements [50] showed a suppression of the uniform static
susceptibility at temperatures significantly higher than Tc. Similar evidences
has been revealed by the decrease of the spin-lattice relaxation rate in NMR ex-
periments on underdoped cuprates [18], and anomalies revealed by tunnelling
experiments [130, 172], c-axis optical conductivity [149], specific heat exper-
iments [119] and angle-resolved photoemission experiments [177] have been
reported. On the contrary, this kind of depressions occur in conventional su-
perconductors only at Tc. The quenching of these magnetic susceptibilities
indicates that a sort of pre-pairing is taking place. This also implies the open-
ing of an energy gap in the density of states, as evidenced by ARPES studies
[49]. In cuprates, the temperature at which these quenching phenomenon be-
gin is termed T ∗, while no additional anomaly at Tc are shown: a quenching
analogous to spin singlet formation of conventional superconductors does not
set in at Tc, but at T

∗. In particular, T ∗ increases upon reducing the doping,
on the contrary to what happens for Tc. Quenching sets in at higher temper-
atures as the Charge-Transfer insulating phase is approached.

This point constitutes the main open question in the HTSC field. No con-
sensus exists about the relation existing among the ’spin gap’ or pseudogap
and the superconducting phase [89, 137, 173]. By analogy with the conven-
tional superconductors case, one possibility is that the pseudogap is also asso-
ciated with spin singlet formation. This would indicate a sort of pre-pairing of

14



2.3. Models for the phase diagram

electrons. In this scenario, the pseudogap is thought to be a ’friend’ of super-
conductivity [137]. On the contrary, since any instability typically results in
an energy gap, and such an energy gap leads by definition to a depression of
the electronic density of states, some feel the pseudogap does not necessarily
imply spin singlet formation. In these scenarios, the pseudogap is thought as
something unrelated with the phenomenon of superconductivity, or something
which impedes the superconductivity formation (superconductivity ’foe’) [137].

The understanding of the pseudogap phenomenon is intimately connected to
the understanding of the whole phase diagram of the material: each theory for
the phase diagram predicts a different nature for the pseudogap phenomenon.
The next section will be devoted to the presentation of the most releveant
schemes for the copper-oxide based superconductor phase diagram.

2.3 Models for the phase diagram

The critical parameter that determines the properties of a copper-oxygen based
superconductor is the concentration of holes (p) in the Copper-Oxygen planes.
The phase diagram obtained by modifying p has been sketched in Fig. 2.1,
in the p-T (doping-temperature) parameters space. The UD region is char-
acterized by the enigmatic pseudogap phase. This paragraph is aimed to the
description of the most relevant models for this phase [89, 173].

The models reported in the literature design two main scenarios [137].
The first one involves preformed Cooper pairs at temperature T<T ∗, which
become phase coherent only for T<Tc. An important theory pointing into this
direction is contained in a work by Emery and Kivelson [70]. In this theory,
the loss of coherence of the condensate at T>Tc is explained in terms of phase
fluctuations that, due to the low density of the superconducting carriers as
compared to the standard 3D BCS superconductors, destroy the long range
order without breaking the Cooper Pairs. Another theory supporting this first
scenario is based on the notion of spin-charge separation [114, 133]. A single
hole is described as a bound state of a fermionic particle, called spinon, carry-
ing only the spin, and a bosonic particle, called holon, carrying only the charge.
In strongly correlated electron systems, this dual nature of the charge carriers
becomes more evident, with spinons and holons behaving like independent par-
tieles. In a mean-field description, spinons pair together forming a gap in the
spin excitation spectrum, interpreted as the pseudogap, while holons undergo
Bose-Einstein condensation at Tc, making the system superconductive.
The opposite scenario is that in which the pseudogap is considered as a phase,
characterized by an hidden order, in competition with superconductivity [33,
181]. Various candidates for this order have been proposed. In particular,
stripe and antiferromagnetic order, d-density wave order (DDW), or current
loops, all break a particular symmetry of the system.
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2. Superconductivity with High Critical Temperature

The fact that the T ∗ temperature decreases moving towards the OD region of
the phase diagram is experimentally established, but the precise structure of
the phase diagram, and particularly the T ∗ dependence on the hole density p,
is still subject of discussion. Two different behaviors for the pseudogap line
T ∗(p) are expected, depending on the actual scenario [89], as can be seen by
looking at Fig. 2.4.

Figure 2.4: Three scenarios for the interplay of pseudogap (blue dashed line)
and superconductivity (red solid line) in the p-T phase diagram of HTSC are
reported. In a), the pseudogap merges gradually with the superconducting gap
in the strongly overdoped region. In b) and c) the pseudogap line intersects
the superconducting dome, at about optimal doping. In most descriptions, the
pseudogap line is identified with a crossover with a characteristic temperature
T ∗ rather than a true thermodynamic phase transition. In a), T ∗>Tc at all
dopings. In b), T ∗<Tc beyond optimal doping. In c), T ∗ does not exist inside
the superconducting dome. From [89], adapted from [140].

In the first scenario, in which the pseudogap would be a precursor of super-
conductivity, the T ∗ line is supposed to be tangent to the OD limit of the
superconducting dome. On the contrary, in the scenario of a pseudogap com-
peting with superconductivity, the T ∗ line should enter the superconducting
dome at about optimal doping, and extending into the superconducting dome
itself. In this case, a region where superconductivity coexists with the psendo-
gap is expected. In this scenario, the phase diagram would be governed by
a quantum critical point (QCP) inside the superconducting dome, at T=0.
In this respect, a model of Copper-Oxygen bonding and antibonding bands
proposed by C. Varma [95, 180] provides for a continuous transition (as a
function of hole density p and temperature T ) to a phase in which a pair of
oppositely directed currents circulate in each unit cell (loop-current electronic
order). This phase preserves the translational symmetry of the lattice, while
breaks time-reversal invariance and fourfold rotational symmetry [95]. This
circulating current phase terminates at a critical point for p=pQCP and T=0.
This scenario is depicted in Fig. 2.5.
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Figure 2.5: The QCP-governed phase diagram proposed by C. Varma is re-
ported. At very low levels of hole doping, cuprates are insulating and antiferro-
magnetic. At increased doping levels, they become conducting, and the exact
temperature and doping level determine which phase of matter they will be in.
At temperatures below Tc, they become superconducting, and at temperatures
above Tc but below T ∗ they fall into the pseudogap phase. The boundary of the
pseudogap region at low doping levels is unknown. The transition between the
Fermi-liquid phase and the strange-metal phase occurs gradually, by crossover.
QCP denotes the quantum critical point at which the temperature T ∗ goes to
absolute zero. This QCP origins a critical region (the pseudogap) in which the
ground state is given by pairs of electron-current-loops flowing within each of
the material unit cells, and producing a pair of oppositely directed magnetic
moments. From [180].

2.4 The Electron-Boson coupling in HTSC

The electron-phonon interaction (that can be generalized to a more universal
electron-boson interaction) affects and determines many physical properties of
solid state materials (such as the optical properties, the resistivity, the spe-
cific heat). Moreover, it constitutes the attractive interaction - essential in the
superconductivity framework - which binds together pairs of electrons, form-
ing the so-called Cooper Pairs (CP), as pointed out by Cooper [40]. This
holds without exceptions for the conventional superconductors (metals, com-
pounds or simple alloys). It is universally accepted that in conventional su-
perconductors the pairing comes entirely and solely from the electron-phonon
interaction, whose strength determines the material Tc (pairing and pair con-
densation are simultaneous effects in the BCS theory [13, 14]). Actually the
BCS theory is only valid in the so-called weak-coupling regime (even if many
phenomena are satisfactorily described even when the weak coupling require-
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2. Superconductivity with High Critical Temperature

ment is violated). Its generalization to the strong-coupling regime case is due
to Eliashberg [69, 134, 126], but the main features of the theory remains the
same. Usually, the origin of the net attractive interaction which forms the CP
is termed glue. In the BCS theory and its extensions, the glue is given by
phonons.
Electron-phonon interaction is thus an essential topic to be investigated in the
framework of high-temperature superconductivity, to highlight differences or
similarity with respect to the BCS case. Upon determining the electron-phonon
coupling strength in High-Tc materials, it is possible to point out whether the
material is in the weak or strong coupling regime, and possibly whether other
bosons contribute (entirely or cooperatively) to the pairing. Indeed, no consen-
sus has been reached yet on the nature of the (bosonic) glue in the High-Tc: a
strong debate is on whether the pairing is due to phonons [44, 56, 113, 120, 167],
spin fluctuations [2, 35, 162], or both (bosons of phononic or electronic origin).
Many techniques have been exploited to measure the electron-phonon coupling
constant, both in metals and superconductors. Nevertheless, the obtained re-
sults are contrasting. Among these techniques, which probe the equilibrium
properties of the material, I may cite ARPES, inelastic neutron scattering, tun-
neling spectroscopy, optical conductivity. Extracting information from these
static, equilibrium measurements is a task of high difficulty, since complex pro-
cedures of data inversion are needed. Reverting to the time-resolved point of
view, the electron-phonon coupling strength can be derived in a straightfor-
ward way, instead. The non-equilibrium approach revealed the more direct way
of extracting these information, since it allows to access the temporal domain:
the timescale of the return-to-equilibrium of an excited system of electrons and
phonons is related (see section 4.3.1) to the electron-phonon coupling strenght.
The first experimental results taking advantage of the temporal resolution are
dated 1990 for studies with optical measurements [25, 24] and 2007 for studies
with (time-resolved) ARPES [145]. A common model (some alternative mod-
els are reported in [96, 75]) employed to extract the electron-phonon coupling
is the Two-Temperatures model (and its evolution to the three temperatures
model, in the case of strongly correlated systems and anisotropic systems),
developed by Anisimov (1974) [10] and Allen (1987) [7]. This model will be
described in detail in Chapter 4 (section 3), together with its evolutions. Now,
a few words are worth to be spent about the definition of the electron-phonon
coupling strength and its relation with the material Tc.

The theory of strong coupling superconductivity is based on the Green’s-
function method of the many-body theory, with the theory of strong coupling
which is a generalization of the theory of normal metals, by Migdal (1957) [126].
Some important quantities enter the theory. F (Ω), being Ω the phonon fre-
quency, is the phonon density of states (PDOS), which constitutes the phonons
spectrum. α2(Ω) is the phonon-frequency-dependent electron-phonon interac-
tion. A very common quantity for the theory is the temperature independent,
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2.4. The Electron-Boson coupling in HTSC

material dependent product α2(Ω)F (Ω), which enters in the definition of the
(frequency integrated) electron-phonon coupling constant λ. The expression
α2(Ω)F (Ω) is usually called ’the glue function’. λ represents an effective cou-
pling:

λ = 2

∫ ∞

0

α2(Ω)F (Ω)Ω−1dΩ (2.3)

λ is the same as λ 〈Ω0〉, being λ 〈Ωn〉 the moments of α2(Ω)F (Ω), appearing
in the superconductivity theory:

λ
〈

Ω0
〉

= 2

∫ ∞

0

[

α2(Ω)F (Ω)Ω−1
]

ΩndΩ

Often, a characteristic phonon frequency Ω̃ is defined, as an average over
α2(Ω)F (Ω). Following the literature, at least three possibilities are reported:
”linear” (Dynes), ”quadratic” (Kresin−Wolf), ”log” (Allen−Dynes, Carbotte):

Ω̃ = 〈Ω〉, Ω̃ = 〈Ω2〉1/2, Ω̃ = 〈ln(Ω)〉. From simple comparison with the BCS-
limit case and for the better agreement with the data, the best choice for the
mean phonon frequency will turn out to be the ”log” one.
The mean values come from the expression:

〈f(Ω)〉 = 2

λ

∫ ∞

0

[

α2(Ω)F (Ω)Ω−1
]

f(Ω)dΩ

thus:

〈Ω〉 = 2

λ

∫ ∞

0

α2(Ω)F (Ω)dΩ ≡ 2A

λ

〈

Ω2
〉

=
2

λ

∫ ∞

0

α2(Ω)F (Ω)ΩdΩ

〈ln(Ω)〉 = 2

λ

∫ ∞

0

α2(Ω)F (Ω) ln(Ω)dΩ

Expressions for Tc = Tc(λ)
The electron-phonon coupling constant λ is an important parameter because it
enters the (approximate) expressions determining the material’s Tc, in the var-
ious coupling strength formalisms. The problem arises since a correct explicit
expression for Tc depends on the strength of the coupling, thus some limiting
cases are analyzed.
I start with the weak-coupling regime (λ 6 0.3), in which the BCS theory fully
holds. The BCS result actually reads:

kBTc ≈ 1.13~ΩD exp(−1/N(0)V )

where N(0)V = (λ− µ∗) (λ > µ∗).
The net attractive pairing potential V is proportional to an attractive part,
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λ (originating from the electron-phonon interaction) and a repulsive part, µ∗

(originating from electron-electron Coulomb interaction). In the above formu-
lae, N(0) is the density of states (per spin) at the Fermi Energy, and ΩD is the
Debye frequency (or a typical phonon frequency) of the material. The BCS
theory assumes the coupling is with just one phonon mode (with Ω = ΩD):
following the derivation of the above formula, one argues that the correct ex-
pression for the mean value Ω̃ is given by the log-average:

Ω̃ = 〈ln(Ω)〉 (2.4)

and that, by definition, in the BCS theory it holds: Ω̃ = ΩD.
The above BCS relation indicates that in general Tc is much smaller than the
material Debye frequency, ΩD. Even in many metallic, conventional supercon-
ductors, it turns out that λ is not in the weak-coupling regime (1.4 in Pb, 1.6
in Hg), so that new theories should be developed.
For larger values of λ (λ . 1.5), i.e., in the strong coupling regime, the re-
lation Tc vs λ is given by the famous McMillan formula [125] (later modified
and improved by Dynes [62] and by Allen&Dynes [8]), which derives from the
Eliashberg theory:

kBTc ≈
~Ω̃

1.2
exp

( −1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

)

(2.5)

This relation reduces to the BCS one in the weak coupling limit, λ ≪ 1. It
should be noted that in the above expression the coefficients 1/1.2, 1.04, 0.62
are the result of a fitting procedure of a more general expression to data from
real materials: this expression is thus ’semi-phenomenological’.
Finally, if the coupling constant λ is large (λ > 1.5), McMillan equation stops
being satisfactory, and one should use different expressions for the critical tem-
perature Tc (indeed, McMillan equation leads to a saturation of Tc for λ → ∞,
while the exact result does not: the effect of a maximum Tc is an artifact of
the approximations done, and is not intrinsic to the Eliashberg theory from
which it follows). A comprehensive review of these relations can be found
in [110, 28]. The conclusion is that, if the material is characterized by large
values of Ω̃ and λ, it can have a very high Tc. This can be the case when
some high-energy boson-exchange mechanism are operative, as it is the case
in copper-oxide based superconductors. Regarding the fact of achieving large
values of the electron-phonon coupling constant λ, the problem is related to
the framework of lattice or other instabilities, which are not accounted for by
the superconductivity theories. λ cannot increase indefinitely, indeed the lat-
tice would surely reach a point when it is no longer stable because of the very
large electron-phonon interaction, eventually leading to polaron formation. At
present, there is no universally accepted and quantitative stability criterion
[28].
Up to now, I considered for the glue function the expression α2(Ω)F (Ω), indi-
cating the frequency dependent electron-phonon interaction. The glue function
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can be generalized to include other possible scattering mechanisms / channels
for the electrons, for example, with spin fluctuations, charge fluctuations or
loop currents. The coupling between electrons and spin fluctuations is indi-
cated in a similar manner as: I2(Ω)χ(Ω). Thus, the total glue can be written
as: Π(Ω) = α2(Ω)F (Ω) + I2(Ω)χ(Ω) + .... In this framework, λ assumes the
more general meaning of an electron-boson coupling constant. A strong debate
exists on whether the electron-phonon interaction alone can provide the high
critical temperatures typical of the cuprate superconductors [110].
Considering the total glue function Π(Ω) as a source of pairing for electrons
is the ultimate step for the coupling theories which propose bosonic ’media-
tors’ for the formation of Cooper Pairs. It must be noted that these theories,
which consider a ”retarded” attraction mediated by the exchange of bosonic
excitations forming the bosonic glue, and not the only ones that have been pro-
posed. They are set against the theories for which the pairing comes directly
by the (”non-retarded”) Coulomb interaction, without the need of mediators
[151, 9, 146].
The presented approximate relations for Tc = Tc(λ, Ω̃) are of paramount im-
portance since they relate the material Tc to average values of the quantity
Π(Ω), i.e., λ and Ω̃. In section 4.3 I will present some models which allow
to estimate, from time-resolved pump-probe measurements, the parameter λ.
The valuse for λ obtained by measurements in the time-domain can be com-
pared to the values obtained by relation 2.3, which integrates the total Glue
Function Π(Ω) obtained from static optical measurements (section 3.7.2).

2.5 Bi2212 Crystal Structure

Bi2Sr2Cam−1CumO2m+4+δ, often abbreviated with BSCCO (Bismuth-Strontium-
Calcium-Copper-Oxyde) to highlight the chemical elements it contains, is one
of the most important members of the high critical temperature copper oxide
based (cuprate) superconductors. In the above formula, m indicates the num-
ber of Copper-Oxygen (Cu-O2) planes in the conventional unit cell of the ma-
terial, while δ indicates the doping level, obtained through modification of the
Oxygen concentration. In the BSCCO compound, the variation of the Oxygen
stoichiometry δ results in an effective hole-doping mechanism. Cuprates are
characterized by a layered structure, with Cu-O2 planes separated by spacer
layers that act as charge reservoirs.
Among the more than 20 distinct phases in which the BSCCO compound can
be synthetized, differing for the stoichiometric ratios and the growing process,
only three show high temperature superconductivity properties. They are indi-
cated with Bi2201 (the one-plane Copper-Oxygen compound, having Tcmax=20
K), Bi2212 (the two-planes Copper-Oxygen compound, having Tcmax=90 K),
and Bi2223 (the three-planes Copper-Oxygen compound, having Tcmax=110
K). The main difference between the three compound resides only in the num-
ber m of Cu-O planes contained in the conventional unit cell.
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Most of the measurements presented in this thesis work are carried out on
the two-layered compound (m=2), which formula is Bi2Sr2Ca1Cu2O8+δ (I will
refer to this compound simply by Bi2212). In particular, I will study peculiar
Yttrium substituted samples, in which some Ca atoms are substituted by Y
ones to stabilize the crystal structure and simultaneously increase the maxi-
mum critical temperature with respect to the conventional compound. Both
these requirements are achieved for 8% Y substitution: the chemical formula
of this compound is: Bi2Sr2Y0.08Ca0.92Cu2O8+δ. I will refer to this compound
by Y-Bi2212.

Figure 2.6: The Bi2Sr2Ca1Cu2O8+δ unit cell, evidencing the complex material
crystal structure, is reported.

Fig. 2.6 shows the conventional unit cell of Bi2212, from which it is possible
to argue the complexity of the crystal structure. The cell has an orthorhombic
crystal structure, for which the c axis is the main axis. The crystal axis have
the following dimensions: a=b=5.4 Å, c=30.6 Å [36]. The Bi-O planes are
the most probable fleaking planes for this structure, given the weakness of the
chemical bonds between Bi-O layers. Bi2212 is an easily cleavable compound,
with the c-axis being orthogonal to the cleaving plane. This reason makes
Bi2212 the most studied superconducting compound with photoelectron spec-
troscopic techniques. The stability of the compound crystal structure made
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this compound one of the most studied in general, together with the YBCO
copper oxide based superconductor. Bi-O planes are also the planes in which
the extra Oxygen atoms due to the doping modify the hole concentration. The
doping content δ strongly affects the physical properties of BSCCO. Indeed, for
δ = 0, this compound is an antiferromagnetic charge transfer insulator. It is
only for δ > 0 that the system becomes a (bad) metal. Moreover, it is only for
δ > δc, being δc a critical doping level, that the system undergoes the supercon-
ducting transition, when cooled. The superconductivity then disappears if a
maximum doping level, indicated with δl, is crossed. Thus, superconductivity
exists only for a limited range of doping concentrations, namely δc 6 δ 6 δl.
The doping level for which the compound exhibits its maximum critical tem-
perature, Tcmax, is called optimal doping level, δopt. δopt=0.16 in Bi2212.

The critical temperature is related to the oxygen doping level p by the phe-
nomenological formula [148]:

Tc(p) = Tcmax

[

1− 82.6(p− 0.16)2
]

(2.6)

being Tcmax=96 K for our compound.

All cuprates are known for their high anisotropic properties. As an exam-
ple of this, I may cite the electrical resistivity of Bi2212, equal to ρc ≈2 Ω·cm
along the c axis and equal to ρab ≈10−4 Ω·cm in the ab plane [43]. In the super-
conducting phase, both ρc and ρab drop below the measurability level. Similar
anisotropy properties can be found in the thermical conductivity properties.
The coherence length, with ξab ≈30ξc [55], is the manifestation of the material
anisotropy in the superconducting phase.

The values of the electronic and lattice specific heats for these samples, that
will be employed in the following chapters of this thesis, has been taken from
[94, 118]. For simulations involving the specific heat of the Bi2212 compound
(like those reported in Chapters 4, 6, 7, 8), it is important to remember that
one Bi2212 mole contains NA=6.022·1023 Bi2212 molecules, with every Bi2212
molecule composed of 15 atoms (2 Bismuth, 2 Strontium, 1 Calcium, 2 Copper,
8 Oxygen). The volume of one Bi2212 primitive cell equals 223 Å3, while its
denisty equals 6.56 g/cm3, corresponding to 891.15 g/mol.

2.5.1 The Yttrium-doped Bi2212

In Bi2Sr2CaCu2O8+δ, cation disorder at the Sr crystallographic site strongly af-
fects the maximum attainable value for Tc [68]. By minimizing Sr site disorder
at the expense of Ca site disorder, it has been demonstrated that the Tc of the
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two-layered Bismuth-based material can be increased up to 96 K. In particular,
this important advance has been achieved by growing a compound in which
Ca has been substituted by Y, namely: Bi2Sr2YyCa1−yCu2O8+δ. Tc,max=96
K has been obtained for y=0.08 (i.e., for 8% Y substitution). The chemical
formula for this compound is: Bi2Sr2Y0.08Ca0.92Cu2O8+δ (Y-Bi2212). Substi-
tution of Y for Ca also helps to enforce Bi:Sr stoichiometry, which reduces
chemical inhomogeneities. Moreover, this compound is as easy to prepare as
ordinary, nonstoichiometric Bi2212. For our purposes it is worth to note that
the electronic properties of this compound are similar to those of the most
known Bi2212.

Sample Preparation and Characterization
The superconducting samples I studied in this thesis work are large and high-
quality Y-substituted Bi2212 single crystals, grown in an image furnace by
the travelling-solvent floating-zone technique with a non-zero Y content [68].
Different annealing procedures have been followed to obtain samples with dif-
ferent doping level. The procedures to obtain an underdoped and an overdoped
sample are described. The underdoped samples were annealed at 550 ◦C for
12 days in a vacuum-sealed glass ampoule with copper metal inside. The over-
doped samples were annealed in a quartz test tube under pure oxygen flow at
500 ◦C for 7 days. To avoid damage of the surfaces, the crystals were embed-
ded in Bi2Sr2Y0.08Ca0.92Cu2O8+δ powder during the annealing procedure. In
both cases, the quartz tube was quenched to ice-water bath after annealing to
preserve the oxygen content at annealing temperature.
The critical temperature of the samples has been inferred from the sample
magnetic susceptibility curve, measured with a SQUID magnetometer (the
magnetic susceptibility curves are reported in Fig. 2.7 for three representa-
tive samples). The superconducting transition width has been estimated as
follows: ∆Tc ≡ ∆T10−90%, i.e., it has been considered the temperature span
for which the magnetic susceptibility of the sample passes from 10% to 90%
of its minimum value. For the optimally doped sample (OP), the critical tem-
perature reported (Tc=96 K) is the onset temperature of the superconducting
phase transition, the transition being very narrow (∆Tc<2 K). As a mean-
ingful parameter for the underdoped (Tc=83 K, UD) and overdoped (Tc=86
K, OD) samples, which have respectively transition widths of ∆Tc ∼8 K and
∆Tc ∼5 K, I report the transition midpoint temperatures instead. The hole
concentration p is estimated through the phenomenological formula 2.6.
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2.5. Bi2212 Crystal Structure

Figure 2.7: The magnetic susceptibility curves for three
Bi2Sr2Y0.08Ca0.92Cu2O8+δ samples are reported. The number of doped
holes per Copper ion, p, is: p=0.128 for the UD sample, p=0.16 for the OP
sample, p=0.197 for the OD sample.
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Chapter 3
Equilibrium Spectroscopy

3.1 Introduction

This chapter reports the description of the static optical properties of HTSC.
I’ll start with a review of the definitions and models which I will exploit in the
subsequent chapters of this work. In particular, the main focus will be about a
recently developed version of the Extended Drude formalism, which takes into
account the presence of a gap in the density of states (non-constant density
of states). A brief review of the relationships among optical properties and of
the important sum rules will follow. Finally, the results of the model fitting to
the experimental dielectric functions of Y-Bi2212 at T=300 K, T=100 K and
T=20 K will be illustrated. The first case allowed us to extract the material
bosonic glue, while data at T=100 K allows to discuss the role of a non-constant
density of states.

3.2 The dielectric function ǫ(ω)

The dielectric function, ǫ(ω), is a material-dependent complex function de-
scribing, in the frequency domain, the response of a material to an externally

applied electric field
−→
E (ω):

−→
D(ω) = ǫ(ω)

−→
E (ω), being

−→
D(ω) the effective elec-

tric field (also known as displacement field),
−→
D(ω) = ǫ0

−→
E (ω) +

−→
P (ω). Here

ǫ0 is the vacuum permittivity (ǫ0=8.85·10−12 F/m), and
−→
P (ω) the (material

dependent) polarization. ω is the frequency of the electric field. ǫ(ω) is a
response function, since it relates the characteristic response of a system to
the externally applied stimulus. Being a response function, it is causal, in the
sense that no effect can occur before the cause. As we will see, this intuitive
requirement brings very important results. In one sense, the dielectric function
establishes the link between the macroscopic world and the microscopic one.
From the macroscopic point of view, starting from ǫ(ω), all the optical prop-
erties can be calculated (see section 3.3). In particular, the reflectivity R(ω),
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3. Equilibrium Spectroscopy

the transmissivity T(ω), the complex index of refraction n(ω), the complex
optical conductivity σ(ω) and the penetration depth α(ω) can be all inferred
from ǫ(ω). From the microscopic point of view, ǫ(ω) is related to the opti-
cal electronic transitions in the material, that depend on the specific material
band structure. As a consequence, a detailed knowledge of this function would
provide unique information about the underlying electronic properties of the
materials.
A detailed description of the key concepts to interpret the electronic optical
properties of solids can be found in [185, 59], together with notions on the
experimental techniques, the principles of spectroscopy, and the measurement
configurations. In the field of equilibrium optical spectroscopy, among the
most important experimental works in which the optical properties of noble
metals and transition metal oxydes are measured and interpreted, I can cite
[65, 66, 67, 39, 155]. A review of the electrodynamics of copper-oxyde-based
high-temperature superconductors can be found in [15], while a recent review
of the optical properties of strongly correlated electron materials is [16].
In principle, the dielectric function ǫ(ω) can be determined from first principles
(with the exact electronic structure calculation, but this is the case only for
very simple materials [121]), it can be determined with calculations using Den-
sity Functional Theory (DFT), for metals, or Dynamical Mean Field Theory
(DMFT), for strongly correlated systems, or, finally, it can be modeled, as it
is very often the case. Sections 3.4 and 3.5 are enterely devoted to provide
an accurate description of the models developed to this aim, and that are the
most often used in the literature [15, 16, 179, 90]. An accurate reproduction
of the experimentally measured equilibrium dielectric function of Y-Bi2212 by
using these models constituted the preliminary task of my work. Results of
this analysis are presented in section 3.7.

3.3 Optical Properties

In this section I report some useful expressions relating the dielectric function
ǫ(ω) = ǫ1(ω) + iǫ2(ω) to other optical quantities of interest:

• The refraction index n(ω) = n1(ω) + in2(ω) of a non-magnetic material
is:

n(ω) =
√

ǫ(ω) (3.1)

• The optical conductivity σ(ω) = σ1(ω) + iσ2(ω) is:

σ(ω) = i
ω

4π
(ǫ(ω)− 1) (3.2)
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3.3. Optical Properties

• The reflectivity at normal incidence is given by:

R(ω) =

∣

∣

∣

∣

∣

1−
√

ǫ(ω)

1 +
√

ǫ(ω)

∣

∣

∣

∣

∣

2

(3.3)

or:

R(ω) =
(n1(ω)− 1)2 + n2(ω)

2

(n1(ω) + 1)2 + n2(ω)2
(3.4)

• For the absorption coefficient α(ω), entering in I(z) = I0e
−α(ω)z (being

I(z), I0, z respectively the absorbed intensity at z, the incident intensity,
and the coordinate perpendicular to the sample surface, for a normal
incidence geometry), it holds:

α(ω) = 4πn2(ω)ω (3.5)

or
α(ω) = 4πσ1(ω)/n1(ω)c

• λ(ω) = α−1(ω) is the penetration depth.

• Other useful relations (the frequency dependence is omitted) are:

ǫ1 = n1
2 − n2

2, ǫ2 = 2n1n2

n1 =
√

(|ǫ|+ ǫ1)/2, n2 =
√

(|ǫ| − ǫ1)/2

ǫ = 1 + i
4π

ω
σ(ω), ǫ1 = 1− 4πσ2/ω, ǫ2 = 4πσ1/ω

Since ǫ(ω), n(ω), σ(ω) are causal response functions, their real and imaginary
parts are not independent, but are mutually related by the Kramers-Kronig
(KK) integral relations [185]. The KK relations allow, if for example only the
real / imaginary part is experimentally available for any of the above quantities,
to calculate the corresponding imaginary / real part. The only requirement is
that the measured quantity must be available over a very broad spectral range.
Moreover, this fundamental connection allows to find algorithms to infer both
real and imaginary parts of ǫ(ω) or σ(ω) from the raw reflectivity data. More
details about these fundamental relations can be found in [185].

For completeness, the KK dispersion relations for the dielectric function ǫ(ω)
are:

ǫ1(ω)− ǫ∞ =
1

π
P

∫ +∞

−∞

dω′ ǫ2(ω
′)

ω′ − ω
(3.6a)

ǫ2(ω) = − 1

π
P

∫ +∞

−∞

dω′ (ǫ1(ω
′)− ǫ∞)

ω′ − ω
(3.6b)

Expressions in terms of integrals over positive frequencies only also exist [185].
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3. Equilibrium Spectroscopy

3.4 Drude and Lorentz dielectric functions

The most common models for reproducing a generic dielectric function are the
classical Lorentz and Drude models. The Lorentz model is applicable to insu-
lators, while the Drude model is applicable to free electron metals. They can
describe respectively the effect of optical transitions on the optical properties,
for direct interband transitions (transitions for which the final state of an elec-
tron lies in a different band, but with no change in the k-vector) and intraband
transitions (transitions in the same band; in particular, the conduction band).
These classical models, describing the response to an external electric field−→
E (ω) of a bound or a free electron in a solid, have a simple derivation. The
idea at their base, in an intuitive and classical picture, is to describe the elec-
tronic response to an electric field with an harmonic oscillator, for an electron
in an atom or solid. The electron with mass m and charge e, when immersed in
an electric field E(t) =

∫∞

−∞
E(ω)e−iωtdω, is subject to a driving force −eE(ω).

The restoring force is modeled through Hooke’s law: −mω2
0r. Here ω0 is not

the electron binding energy in the atom / solid, but rather the energy differ-
ence of an allowed optical transition. In the Drude model, ω0 = 0, since there
exist no threshold for absorption, for a conduction electron in a free electron
metal. Finally, the electron is subject to a viscous damping (representing an
energy loss mechanism arising from various scattering mechanisms) modeled
as: −mγ(dr/dt). This damping term is responsible for the fact that the in-
duced polarizability is complex, thus it differs in phase from the driving field,
at all frequencies. In the case of a nearly free electron metal (Drude model),
γ = 1/τ , being τ the mean free time between collisions, originated from the or-
dinary scattering of electrons with impurities and phonons, which is the same
scattering mechanism determining the value and temperature-dependence of
the electrical resistivity. Solving the motion equation, and and calculating the

polarization
−→
P (ω), the dielectric functions for the Lorentz (ǫL(ω)) and Drude

(ǫD(ω)) models result. They can be written as:

ǫL(ω) = 1 +
ωp

2

(ω0
2 − ω2)− iγω

=

[

1 + ωp
2 (ω0

2 − ω2)

(ω0
2 − ω2)2 + γ2ω2

]

+

+ i

[

ωp
2 γω

(ω0
2 − ω2)2 + γ2ω2

] (3.7)

ǫD(ω) = 1− ωp
2

ω2 + iγω
=

[

1− ωp
2 1

ω2 + γ2

]

+ i

[

ωp
2 γ/ω

ω2 + γ2

]

(3.8)

where ωp is the oscillator plasma frequency, defined as follows: ωp
2 = 4πNe2/m.

In a realistic situation, the two models must be used simultaneously: the Drude
model reproduces the low-energy side of the dielectric function, associated to
the metallic behavior; the Lorentz model reproduces the high-energy part of
the dielectric function, associated to interband transitions. Usually, a cut-off
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3.5. Extended Drude Model

frequency, ωc, is defined as the frequency at the crossing of the two behaviors.
This choice is arbitrary and lead to some debate, since the tail of the Drude
contribution extends well beyond ωc. In doped cuprates, this cutoff is usually
placed at about 10000 cm−1, i.e., 1.25 eV [138]. Thus, in general, a model
dielectric function comprises both kinds of oscillators; moreover, often a sum
of different Lorentz oscillators is considered, to take into account the fact that
many optical transitions from discrete bands or levels can be allowed. The
resulting model dielectric function ǫ(ω) is written as:

ǫ(ω) = ǫD(ω) +
m
∑

i=1

ǫLi(ω) = ǫ1(ω) + iǫ2(ω) (3.9)

where i labels the allowed interband transitions. ǫ1(ω) and ǫ2(ω) are:

ǫ1(ω) = ǫ∞ − ωp0
2 1

ω2 + γ02
+

m
∑

i=1

ωpi
2 (ω0i

2 − ω2)

(ω0i
2 − ω2)2 + γi2ω2

(3.10)

ǫ2(ω) = ωp0
2 γ0/ω

ω2 + γ02
+

m
∑

i=1

ωpi
2 γiω

(ω0i
2 − ω2)2 + γi2ω2

(3.11)

In ǫ1(ω), ǫ∞ takes into account the effect of high-energy interband transitions,
which are usually not included in the model. Ideally, if one would include all
the possible interband transitions, it would result: ǫ∞=1.
While the Lorentz model is widely used to reproduce the interband transitions
in a variety of materials, the Drude model fails in reproducing the low-energy
optical behavior in systems where a strong electron-boson interaction is present
[6, 5, 105]. The conventional Drude model is strictly valid only for simple met-
als, having a constant density of states at EF and a frequency-independent
scattering time τ (the impurity scattering). To interpret the low-energy opti-
cal properties of strongly correlated materials, in which quasiparticles strongly
interact with bosonic excitations (phonons or other bosonic excitations of elec-
tronic origin) or a gap in the density of states opens [166], an extended formal-
ism has been developed by Allen [6, 5], namely, the Extended Drude Model
(EDM). On its basis the optical properties of strongly correlated materials are
today successfully interpreted [15, 16]. In the next section the EDM in its
various forms will be discussed.

3.5 Extended Drude Model

Unless a very simple metallic material is considered, in which conduction band
electrons are almost non-interacting with phonons, the Drude model reveals
its limits in correctly reproducing the optical properties. Within the Drude
model, the effect of band structure is accounted for by considering an effective
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3. Equilibrium Spectroscopy

mass m∗ instead of the bare electron mass m in the expression of the plasma
frequency, while the scattering from impurities is accounted for by the damp-
ing term γ, which I will now rename as γimp.
When the electrons are interacting with some bosonic excitations (electron-
boson interaction), characterized by a typical spectral distribution, the scat-
tering process and the electron lifetime become strongly frequency-dependent.
Sources of electron-boson interaction can be the electron-phonon coupling (ei-
ther anisotropic, with prefential, strongly coupled modes, or with the whole
lattice), or an interaction with bosons of electronic origin, namely, antiferro-
magnetic spin fluctuations [2, 35, 141] or current loops [180]. This effect is
particularly severe in strongly correlated systems and cuprates, where part of
the total electron-boson interaction is thought to be the source of coupling
for the electrons forming pairs, in the scenario in which the attractive interac-
tion is ’retarded’, i.e., mediated by virtual bosonic excitations in the solid [127].

This physics is included in the EDM, which considers the novel sources of scat-
tering, and accounts for a frequency-dependent scattering rate and the renor-
malization of the electron effective mass due to the interaction. In a metallic
system, the physical processes responsible for renormalization of electronic
lifetimes and effective masses, are included in the description of the optical
properties in a phenomenologic way, by replacing the frequency-independent
scattering time τ (where τ−1 = γ) with a complex and frequency-dependent
scattering time, τ̃(ω), given by:

τ−1 ⇒ τ̃−1(ω) = τ−1(ω)− iωλ(ω)

where λ(ω) = m∗

m
− 1.

The quantities τ−1(ω) and 1+ λ(ω) describe the frequency-dependent scatter-
ing rate and the mass-enhancement of the electronic excitations, which are due
to many-body interactions. The quantity τ̃−1(ω) is equivalently termed optical
self-energy, Σopt(ω, T ), or memory function, M(ω, T ) (we explicit the tempera-
ture dependence). In the literature, the definition of M(ω, T ) is not univoque.
In particular, the most common definitions are: M(ω, T ) = τ̃−1(ω) [15, 132,
174], M̂(ω, T ) = iM(ω, T ) = iτ̃−1(ω) [179, 16], or finally −2Σ̂opt(ω, T ) =

M̂(ω, T ) [91, 92]. To avoid confusion, in the following I will use the first defi-
nition, with:

M(ω, T ) = M1(ω, T ) + iM2(ω, T ) = 1/τ(ω, T ) + iωλ(ω, T )

In this case, the dielectric function ǫD(ω, T ) is given by:
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3.5. Extended Drude Model

ǫD(ω, T ) = 1− ωp
2

ω(ω + i/τ̃(ω, T ))
= 1− ωp

2

ω(ω + iM(ω, T ))
=

= 1− ωp
2

ω(ω(1 + λ(ω, T )) + i/τ(ω, T ))

(3.12)

In terms of the optical conductivity σ(ω, T ), which is most often used in the
literature, one obtains:

σD(ω, T ) =
1

4π

ωp
2

1/τ̃(ω, T )− iω
=

1

4π

ωp
2

M(ω, T )− iω
=

=
1

4π

ωp
2

1/τ(ω, T )− iω(1 + λ(ω, T ))

(3.13)

This can be rewritten in the conventional Drude form as:

σ(ω, T ) =
1

4π

ω∗2
p (ω, T )

1/τ ∗(ω, T )− iω

after introducing the renormalized scattering time and plasma frequency:
1/τ ∗(ω, T ) = 1/τ(ω, T )[1 + λ(ω, T )], ω∗2

p (ω, T ) = ω2
p/[1 + λ(ω, T )].

The following relations holds, which indicates that 1/τ(ω, T ) and 1 + λ(ω, T )
are Kramers-Kronig related:

1/τ(ω) =
ω2
p

4π
Re

(

1

σ(ω)

)

1 + λ(ω) = −
ω2
p

4π

1

ω
Im

(

1

σ(ω)

)

After having illustrated the phenomenology at the base of the EDM, I focus on
the microscopic scattering mechanisms at the basis of τ(ω). In the following,
various versions of the formalism, which differs in the way the complex and
frequency dependent scattering time τ̃(ω) is expressed, are briefly described.

3.5.1 Extended Drude Model in the case of weak electron-
phonon coupling

The EDM form illustrated in this section is the first derived version, as pro-
posed by Allen in 1971 [6], to describe the far-infrared optical properties in
metals characterized by a non-negligible, though weak, electron-phonon inter-
action. The aim of the work was to stimulate a debate about the differences
in the optical behavior of normal and supeconducting materials. In fact, it
will be soon clear how from this theory the electron-phonon coupling function
can be extracted. The first applications of this theory [5] allowed to correctly
interpret the departures of NiSb and NiAs intraband optical spectra from the
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3. Equilibrium Spectroscopy

conventional Drude behavior. Allen original theory, valid in the limit T → 0,
was later generalized for finite T by Shulga [167]. The theory valid for weak
electron-phonon coupling was derived within second order perturbation theory.
This theory accounts for the additional photon absorption, with respect to a
conventional metal, arising from second order processes involving the creation
of both a phonon and an electron-hole pair. This approach is equivalent to a
first iteration of the collision term in the Holstein-type Boltzmann equation,
and is not as accurate as the full solution of the Boltzmann equation [6].

Within these approximations, the memory function M(ω, T ) can be written as
a convolution integral between a transport spectral function, α2

trF (Ω), and a
Kernel function, K

(

ω
2πT

, Ω
2πT

)

, which describes the thermal dependence of the
phononic excitations coupled with the electrons:

M(ω, T ) = −2

∫ ∞

0

α2
trF (Ω)K

(

ω

2πT
,

Ω

2πT

)

dΩ (3.14)

where the (material independent) Kernel function writes:

K(x, y) =
i

y
+

{

y − x

x
[Ψ(1− ix+ iy)−Ψ(1 + iy)]

}

+

{

y + x

x
[Ψ(1− ix− iy)−Ψ(1− iy)]

} (3.15)

where Ψ(z) are the Digamma functions, x = ω/2πT , y = Ω/2πT .
The quantity α2

trF (Ω) is related to the transport properties of the material.
In 1999 Marsiglio [122] found a method to directly determine α2

trF (Ω) from
spectroscopic data, with an inversion procedure:

α2
trF (Ω) =

1

2π

ω2
p

4π

d2

dω2
Re

(

1

σ(ω)

)

It must be pointed out that the quantity α2
trF (Ω) is different from the more

conventional α2F (Ω).
Within the weak-coupling formalism, extended to finite temperatures, the tem-
perature and frequency-dependent scattering time τ(ω, T ) is written as:

1

τ
(ω, T ) =

π

ω

∫ ∞

0

dΩα2
trF (Ω)

[

2ωcoth

(

Ω

2T

)

− (ω + Ω)coth

(

ω + Ω

2T

)

+

+(ω − Ω)coth

(

ω − Ω

2T

)

+ γimp

]

(3.16)

I numericaaly verified this model being KK consistent.
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3.5.2 Extended Drude Model in the case of strong electron-
phonon coupling

In the case of strong electron-phonon coupling, the Extended Drude formalism
is derived starting from the Holstein theory for normal metals, which is the
most complete theory for metals. Considering the Kubo formula and using
complex diagrammatic techniques to evaluate the electron and phonon ther-
mal Green’s functions, if one omits vertex corrections (Migdal approximation),
the Memory function M(ω, T ) results:

iM(ω, T ) + ω

ω
=

{
∫ +∞

−∞

f(ξ, T )− f(ξ + ω, T )

ω + Σ∗(ξ, T )− Σ(ξ + ω, T ) + iγimp

dξ

}−1

(3.17)

M(ω, T ) = −iω

{
∫ +∞

−∞

f(ξ, T )− f(ξ + ω, T )

ω + Σ∗(ξ, T )− Σ(ξ + ω, T ) + iγimp

dξ

}−1

+iω (3.18)

where f is the Fermi-Dirac distribution, Σ(ω, T ) and Σ∗(ω, T ) respectively the
electron and hole self-energies. These are obtained averaging Σ(ω, k, T ) over
the Fermi surface and assuming a constant density of states at EF .
The optical self energy M(ω, T ) and the one-particle electronic self-energy
Σ(ω, T ) (averaged over the Fermi surface) have the same analytical proper-
ties. However, they are conceptually different quantities. Σ(ω, T ) is a quantity
measured by a photoemission experiment, since this technique probes the sin-
gle particle excitations of the (N-1) particle system, which can be described
in terms of the spectral function and the single particle self energy. On the
contrary, an optical experiment looks at the particle-hole excitations of an N
particle system, and gives information about the joint particle-hole density of
states.
The electron self-energy Σ(ω, T ) is calculated through a convolution integral
between the coupling function α2F (Ω) and a kernel function L(ω,Ω, T ), in the
following way:

Σ(ω, T ) =

∫ ∞

0

α2F (Ω)L(ω,Ω, T )dΩ (3.19)

The kernel function L(ω,Ω, T ) in this formalism is written as:

L(ω,Ω, T ) =

∫
[

n(Ω′) + f(Ω)

Ω− ω + Ω′ + iδ
+

1 + n(Ω′)− f(Ω)

Ω− ω − Ω′ − iδ

]

dΩ′ (3.20)

n(Ω) being the Bose-Einstein distribution. The integral can be calculated an-
alytically, and results in:

L(ω,Ω, T ) = −2πi

[

n(Ω, T ) +
1

2

]

+Ψ

(

1

2
+ i

Ω− Ω′

2πT

)

−Ψ

(

1

2
− i

Ω + Ω′

2πT

)

(3.21)
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where Ψ are the digamma functions. The kernel function describes the thermal
excitations of the glue and the electrons. It is important to note that the terms
containing the temperature T, are separated into one addend containing the
Bose-Einstein distribution n (in which T represents the temperature of the glue
excitations) and in two addends containing the Digamma functions Ψ (which
are the result of the Fermi-Dirac distribution integration, and in which T is
related to the electronic temperature). Thus, the temperatures of electrons
and bosons acts on different terms. This will have important implications in
the analysis presented in Chapter 6. I numericaaly verified also this model
being KK consistent.

3.5.3 Extended Drude Model in the case of a non-constant
density of states

A further evolution of the EDM takes into account the possibility of a non-
constant electronic density of states, to correctly reproduce the effect of the
scattering of electrons with bosonic excitations in systems where a gap is
opened in the electronic density of states. This formalism will be relevant
in analyzing spectroscopic data in the pseudogap phase. This model was de-
veloped by Sharapov and Carbotte in 2005 [166], and applied by Hwang in
2011 to the analysis of HTSC spectroscopic data [90].
In this model, the imaginary part of the electronic self energy is given by:

Σ2(ω, T ) = −π

∫ ∞

0

α2F (Ω)

{

Ñ(ω + Ω, T )

N(0, T )
[n(Ω, T ) + f(ω + Ω, T )] +

+
Ñ(ω − Ω, T )

N(0, T )
[1 + n(Ω, T )− f(ω − Ω, T )]

}

dΩ

(3.22)

To compute the real part of Σ(ω, T ) = Σ1(ω, T ) + iΣ2(ω, T ), we use the
Kramers-Kronig relations (see equations 3.6). The calculation of the Mem-
ory function is done in the same way as in 3.4.2. The density of states Ñ(ω, T )
can be written in the following form [90]:

Ñ(ω, T ) =















Ñ(0, T ) + [1− Ñ(0, T )]
(

ω
∆pg

)2

for |ω| 6 ∆pg

1 + 2
3
[1− Ñ(0, T )] for |ω| ∈ (∆pg, 2∆pg)

1 for |ω| > 2∆pg

(3.23)

Where ∆pg is the energy gap width, while Ñ(0, T ) indicates the effectiveness
of the gap in reducing the density of states; it is a sort of gap filling. The ratio
Ñ(ω, T )/N(0, T ) for ∆pg=350 cm−1 and Ñ(0, T ) = 0.5N(0, T ), representing
the pseudogap shape, is shown in Fig. 3.1. The effect of the opening of
the pseudogap (i.e., Ñ(0, T ) < N(0, T )) is a reduction of 1/τ(ω, T ) [166].
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Figure 3.1: The effect of the gap opening on the normalized density of states
Ñ(ω, T )/N(0, T ), being N(0, T ) the (constant) density of states in the case of
no gap, is reported. Here Ñ(0, T ) = 0.5N(0, T ), which represents the value for
the density of state at zero frequency, and ∆pg=350 cm−1. From [90].

This effect must be taken into account in the attempts of extracting a reliable
α2F (Ω) from spectroscopic data, when a gap in the density of states is opened.
I numericaaly verified also this model being KK consistent.

3.5.4 Generalization of the electron-phonon coupling func-
tion α2F (Ω)

In the models reported so far, the function describing the coupling of the elec-
trons with bosonic excitations has been indicated as α2F (Ω), mainly for his-
torical reasons: the only scattering mechanism relevant for conventional super-
conductors is the electron-phonon one, and α2F (Ω) is known as the electron-
phonon coupling function. A generalization of the theory to a more universal
electron-boson interaction (more appropriate to the HTSC field), without any
change in the formalism, is possible simply replacing α2F (Ω) with a general
electron-boson coupling function, usually indicated as Π(Ω), and called the
Glue Function. This function takes into account all the possible channels for
the electron-boson interaction. The main distinction is between phonons and
bosons of electronic origin (such as spin fluctuations and loop currents). One
can thus write:

Π(Ω) ≡ α2F (Ω) + I2χ(Ω) (3.24)

where the latter term expresses the electron coupling with all the bosons of
electronic origin.
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Within this framework, it is instructive to consider the work by van Heumen
[179], in which the glue function Π(Ω) is extracted by fitting the EDM to the
spectroscopic data (the formalism used is the strong coupling one, in which
α2F (Ω) has been replaced by Π(Ω)). The guess-form for Π(Ω) is a histogram-
like function. The Glue Function Π(Ω) of HTSC presents some universal fea-
tures, as can be argued looking at the results obtained on different materials,
at different doping levels and temperatures (Fig. 3.2).

Figure 3.2: The Bosonic Glue Π(Ω) for several cuprate superconductors, at
various temperatures and for different doping levels, is reported. From [179].

The universal features of Π(Ω) are a peak at 50-80 meV and a broad contin-
uum extending up to 400-500 meV. The energy at which the peak occurs is in
the same energy range of the kink observed in ARPES spectra, in the nodal
direction [104]. It must be noted that with a similar form of Π(Ω), the optical
properties of a material can be reproduced at all temperatures. Nevertheless,
a small temperature-dependence of the Bosonic Glue Π(Ω) has been observed,
which is difficult to catch by equilibrium measurements, and which origin is
source of debate [92, 179, 15, 16].
In Fig. 3.3, I report the typical spectrum for a I2χ(Ω) spectrum given by
electron-boson interaction with spin fluctuations and current loops.

3.6 Useful Sum Rules and Spectral Weight in

High-Tc

The requirement of causality for every response function brings to the concept
of dispersion relations, which are integral formula relating dispersive processes
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Figure 3.3: a) A typical I2χ(Ω) spectrum for spin fluctuations, measured by
inelastic neutron scattering on a YBCO sample, is reported. From [47]. b)
A typical I2χ(Ω) spectrum (here labeled as Eliashberg coupling function) for
the magnetic excitation modes of the current loop ground state is reported. It
is extracted from ARPES data on a slightly under-doped Bi2212 compound.
The angle indicates the direction of the cut in the Brillouin zone along which
data are extracted; it is measured from the Y Γ direction. From [34].

to absorption ones (causality requires that absorption and dispersion processes
be intimately related, and cannot be considered as independent). The real
and imaginary parts of the dielectric function ǫ(ω) or of the refraction index
n(ω) are thus related by a dispersion relation, expressed through the Kramers-
Kronig integral relations. However, these relations hold for the real and the
imaginary parts of any response function (see equations 3.6).
Starting from these relations, it is possible to derive useful sum rules, the most
important of which is the so-called f -sum rule (or global oscillator strength
sum rule):

∫ ∞

0

ωǫ2(ω)dω =
π

2
ω2
p (3.25)

where ωp is the dressed plasma frequency of the system, i.e.: ωp
2 = 4πNe2

m
,

being N the total density of electrons participating to the interaction with the
electromagnetic wave.
Sum rules indicate conserved quantities, that is, quantities that do no change
under a change, for example, of temperature. Analyzing the left hand side of
eq. 3.n, it turns out that N must be a conserved quantity.
From this sum rule, the concept of spectral weight (SW) follows straightfor-
wardly: It is defined by:

SW ≡
∫ ∞

0

σ1(ω)dω =
1

8
ω2
p (3.26)

SW is by definition a conserved quantity.
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From this general definition, some particular results about the superconduc-
tivity in various materials can be derived, which are of fundamental impor-
tance. The fact that the total spectral weight is conserved means that it
must be the same at every temperature, and thus, the spectral weight above
Tc (for the system in the normal state) must equal the spectral weight be-
low Tc (for the system in the superconducting state). This concept can be
expressed by writing: SWSC = SWN , with the two spectral weights refer-
ring respectively to the superconducting state and to the normal state. The
superconducting state spectral weight is often written separating the regular
contribution, given from non-condensed electrons, from the singular contri-
bution, due to the condensed electrons (looking at the system as a two-fluid
system). The latter contribution comes from the delta at zero-frequency in the
optical conductivity, σ0(ω) =

πNse2

2m
δ(0), and writes: D ≡

∫∞

0
σ0(ω)dω. Thus,

SWSC = SWSC,reg +D.
In principle, nothing prevents spectral weight transfer to occur form one spec-
tral region to another. To extract useful information, it is customary to con-
sider a partial sum rule, calculating the spectral weight up to a cutoff frequency,
ωc; the partial spectral weight is defined as:

SW (ωc) ≡
∫ ωc

0

σ1(ω)dω =
πNeff (ωc)e

2

2m
(3.27)

The natural cutoff frequency to be chosen, is the one at the crossover between
intraband and interband contributions to the dielectric function. This energy
cutoff equals ∼1 eV in cuprates, while it is smaller in conventional, BCS su-
perconductors. For both the normal state and superconducting state spectral
weight, one can thus write: SWj = Aj + Bj (j=N,SC), with A ≡

∫ ωc

0
σ1(ω)dω

representing the intraband contribution to the SW, while B ≡
∫∞

ωc
σ1(ω)dω

represents the intraband contribution to the SW.
For BCS superconductors, with the choice of a proper, low-energy cutoff, the
relation AN = ASC + D holds. This is the famous Ferrell-Glover-Tinkham
(FGT) sum rule [175], which states the well known fact that, in BCS supercon-
ductors, the spectral weight removed from the gap region is entirely recovered
by the singular contribution at zero-frequency, related to the superconducting
condensate. Typically, the spectral weight is recovered within a few (∼10) ∆
[175]. No modification in B is observed, i.e., BN = BSC . For high-temperature
superconductors, on the other hand, it is said that the FGT sum-rule is vio-
lated, in the sense that: AN 6= ASC +D. Obviously, the total spectral weight
is conserved. This is written as:

AN + BN = D + ASC + BSC (3.28)

or, alternatively:

D = AN − ASC + BN − BSC
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This means that the superconductivity-induced spectral weight rearrangement
is not recovered within the low-energy, intraband region, but an involvement
of high-energy states (in the interband transitions region) is present.
Experimental results [131, 112] indeed suggested that (see Fig. 3.4), in the
High-Tc superconductor Bi2212, an increase of the intraband spectral weight
upon lowering T (beyond the thermal contribution related to the thermal nar-
rowing of the Drude oscillator [138]) goes on. This happens at the expense of
the high energy spectral weight (B term, related to the spectral range 10.000 to
20.000 cm−1), which diminishes upon lowering T. That this peculiar behavior
is related to the onset of superconductivity is made clear by observing that the
spectral weight trend presents a slope change exactly at T = Tc [112]. These
results, referred to both underdoped and optimally doped samples, contrast
with what predicted by the BCS theory.

The concept of spectral weight acquires further importance since it is inti-
mately related to carriers kinetic energy. This is exactly true in a limiting case,
in which the system can be modeled with a single conduction band, within the
nearest-neighbour tight-binding model [86, 139]. It has been demonstrated
that the total intraband spectral weight (similar to the A term) can be related
to the kinetic energy Tδ of the charge carriers (holes) associated to hopping
process in the δ direction, through the following relation [86]:

∫ ∞

0

σ1,D(ω)dω =
π2a2δe

2

2~2VCu

〈−Tδ〉 (3.29)

where σ1,D is the real part of the optical conductivity, related only to the
intraband region, aδ is the lattice spacing in the Cu-O plane, projected along
the direction determined by the in-plane polarization of the incident light, and
VCu is the volume per Cu atom.
To interpret optical data, often the following relation is assumed:

A ≡
∫ ωc

0

σ1(ω)dω ≈
∫ ∞

0

σ1,D(ω)dω

meaning that the intraband spectral weight is evaluated integrating optical
data up to the cutoff frequency ωc. Interpreting the observed trend for the
superconductivity-induced spectral weight shift in terms of carriers kinetic en-
ergy, it turns out that the increase of intraband spectral weight observed for
underdoped and optimally doped samples upon crossing Tc, implies a decrease
for the carriers kinetic energy (i.e., a kinetic energy gain). This is in contrast
to what one expects for conventional, BCS superconductors, where a loss of
kinetic energy upon entering the superconducting phase is overcompensated
by a potential energy gain. This observation of a possible, direct kinetic en-
ergy gain, for High-Tc superconductors, is is agreement with what proposed
by Hirsch and Marsiglio [85, 86, 124].
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Figure 3.4: The picture shows the lowering of the interband (high-energy,
Ah) spectral weight upon lowering the system temperature. Being these data
obtained by static optical spectrosocpy, they include the effect of the thermal-
narrowing (upon lowering the system temperature) of the Drude component.
The component related to the onset of superconductivity, which has the same
’sign’, is clearly present and evidenced by a change in the slope of the effect,
which happens exactly at Tc. Al+D is the total low-energy (intraband) spectral
weight. From [131].

It has to be mentioned that, on the overdoped side of the phase diagram, a
behavior more similar to the conventional superconductors has been observed,
for High-Tc. This finding suggests that at high doping levels, HTSC super-
conductivity behaves in a BCS-like manner. Indeed, in this region the system
gradually recovers the conventional T 2 law for the electrical resistivity, finger-
print of a Fermi-liquid-like behavior [171].

Concluding, a final remark about what happens in conventional superconduc-
tors. Since formula 3.28 is always verified, and an increase of carrier kinetic
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energy upon lowering temperature below Tc directly follows from BCS the-
ory, a slight transfer of spectral weight to high energies must happen. Thus,
though experimentally undetectable, a small spectral weight transfer must ex-
ist (a spectral weight transfer has never been observed in BCS superconductors,
since it is proportional to the condensation energy [175], in tuurn proportional
to ∆2, which in BCS systems is of the order ∼1 meV [175]). In a certain
sense, the FGT sum rule is strictly never true. FGT sum rule is indeed a
phenomenological relation, and up to now no such spectral weight transfer has
been measured in conventional superconductors.

From equilibrium optical measurement, with the help of the illustrated sum
rule, very important informations about the mechanisms driving the supercon-
ducting transition in copper oxide based superconductors have been extracted
[131, 179, 139, 138]. Anyway, these findings are not conclusive, in the sense
of assigning these spectral weight shifts a clear physical origin. Moreover,
the problem of the thermal narrowing of the Drude peak, upon lowering the
temperature, must be faced. Recently it has been demonstrated [138] that the
temperature dependence of the optical integral A ≡

∫ ωc

0
σ1(ω)dω in the normal

state of the cuprates is due solely to a cutoff-dependent term that accounts for
the extension of the Drude peak beyond the upper bound ωc of the integral,
rather than to a true sum-rule violation. This implies that the dominant con-
tribution to the observed sum-rule violation in the normal state is only due to
the finite cutoff ωc and to a thermal effect.
With the help of the recently developed time-resolved spectroscopic technique
(see Chapter 5), we were able to clarify that the whole spectral weight trans-
fer observed by static spectroscopies upon entering the superconducting phase
comes precisely from two high energy states (at 1.5 and 2 eV), and that a trend
form a superconductivity induced kinetic energy gain in the underdoped side
of the phase diagram, to a BCS-like superconductivity induced kinetic energy
loss in the overdoped side of the phase diagram, exists. More details can be
found in Chapter 8. The time-resolution eliminates the problem of the finite
cutoff ωc, being the electronic effects related to the condensate formation and
the thermal ones disentangled by their timescales.

3.7 Y-Bi2212 Static Dielectric Functions Anal-

ysis

In this conclusive paragraph I present the results of the fitting of the Lorentz
and Extended Drude model dielectric function, with the proper formalism, to
the optimally doped Y-Bi2212 sample (Tc=96 K) dielectric function experi-
mental data. I will treat singularly the cases of the optical properties for the
Y-Bi2212 sample in the normal state phase (T=300 K, section 3.7.1), in the
pseudogap phase (T=100 K, section 3.7.2) and in the superconducting phase
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(T=20K, section 3.7.3). The main difference in the model dielectric function
for the various cases will stand mainly in the Extended Drude formalism chosen
to model the low-energy part of the optical properties. This choice has been
guided by the relevant effect taking place in the non-equilibrium condition.
The ab-plane static optical properties of the Y-Bi2212 OP sample, presented
in Fig. 3.5 for a number of representative temperatures, present very little
differences. It is only the non-equilibrium susceptibility which strongly differs
from one phase to the other, as I will demonstrate in Chapters 6, 7, 8. The
choice of the static dielectric function to be employed for the static data is thus
guided by the non-equilibrium observations. However, the common features of
the model dielectric function are described in detail only in 3.7.1.

Figure 3.5: Y-Bi2212 Optimally Doped Static Optical Properties. The reflec-
tivity is presented in a broad energy range and in a wide range of temperatures.
The low-energy part (~ω .10000 cm−1) is governed by a metallic-like behavior
due to intraband transitions, while the high-energy part (~ω &10000 cm−1)
presents an insulating behavior, due to interband transitions. The first will be
modeled within an Extended Drude model dielectric function, the latter using
a proper number of Lorentz oscillators.

In Fig. 3.5 I reported the reflectivity R(ω) of Y-Bi2212. It has been calculated,
through formula 3.3, starting from the ellipsometric data published in [178].
The procedure used to experimentally measure the original data, i.e., ǫ1(ω) and
ǫ2(ω), is worth to be described. Indeed, ǫ1(ω) and ǫ2(ω) have been obtained
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by applying the KramersKronig [185] relations to the measured reflectivity,
in the range 50-6000 cm−1, and directly from conventional spectroscopic el-
lipsometry, in the range 1500-36000 cm−1. This combination allowed a very
accurate determination of the dielectric function ǫ(ω) in the entire combined
frequency range. Due to the off-normal angle of incidence used with ellipsom-
etry, the ab-plane pseudo-dielectric function had to be corrected for the c-axis
admixture.

3.7.1 Equilibrium Optical Properties of Optimally Doped
Y-Bi2212 at T=300 K: the Glue Function

In this paragraph I will present the fitting results of the Extended Drude and
Lorentz model dielectric function to the optimally doped Y-Bi2212 sample
(Tc=96 K) dielectric function, at T=300 K. Among the parameters extracted
from the fitting procedure (listed in Table 3.1), of particular importance is
the bosonic glue spectrum, Π(Ω), presented as the conclusive result of this
paragraph (Fig. 3.8).

Figure 3.6: The real and imaginary parts of the dielectric function of OP
Bi2Sr2Y0.08Ca0.92Cu2O8+δ (p=0.16) sample, measured by static ellipsometry
at T=300 K, is reported. Solid lines are the fit to the data, performed with
the model described in the text. In the inset, the sample reflectivity is shown.

Fig. 3.6 reports the real (ǫ1(ω)) and imaginary (ǫ2(ω)) parts of the optimally
doped sample dielectric function, measured by spectroscopic ellipsometry. In
the graph inset, the reflectivity R(ω), calculated from the data with formula
3.3, is presented. From these data we can clearly see that, below 10000 cm−1

(1.25 eV), the optical properties are dominated by the Drude response of free
carriers coupled to a broad spectrum of bosons [92, 179], whereas in the high-
energy region (~ω >1.25 eV), a major role is played by several interband
transitions. The best fit to the data, performed simultaneously on ǫ1(ω) and
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ǫ2(ω), is reported on the same graph as thin solid black lines. This fit has been
obtained modeling the dielectric function as:

ǫ(ω, T ) = ǫD(ω, T ) +
m
∑

i=1

ǫLi(ω, T )

where ǫD(ω, T ) and ǫLi(ω, T ) represent Drude and Lorentz oscillators, the
latter being indexed by i. We employed six Lorents oscillators, thus i=1-6.
ǫD(ω, T ) has been modeled as described in paragraph 3.5.2 (formulae 3.12,
3.18, 3.19, 3.21). The dressed plasma frequency of the system (the frequency
for which ǫ1(ω, T ) = 0), equals 1 eV.
Fig. 3.7 reports the different contributions of the single oscillators to the
imaginary part of the dielectric function ǫ2(ω). Three regions are evident: the
Intraband one, governed by the Extended Drude contribution, a region of low-
intensity transitions, mostly related to transitions between many-body Cu-O
states, and finally an intense feature (represented by transitions i=4,5,6, even
though only the i=4 one is visible on this wavenumber scale) which represents
the reminiscence of the charge-transfer (CT) gap, shifted to higher energies
because of the doping effect [51].

Figure 3.7: The Lorentz oscillators, as resulted from the fitting procedure,
are reported. In particular, their single contribution to the imaginary part
of the dielectric function is evidenced. Three oscillators represent transitions
between many-body Cu-O states, while the remaining three oscillators, here
represented as a whole, represent the reminiscence of the charge-transfer gap.

Fig. 3.8 contains the bosonic spectrum Π(Ω), extracted from the fitting pro-
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cedure. This spectrum, being Ω the boson frequency, represents the electron-
boson coupling strength at boson frequency Ω multiplied by the boson density
of states at boson frequency Ω. An histogram-like form for the glue function
has been assumed [38]. The spectrum is characterized by a low-energy part (up
to 40 meV), compatible with the coupling to acoustic phonons [1] and Raman-
active optical phonons, involving c-axis motion of the Copper ions [108]; a nar-
row, intense peak centered at ∼60 meV, attributed to the anisotropic coupling
to either out-of-plane buckling and in-plane breathing Cu-O optical modes [56]
or bosonic excitations of electronic origin, such as spin fluctuations [48], and
finally a broad continuum, extending up to 350 meV [141, 92, 179], i.e., well
above the characteristic phonon cut-off frequency (∼90 meV). In the determi-
nation of this bosonic glue, an upper limit of Ωmax=1 eV has been artificially
imposed, even if this limit could exclude some high-energy contributions to the
electron-boson coupling.

Figure 3.8: The Glue Function Π(Ω), representing the electron-boson coupling
strenght at the boson frequency Ω, is reported. This quantity is a result of
the fitting procedure to the static data reported in Fig. 3.6. The values of λ,
Ω̃ and Tc have been calculated with expressions 2.3, 2.4, 2.5 respectively, as
reported in section 2.4.

As I anticipated, the interband transitions in the near-IR/visible/UV spectral
range has been reproduced using six Lorentz oscillators at resonant frequencies
ω0i=1.26, 1.64, 2.25, 3.18, 3.60 and 4.17 eV. The number of the interband oscil-
lators is the minimum necessary to obtain a stable fit. Adding more oscillators
does not significantly improve the χ2 of the fit in the 1-5 eV region. The attri-
bution of the 1.26, 1.64, 2.25, 3.18 eV transitions, that are the most relevant to
this work, is a subject of intense debate. As a general phenomenological trend,
the CT gap edge (hole from the upper Hubbard band with dx2−y2 symmetry to
the O-2px,y orbitals), peculiar of the undoped compound, is about 2 eV [15].
Upon doping, a structure reminiscent of the CT gap moves to higher energies,
while the gap is filled with states at the expense of spectral weight at energy
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higher than ∼2 eV [15]. Dynamical mean field calculations of the electron
spectral function and of the ab-plane optical conductivity for the hole-doped
three-band Hubbard model recently found that the Fermi level moves into a
broad (∼2 eV) and structured band of mixed Cu-O character, corresponding to
the Zhang-Rice singlet states [51]. The empty upper Hubbard band, which in-
volves Cu-3d10 states, is shifted to higher energies with respect to the undoped
compound, accounting for the blue shift of the optical CT edge to 2.5-3 eV.
The structures appearing in the optical conductivity at 1-2 eV, that is, below
the remnant of the CT gap, are mostly related to transitions between many-
body Cu-O states at binding energies as high as 2 eV (for example, singlet
states) and states at the Fermi energy. Interpretation of the 1.26 eV structure
in terms of a d-d excitation [72] can be ruled out, since the oscillator strength
obtained from the fit is incompatible with the temperature dependence of a
phonon assisted d-d transition, observed in undoped compounds [17].
The dielectric functions of underdoped and overdoped samples have been ex-
trapolated from the illustrated optimally-doped one following the trend of the
optical properties at different dopings, as reported in [26]. In Table 3.1 I report
the fitting results for the OP sample.

3.7.2 Equilibrium Optical Properties of Optimally Doped
Y-Bi2212 at T=100 K: role of the Gap

Below T ∗ (onset temperature for the pseudogap), the opening of a gap in the
density of states impedes the use of the same EDM formalism used for the
T=300 K case to reproduce experimental data. In fact, it is known that in
cuprates an energy gap in the density of states opens at the T ∗ temperature
[49]. To correctly interpret equilibrium spectroscopic data below T ∗, the Ex-
tended Drude part of the previous model has been replaced with the recently
developed model presented in section 3.5.3, accounting for the gap opening.
This section reports on the results of this new approach.
Taking into account the effect of the opening of a gap in the optical proper-
ties is a difficult task, since static measurements are not accurate enough to
evidence such small effects. Our best fit has been done by assuming a value
of ∆pg equal to 350 cm−1 [153]; a value for the gap amplitude Ñ(0, T ) of 0.7
allowed us to obtain the best fit. I keep the Glue Function Π(Ω) equal to the
one extracted by the fit to the T=300 K data, sice, also in this respect, it is
difficult to evidence the small temperature-dependence of the Glue by fitting
the EDM to equilibrium ellipsometric data. This EDM formalism accounting
for a gap in the density of states will reveal of great importance in the analysis
of the time-resolved data taken in the pseudogap, as reported in Chapter 7.
The fitting of the Extended Drude model presented in section 3.5.3, and of six
Lorentz oscillators (as I did for the T=300 K case) to the equilibrium ellipso-
metric data at T=100 K, is presented in Fig. 3.9.
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Table 3.1: Fitting Parameters for the Model Dielectric Function of Optimally
Doped Bi2Sr2Y0.08Ca0.92Cu2O8+δ (p=0.16) at T=300 K

Parameter Value Unit

ǫ∞ 2.58
ωp0 18806 cm−1

γimp 192 cm−1

T 300 K

ω01 12305 cm−1

ωp1 2472 cm−1

γ1 4872 cm−1

ω02 16026 cm−1

ωp2 5500 cm−1

γ2 8097 cm−1

ω03 21947 cm−1

ωp3 15603 cm−1

γ3 14688 cm−1

ω04 31057 cm−1

ωp4 17738 cm−1

γ4 6190 cm−1

ω05 35146 cm−1

ωp5 15905 cm−1

γ5 6395 cm−1

ω06 40753 cm−1

ωp6 28647 cm−1

γ6 6949 cm−1

The effect in the simulated reflectivity obtained by assuming a complete closing
of the gap (Ñ(0, T )=1) are reported in Fig. 3.10, together with the reflectivity
obtained by the fit.

The fitting parameters obtained with this approach are presented in Table 3.2.
The Lorentz oscillator parameters are only slightly changed with respect to
the values obtained for the fit to the T=300 K data.

3.7.3 Equilibrium Optical Properties of Optimally Doped
Y-Bi2212 at T=20 K

Below Tc the superconducting gap 2∆(T) opens, and a zero-energy peak in
the real part of the optical conducibility, representing the ’optical’ response of
the condensed electrons, appears. Thus, below Tc the far-infrared reflectivity
is dominated by the effect of the opening of the superconducting gap and by
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Table 3.2: Fitting Parameters for the Model Dielectric Function of Optimally
Doped Bi2Sr2Y0.08Ca0.92Cu2O8+δ (p=0.16) at T=100 K

Parameter Value Unit

ǫ∞ 2.62
ωp0 18666 cm−1

γimp 213 cm−1

T 100 K

Ñ(0, T ) 0.7
∆pg 350 cm−1

ω01 12305 cm−1

ωp1 2261 cm−1

γ1 4872 cm−1

ω02 16075 cm−1

ωp2 5296 cm−1

γ2 8160 cm−1

ω03 21947 cm−1

ωp3 15600 cm−1

γ3 14688 cm−1

ω04 31057 cm−1

ωp4 16900 cm−1

γ4 6190 cm−1

ω05 35146 cm−1

ωp5 15905 cm−1

γ5 6395 cm−1

ω06 40753 cm−1

ωp6 28646 cm−1

γ6 6949 cm−1
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Figure 3.9: The real and imaginary parts of the dielectric function of OP
Bi2Sr2Y0.08Ca0.92Cu2O8+δ (p=0.16) sample, measured by static ellipsometry
at T=100 K, is reported. Solid lines are the fit to the data, performed with
the model described in the text. In the inset, the sample reflectivity is shown.

Figure 3.10: The fit to the reflectivity at T=100 K is presented (solid black
line). Black dashed line is the result of a simulation for the reflectivity obtained
from the same fitting parameters, except for the value of Ñ(0, T ), equal to 1,
i.e., no gap.

the emergence of the condensate δ(0) function. The extraction of the boson
spectral function in the case T < Tc is difficult [179]. For this reason, our fit to
the T=20 K data will prescind from the lowest energy (~ω .100 meV) region.
With the assumption that the electron-boson coupling does not change upon
entering the superconducting phase, we will keep the same electron-boson cou-
pling function Π(Ω) determined for the T=300 K case, and the formalism of
the EDM without gap in the density of states (section 3.5.2).
The fitting results of the Lorentz (six Lorentz oscillators are enough to obtain
the best χ2 for the fit) and EDM model to the T=20 K ellipsometric data are
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reported in Fig. 3.11.

Figure 3.11: The real and imaginary parts of the dielectric function of OP
Bi2Sr2Y0.08Ca0.92Cu2O8+δ (p=0.16) sample, measured by static ellipsometry
at T=100 K, is reported. Solid lines are the fit to the data, performed with
the model described in the text. In the inset, the sample reflectivity is shown.

The relevant parameters extracted from the fit to the T=20 K data are summa-
rized in Table 3.3. The Lorentz oscillator parameters are only slightly changed
with respect to the values obtained for the fit to the T=300 K and T=100 K
data.
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Table 3.3: Fitting Parameters for the Model Dielectric Function of Optimally
Doped Bi2Sr2Y0.08Ca0.92Cu2O8+δ (p=0.16) at T=20 K

Parameter Value Unit

ǫ∞ 2.67
ωp0 17418 cm−1

γimp 53 cm−1

T 20 K

ω01 11800 cm−1

ωp1 2358 cm−1

γ1 3644 cm−1

ω02 16163 cm−1

ωp2 6385 cm−1

γ2 8304 cm−1

ω03 21947 cm−1

ωp3 15026 cm−1

γ3 13998 cm−1

ω04 31057 cm−1

ωp4 16989 cm−1

γ4 6191 cm−1

ω05 35146 cm−1

ωp5 14747 cm−1

γ5 6396 cm−1

ω06 40421 cm−1

ωp6 27390 cm−1

γ6 7518 cm−1
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Chapter 4
Non-Equilibrium Physics of
HTSC

4.1 Introduction

With this chapter I want to underline the importance of non-equilibrium
physics, in understanding some aspects which equilibrium physics cannot prop-
erly address. In particular, emphasis will be directed to the information which
can be gained from non-equilibrium, all-optical time-resolved measurements,
based on ultrashort (∼100 fs) laser pulses.
In the field of strongly correlated systems, the non-equilibrium physics can
shed light on aspects which at equilibrium are masked and entangled, reveal-
ing the true nature of the physical phases. This is achieved thanks to both
the temporal resolution of non-equilibrium techniques (which allows to access
to the time domain, in which different kinds of excitations are disentangled by
their temporal dynamics) and the spectral resolution we have added (which
allows to access to the energy domain, in which the different effects are dis-
entangled by their out-of-equilibrium spectral fingerprint). A phase of matter
can be characterized thanks to the knowledge of its own intrinsic susceptibility,
i.e., its response to a light-induced perturbation, which can be ascribed either
to thermal effects, or excited state absorptions, or linear modification of the
static dielectric function. These different scenarios can indeed be revealed by
time-resolved optical measurements with spectral resolution, which are able to
reveal the microscopic changes in the electronic structure, which happen on
timescales much faster than those typical of thermal phenomena. The spectral
resolution is of paramount importance since it allows to relate a time-resolved
optical signal in the energy domain to a peculiar modification of the dielectric
function of the material, depending upon its electronic band structure. It is
the ability of non-equilibrium physics to temporally and spectrally disentangle
thermal effects from electronic ones which allowed us to get new insights on
the HTSC physics, revealing the nature of the different phases of the phase
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diagram.
This chapter is organized as follows. I will at first present a brief review of
the state of the art about the main results of time-resolved optical techniques.
Then, I will describe the models (namely, the Two-Temperature Model and
the Three-Temperature Model) which are commonly employed to extract the
electron-phonon coupling strenght from time-resolved optical measurements
in the time-domain. I will also formulate a generalized version of the three
temperature model. Finally, I will introduce the differential model used to
interpret the time-resolved optical measurements in both the time and energy
domains, which constitute the novelty of this work. The combined, simultane-
ous temporal and spectral rosolution allows finally to unambiguously associate
a physical origin to the observed time-resolved optical signals, thanks to the
approach we developed, based on the knowledge of the modifications, on ul-
trafast timescales, of the dielectric function of the material.

4.2 Pump-Probe experiments and QP dynam-

ics in HTSC

Time-resolved optical spectroscopy on copper-oxide based superconductors is a
technique that attracted much interest since the knowledge of the quasiparticle
dynamics can provide fundamental information on the properties of HTSC.
A pump-and-probe time-resolved optical measurement is conceptually simple:
an ultrashort (∼100 fs) pump pulse is used to inject excitations in the system,
while a second ultrashort pulse, named probe, analyzes the effect on the optical
properties of the system (usually the reflectivity R) induced by the excitation
of the system in a non-equilibrium condition. The temporal delay between
the pump and the probe beams, τ , can be varied by simply changing the rel-
ative optical path difference of the two beams (1 µm=3.3 fs). In this way,
the temporal dynamics of the reflectivity signal can be followed after the sys-
tem excitation. What one measures is the relative, transient (pump-induced)
change in the reflectivity R, defined as:

∆R

R
(ω, τ) =

Rexcited(ω, τ)−Requilibrium(ω)

Requilibrium(ω)

where Rexcited(ω, τ) and Requilibrium(ω) are respectively the excited (pumped)
and equilibrium (unpumped) reflectivities.
This time-resolved optical signal ∆R/R(ω, τ) depends upon the pump-probe
delay τ and the energy of the probe beam, equal to ~ω. However, in this sec-
tion I will present the established results of the literature, which are performed
at a fixed probe energy equal to ~ω=1.55 eV (λ=800 nm). I will refer to this
technique as the one-color pump-probe technique.

The time-resolved optical signal ∆R/R(ω, τ), which is characterized by a mag-
nitude, a sign and a decay time, constitutes a fingerprint of the different phases
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4.2. Pump-Probe experiments and QP dynamics in HTSC

of the HTSC phase diagram. Modifications of the time-resolved optical signal
are observed both upon changing the doping level of the material [78] and upon
changing the temperature of the system [117]. As reported in Fig. 4.1, the
time-resolved optical signal measured in the superconducting state of Bi2212,
changes from positive on the underdoped side of the phase diagram to nega-
tive on the overdoped side of the phase diagram, with the sign-change taking
place in coincidence with the optimal doping level. The time-resolved optical
signal measured in the superconducting phase reveals a decay time of about
2.5 ps, and an amplitude of the order 10−4 for a pump fluence in the range
1 µJ/cm2. The question regarding the nature of the excitations probed by a

Figure 4.1: Time-resolved optical signal (in reflectivity) measured on three
Bi2212 samples, differing for the doping level. The samples are held in the
superconducting state, i.e., T<Tc. From [78].

time-resolved transient reflectivity experiments performed on a HTSC in the
superconducting state has been faced in [77]. It has been demonstrated that
the time-resolved optical signal is proportional to the density of quasiparticles
created by the laser excitation, occupying states close to the antinodal regions
of the Brillouin zone. The lifetime of the photoinjected quasiparticle (and
thus the time-resolved optical signal) strongly depends on both the tempera-
ture and the pump laser intensity (see Fig. 4.2), and diverges in the limit in
which both the temperature and the excitation intensity tend to zero. This
effect is due to the constraints of momentum and energy conservation, pre-
venting the thermalization of antinodal quasiparticles toward the nodes. Fig.
4.3 shows instead how the time-resolved optical signal evolves, for an under-
doped sample, when the temperature of the sample is raised, starting from the
superconducting phase. Approaching the pseudogap phase, the positive and
slowly-decaying time-resolved optical signal characterizing the optical response
in the superconducting phase is gradually quenched, and at Tc a fast, negative
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Figure 4.2: Time-resolved optical signal for temepratures in the range 5-70 K,
measured on a YBCO sample having Tc=45 K. Curves are normalized to the
same value at delay zero to illustrate the variation in the initial decay rate. The
decay is most rapid at the highest temperature, and becomes systematically
slower as T is reduced. From [77].

and weaker time-resolved optical signal sets in. This kind of optical response
is considered the fingerprint of the pseudogap phase. This signal survives till
the T ∗ temperature is reached. For T > T ∗, the time-resolved optical signal
changes sign again, and becomes positive, with a fast decay time (∼300 fs)
and a small amplitude. This kind of optical response is typical of the normal
state phase.

While the meaning of the signal sign and amplitude remains unexplained in
this context, the temporal dynamics are usually interpreted on the basis of the
two/three temperature model for the normal state dynamics (see section 4.3
for deeper details regarding these models) and on the basis of the Rothwarf-
and-Taylor model for the superconducting state dynamics.

The Rothwarf-and-Taylor Model: QP dynamics in the supercon-
ducting phase
The dynamics in the superconducting state can be explained taking into ac-
count that below Tc, an energy gap of magnitude ∆ is opened. The physical
process which takes place, and explains the increase of the time-resolved optical
signal decay time (as compared to the normal state dynamics), is the following:
the pump pulse injects quasiparticles (with rate Iqp(t), which is Gaussian in
time like the pump pulse) in the system. This lead to a temporal dynamics for
the quasiparticle density n and boson density p (density of bosons with energy
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Figure 4.3: a) Temperature dependence of the time-resolved optical signal
(in reflectivity), measured on an underdoped Bi2212 sample. Blue line marks
the transition from the superconductive phase to the pseudogap. Green line
marks the transition from the pseudogap to the normal state. b,c,d) The time-
resolved optical signal in the superconductive, pseudogap and normal state is
reported, respectively. From [117].

> 2∆) which is governed by three physical processes, described by the follow-
ing picture (as illustrated in Fig. 4.4), and which are taken into account in a
system of differential equations for ∂n/∂t and ∂p/∂t. A Cooper Pair, whose

Figure 4.4: This picture sketches the three processes described by the Rothwarf
and Taylor model. a) Creation of two quasiparticles above the superconducting
gap, by absorption of one high-frequency phonon. b) Annihilation of two
quasiparticles and emission of one phonon. c) Anharmonic decay of high-
frequency bosons. From [54].

binding energy is 2∆, can be broken from the absorption of a boson with energy
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> 2∆, generating two quasiparticles: the rate of this process is proportional to
+2γp for the increase of quasiparticle density, while is proportional to −γp for
the decrease of high-frequency phonons. On the contrary, a Cooper Pair can
be formed by annihilating two quasiparticles (rate −βn); the binding energy
of the pair is then freed as a boson of energy 2∆ (rate +1/2βn). The bosons
can then anharmonically decay (through inelastic scattering, or simply leav-
ing the excited area by transport processes), with rate −γesc(p − pT ), being
pT the thermal boson population density and γesc the coefficient describing
the strength of the boson anharmonic decay. This picture is described by the
following set of coupled differential (rate) equations.

∂n

∂t
= Iqp(t) + 2γp− βn2

∂p

∂t
= −γp+

β

2
n2 − γesc(p− pT )

After quasiparticles are photoinjected in the system by the pump pulse, a
quasiequilibirum between the quasiparticles and bosons densities is established.
The slow decay time of phonons is responsible for the slowing down of the re-
laxation dynamics of quasiparticles (this is usually indicated as ’phonon bottle-
neck’). In particular, when γ > γesc, the quasiparticle and boson populations
result strongly coupled, and both decay with rate γesc (of the order of few
picoseconds−1). All this picture is consistent assuming that the time-resolved
optical signal at 1.55 eV is proportional, for the reasons that will be clarified
in Chapter 8, to the pump-induced perturbation of the condensate, i.e., to the
density of photo-injected quasiparticles.

The model described so far, regards the so-called ’low fluence regime’ (F.50
µJ/cm2), in which the pump fluence slightly perturbs the superconduting con-
densate and is not intense enough to photoinduce a non-thermal phase transi-
tions to the normal state, as pointed out in [111, 81, 80]. An interesting review
of fluence tresholds for photoinduced phase transitions in HTSC or melting of
CDW order in charge-density-wave systems can be found in [168]. A true ’spec-
troscopy’ of a physcial phase from the non-equilibrium point of view (by this
statement I mean the study of the peculiar excitations) can only be achieved
whether the physical phase is not (partially) vaporized, thus the requirement
to perform low-fluence studies.

Disentangling contributions to the signal from different quasipar-
ticles
Once demonstrated that the superconductivity-related signal presents a decay
time which is about one order of magnitude larger than the one observed in
the normal state and pseudogap phases, the contributions of the different ex-
citations to the time-resolved signal can be disentangled on the basis of their
decay times. This observation was used [53] to address the interplay between
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4.2. Pump-Probe experiments and QP dynamics in HTSC

superconducting and pseudogap phases in YBCO crystals. In Fig. 4.5 the
relaxation times associated to the different components of a multicomponent
exponential fitting to the data are reported. This successful way of disentan-
gling the different excitation contributions revealed a temperature independent
pseudogap and a temperature-dependent superconducting gap, with BCS-like
temperature dependence. This also implies a possible coexistence of both gaps
below Tc. The fact that the decay of the superconducting component diverges
exactly at Tc can be explained on the basis of the Rothwarf and Taylor model:
as the gap ∆ decreases approaching Tc, an increasing number of phonons can
break Cooper Pairs, and this results in a huge number of quasiparticles. Thus a
quasiequilibrium between quasiparticles and phonons establishes, which slows
down the recombination dynamics, governed only by inelastic processes.

Figure 4.5: Relaxation times resulting from a two component fit of the time-
resolved optical signal, on some YBCO samples, differing from the doping level.
One component (squares) diverges exactly at T=Tc, while the other (circles)
is temperature independent. From [53].

Pump-probe measurements in the THz region
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In the superconducting phase, the signal observed at 1.55 eV is intimately re-
lated to the low-energy physics associated to the superconducting condensate.
This can be directly demonstrated by pump-probe measurements in which the
probe is a THz field (1 THz= 4.13 meV). In particular, in the THz range, the
optical conductivity is given by the formula [99] (within a two fluid model, for
quasiparticle density ρQP and superfluid density ρS):

σ(ω) = ρQP
1

1/τ − iω
+ ρS

(

πδ(0) +
i

ω

)

from which it is clear that the imaginary part σ2(ω) is proportional to the
superconducting condensate density, at low frequencies (τ is the conventional
Drude scattering time).
The THz probe thus directly accesses the superconducting condensate energy
region. Typically, this energy region is 0.1-3 THz, ie, 0.4-12 meV. Examples
of this kind of pump-probe measurements are reported in [12, 99]. The mea-
sured THz relaxation dynamics is strikingly similar to that observed in the
near-infrared, as can be argued by looking at Fig. 4.6 (from [99]). Some differ-
ence exist anyway with respect to the optical probing: while elastic scattering
with large momentum transfer dominates transport properties of carriers, the
transient THz kinetics enables a sensitive measure of the inelastic quasiparticle
recombination.

Magnitude of the signal in the different phases of an HTSC
The fact that, in the visible spectral region, the observed transient reflectivity
signal magnitude in the superconducting state (of the order of 10−4 for fluences
of the order of 1 µJ/cm2) is at least one order of magnitude bigger than the one
observed in the normal state and pseudogap phases, has been known by long
time [164] (see Fig. 4.7). A clear interpratation of this fact has been proposed
only recently [80]. Two scenarios were proposed to explain this experimental
evidence: the first consider the ∆R/R signal as due to an excited state ab-
sorption, as it happens in metals and semiconductors. The second, instead,
consider the ∆R/R signal as arising from a true (pump-induced) modification
of the band structure of the material, which involves a spectral weight shift
between high (in the near-IR) and low (condensate) energy scales (and which
justifies the increase of the magnitude of the signal). In this scenario, the band
structure at high energy is modified as a consequence of a partial quench of
the energy gap, demonstrating an interplay between physics at very different
energy scales. We ruled out the first scenario [80], as I explain in Chapter 8.

Beyond one-color optical pump-probe measurements
In concluding this section, I want to remark how single-color measurements,
though very powerful in characterizing the peculiar phase of the system and in
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Figure 4.6: Induced THz conductivity changes, for T=6 K and a 0.7 µJ/cm2

pump fluence, on a OP Bi2212 sample. a), b) Measured changes in the real
part of the optical conductivity σ1(ω) and in the imaginary part σ2(ω) (circles)
at indicated time delays t after the excitation. Solid lines are the fitting results
of a two-fluid model, corresponding to a momentary depletion of 16% (1.3 ps),
8% (10 ps), 3.2% (35 ps), 2.7% (50 ps) of the low temperature condensate
spectral weight and Drude widths, respectively, of of 1/τ=1.35, 1.26, 1.21, and
1.20 THz. c) The transient conductivity changes at center probe energy 5.5
meV, averaged over a 1.6 meV interval, versus pump-probe time delay t. From
[99].

extracting very useful information mainly related to the relaxation dynamics,
fails in producing a comprehensive physical picture able to explain the mi-
croscopic physical origin of the observed transient signals. To overcome this
limitation, we developed a novel time-resolved optical spectrosocpy (described
in 5) which adds the energy resolution to the usual temporal resolution. This
is achieved thanks to a broadband probe pulse. With this technique, the time-
resolved signal in the energy domain can be related unambiguously to pump-
induced modifications of the dielectric function ǫ(ω) of the material, allowing
to associate a physical origin to the observed signal, in the various phases of
the system. In section 4.4 the approach we employ to interpret time-resolved
data in both the time and energy domains is presented.
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Figure 4.7: Time-resolved optical signal (in reflectivity) at constant pump
intensity, for different temperatures, from a YBCO sample. It is evident how
the signal intensity increases in the supeerconducting state. From [164].

4.3 Determining the Electron-Boson coupling

by pump-probe

Determining the electron-phonon (and more generally the electron-boson) cou-
pling strength is a task of paramount importance to give more insights into the
problem of High Temperature Superconductivity. The nature of the glue which
binds together electrons forming Cooper Pairs (and its coupling strength) is
one of the most debated points in the HTSC field. Time resolved techniques
allow to directly measure the electron-phonon coupling λ, as compared to other
static (equilibrium) techniques (such as ARPES, tunneling, inelastic neutron
scattering). Moreover, the temporal resolution of pump-probe techniques, giv-
ing a direct access to the time domain, allows to discriminate among the pos-
sible different bosonic populations the electrons scatter with (are coupled to):
each electron-boson coupling channel will give origin to a different dynamics in
the time-resolved signal, whose decay is related to the electron-boson coupling
strenght. This connection is modeled by a number of models which will be
carefully analized in the following. The conventional, one-color time resolved
pump-probe technique suffices the extraction of the parameter lambda; we will
also briefly point out how the spectral resolution can help in determining the
nature of the bosons the electrons are coupled to.
The outline of this section will follow a chronological order, with the emphasis
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on the experimental findings which motivated or supported the various models.
In particular, I will start from the Two-Temperature Model (4.1), and then in-
troduce the Three-Temperature Model (4.5), illustrating the reasons leading to
the formlation of this model. I will also formulate a novel, generalized version
of the three temperature model, in which a ’parallel’ coupling of electrons with
all bosonic populations is taken into account (4.8). This model can be natu-
rally extended to include more temperatures, one for each bosonic population
the electrons scatter with. On this line, I will present the system of coupled
differential equations for a four temperature model. With this model, formu-
lated to explain the experimental evidences presented in 6, all the possible
scattering mechanisms which contributes to the total electron-boson pairing,
which manifests in the glue function Π(Ω), are taken into account.

4.3.1 The Two-Temperature Model

In this section, the Two-Temperature Model (2TM) is described.
The so-called ’Two-Temperature Model’ is the result of the theoretical work
done by Anisimov [10] and Allen [7]. The model interprets and describes the
electronic non-equilibrium dynamics excited in a material by an ultrashort
(∼100 fs) laser light pulse. This model applies to metals and conventional,
metallic superconductors. The formulation of this model was stimulated by
the development of new laser sources, producing ultrashort pulses in the ps
domain. The first systematic experimental studies were those of Brorson [25],
who measured λ in several metals.
We can say that the two temperature model describes the physics of a pump-
probe experiment carried on a solid state material, in which the electron-
phonon scattering is directly observed in the time domain.
The physical picture on which the model was developed is the following. The
energy deposited in the system by the laser pulse is absorbed by electrons,
which are instantaneously excited above the Fermi level. After a few fs,
electron-electron scattering processes, on the 1-10 fs timescale [11], drive the
thermalization of the electronic population at an elevated temperature Te > T0,
T0 being the base temperature. On this timescale, the electrons are practically
disentangled from the lattice: the electrons thus reach the maximum tempera-
ture Te(0) determined mainly by their specific heat. On a longer timescale, the
electrons start to lose energy through electron-phonon scattering, and reach
a common temperature with phonons. Finally, a much slower relaxation pro-
cess - dominated by heat diffusion - makes the system return to the ambient
temperature T0. It is important to point out that the rate of return to lo-
cal equilibrium is governed entirely by electron-phonon processes. The model
presented assumes that diffusion driven by spatial inhomogeneities is negligi-
ble; acceleration due to both external and internal fields is negligible, and no
other collision processes are important. The most important requirement is
that electron-electron and phonon-phonon (anharmonic) processes are active
in keeping the electronic and phononic distributions equal to the local equi-
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librium distributions (respectively FD and BE) at the separated temperatures
Te(t) and Tl(t). The metal is looked as a two temperature system at every
time t.
The phenomenologic system of coupled differential equations describing the
evolution of the electronic and the lattice temperatures, as proposed by Anisi-
mov in 1974 to describe the energy balance for a metal absorbing a laser pulse,
is:

∂Te

∂t
= − G

Ce

(Te − Tl) +
p

Ce

(4.1a)

∂Tl

∂t
=

G

Cl

(Te − Tl) (4.1b)

Where Te, Tl are the electronic and lattice (phonon) temperatures, respec-
tively. G = γe−phCe is a coupling constant describing the coupling between the
electron and the phonon systems. γe−ph is a different way of expressing the
coupling constant, often found in the literaure [7]. Ce = γeTe is the electronic
specific heat, being γe the coefficient of the linear electronic specific heat. Cl

is the lattice specific heat. p is the absorbed power, with the same Gaussian
profile of the laser pulse. Both the specific heats and the laser power are ex-
pressed per unit of volume.
The solution of this system of equations indicates that the electronic tempera-
ture evolution follows an exponential decay with time-constant τ = (γe−ph)

−1.
It is worth to point out that this model was developed in order to describe
the electron emission from metal surfaces exposed to picosecond laser pulses.
It was found that for laser intensities beyond a critical value, the emission
current is entirely due to thermoionic emission (while below threshold a com-
petition between photoelectric emission and thermoionic emission exists). The
first attempt to measure the electron-lattice relaxation kinetics was done by
measuring the thermoionic emission current, proportional to the electronic
temperature.
The relation between the experimentally measured τ and the key-quantity λ,
expressing the electron-phonon coupling in the superconductivity theory, has
been first derived by Allen [7], though in a limit I will discuss in the following.
The main result is that λ can be directly inferred from τ , once the electronic
temperature Te and the mean phonon energy 〈~2ω2〉 are known. Allen’s for-
mula is:

γe−ph =
3λ〈~2ω2〉
~πk2

BTe

(4.2)

thus:

G = γe−phγeTe =
3γe
~πk2

B

λ〈~2ω2〉

Te(0) can be easily evaluated starting from the pump laser energy delivered to
the electrons, and the electronic specific heat. This value, together with the
value of Te(∞)=Tl(∞) (which can be estimated from the pump laser energy
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and the lattice specific heat), constitute the initial conditions to correctly solve
the differential system of equations (while Tl(0) = T0, being T0 the base system
temperature). The mean phonon energy 〈~2ω2〉 is more difficult to evaluate;
it can be taken from the literature (the phonon spectrum can be measured
by scattering techniques), or it can be approximated with ~

2ωD
2/2 [24]. Since

Te(0) can be calculated, measuring τ allows to know the product λ〈~2ω2〉 with-
out free parameters. For completeness, the experimentally extracted values of
λ range from 0.1 to 0.15 for non-superconducting metals (Au, Cu), to 0.25-0.4
for very low-Tc (.1 K) superconductors (W, Ir, Ti, Zn), to 0.8-1 for the most
known metallic superconductors (In, Sn, Hg, Pb, Nb), which are in the strong-
coupling limit.
Expression 4.2 predicts a direct proportionality between the decay time τ and
the electronic temperature Te. To understand in which limits this formula is
applicable, it is worth to follow a few steps, illustrating the approximations
used and the derivation of the same expression.
The decay rate of the electron thermal energy (transferred to the phonon sys-
tem) is given by:

∂Ee

∂t
= 2πNcN(EF )

∫ ∞

0

dΩα2F (Ω)(~Ω)2 [N(Ω, Tl)−N(Ω, Te)] (4.3)

where Nc is the number of cells in the sample, N(EF ) is the density of states of
both spins per unit cell, and N(Ω, Tj) are the BE distribution functions (j=e,l).
The electronic energy for the system can be written as: Ee =

∑

k ǫkFk ≈
E0 + 1/2γeT

2
e (where Fk is the FD distribution, and E0 the system point-zero

energy, for the system at T = 0), while the electronic specific heat writes:
γe=π2NcN(EF )k

2
B/3.

Without any assumption regarding the actual spectrum of the electron-phonon
coupling α2F (Ω), and remembering that λ 〈ω2〉 = 2

∫∞

0
α2F (Ω)ΩdΩ, equation

4.3 can be rewritten as:

∂Ee

∂t
= π~NcN(EF )λ

〈

ω2
〉

kB(Tl − Te) + ... (4.4)

if a Taylor expansion of N(Ω, Tj) in terms of ~Ω/kBTj is carried out, in the
high temperature limit, that is, when both Te and Tl are much higher than
the phonon energy ~Ω.
Finally, expression 4.4 can be recasted in the usual form ∂Te/∂t = γe−ph(Tl−Te)
by using the definitions of EE and γe.
Allen Formula 4.2 is thus strictly valid only when the system is considerably
heated by the pump pulse energy.

Relation between the optical signal and the temperature increments
∆Te, ∆Tl

In the context of a pump-probe experiment, the pump-induced change of the
electronic temperature Te modifies the electronic distribution of the material,
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being the electronic population described by a Fermi-Dirac statistic at an el-
evated temperature Te. This effect can be monitored by a subsequent probe
pulse, which reflection or transmission is influenced by the change in the elec-
tronic population of the material. More considerations about this point are
done at the end of this section.
It must be emphasized that, for the optical pump-probe technique to be em-
ployed to the study of the electron-phonon coupling, the induced changes in
Tj (j=e,l) must have an effect on the sample optical properties (reflectivity or
transmittivity), at the probe wavelength. In the more general form, the in-
duced change in reflectivity will be sensitive to both variations in the electronic
temperature (∆Te) and in the lattice one (∆Tl): ∆R/R = c1 ·∆Te + c2 ·∆Tl.
The ratio c1/c2 is usually a free fitting parameter.
Changes due to ∆Tl can come from band shifting arising from thermal strain.
These lattice-temperature-induced reflectivity changes will decay on very long
timescales, determined by the rate at which the heat can diffuse away from
the optically excited area. In this model Te and Tl remain at an elevated tem-
perature with respect to T0, since the heat diffusion effect is not taken into
account. This is not a limitation, being the timescale of this effect of the order
of the ns.
Changes induced by ∆Te instead are due to optical transition from/to states
which population is altered by the laser excitation; in particular, any transition
involving states near the Fermi level will be sensitive to Te. The idea is simple:
the increase of the electronic population makes the tails of the Fermi distribu-
tion smearing, opening states below the Fermi level for transitions. These new
states can then absorb probe photons, resulting in an increase of absorption.
Alternatively, the promoted electrons of the Fermi distribution can be excited
to free states above the Fermi level, resulting in an absorption decrease. The
actual sign of the ∆R/R thus depends upon the material band structure.
Overall, the relative induced change in reflectivity turns out to be very small,
of the order of 10−4 to 10−6.

Limits of the Two-Temperature Model
Here I will state briefly the main limits of the 2TM, which call for an exten-
sion of the model. The main criticism to this model stands in the possibility
to define the electronic temperature Te. Though the optical scattering rate
τe−e is of the order 1-10 fs [11], indicating a very fast electron thermalization,
recent photoemission experiments [145] found a small deviation of the actual
non-equilibrium electronic distribution with respect to a Fermi-Dirac statistics.
The non-thermalized high-energy tail evidenced in [145], to whom the authors
didn’t give much weight, is instead predicted (as shown in [75]) by exact cal-
culations [96] taking into account the exact analytical solution of the integral
Boltzmann equation, without the questionable assumption that electrons are
in a quasiequilibrium with a time-dependent temperature. The electron-lattice
ralaxation rate within this formalism is: (τe−ph)

−1 = 3~λ 〈ω2〉 /2πkBTl. Apart
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the factor of ’2’ with respect to the 2TM result, more important is the de-
pendence on Tl rather than Te, which justifies the experimental evidence that
the relaxation rate is fluence-independent. A term of difficult evaluation is
〈ω2〉, which is in general taken from the literature. The model by Kabanov
et al. [96], which is applicable also when the electron-electron scattering time
is bigger than the electron-phonon scattering time (i.e., when τe−e>τe−ph), is
the natural model to be employed to interpret the findings described in [144],
in which the apex oxygen vibration in YBCO turns out to be strongly excited
within 150 fs, demonstrating that the lattice absorbs a major portion of the
pump energy before the quasiparticles are thermalized. The evidence of an
ultrafast electron-phonon coupling with peculiar phononic modes, evidenced
in [144], and the observation of a double exponentially-decaying dynamics
in optical measurements on HTSC, are a strong evidence for an anisotropic
electron-phonon coupling, which cannot be accounted for by the 2TM. This
observation clearly invokes a further coupling term, which is accounted for by
the Three-Temperature Model.

4.3.2 The Three-Temperature Model

The Three-Temperature Model (3TM) was initially developed [145] as an ex-
tended version of the two temperature model, to interpret recent new results
obtained with the time-resolved ARPES technique. In particular, this model
well reproduces the time-resolved dynamics observed in systems with a strong
anisotropy of the electron-phonon interaction, due to phonon branches with
different coupling strength, which results in different timescales in the relax-
ation dynamics. This is the case of strongly correlated materials, such as the
cuprates.
The experimental findings, on an optimally doped Bi2212 single crystal (at
T=30K), are the following. A time-resolved ARPES experiment is concep-
tually simple: the sample excitation is performed with 1.5 eV laser pulses
(pump), while the photoelectrons are emitted thanks to a 6 eV probe beam
which is delayed with respect to the former. Photoelectrons are collected and
analyzed with a time-of-flight (TOF) spectrometer. Time-resolved ARPES
’directly’ probes the electronic temperature Te(t), which is inferred from the
photoelectron spectra (collected at the Fermi wavevector) at various pump-
probe delays t. A fast thermalization for the electronic population is observed,
since the electronic distribution converges to a Fermi Dirac distribution within
the pump pulse duration (∼50 fs). This is due to a large electron-electron
interaction. The novelty of the data stands in the fact that the electronic
temperature Te relaxes with two different timescales: a fast one (which relaxes
with an exponential decay with τα ≈110 fs) and a slow one (which decays with
τβ ≈2 ps).
The physical interpretation the authors gave was the following. After the
fast electronic thermalization, the electronic population at the temperature
Te starts to relax transferring energy to a subset of strongly coupled (also
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called ’hot’) phonons, whose temperature is indicated with Tp. The idea is
that only a small subset of the total phonon modes (a fraction f of the total,
with 0 6 f ≪ 1) contributes to the coupling. After a time ∼ 3τα, the elec-
trons and the hot phonons reach a common temperature, and their relaxation
dynamics becomes similar. Then, the relaxation process of both populations
proceeds with a decay on the picoseconds timescale, governed by the phonon-
phonon anharmonic scattering. This scattering occurs between two ’indepen-
dent’ phonon subsets: the more strongly coupled ones (f modes) and the nearly
non-interacting 1− f phonon modes (sometimes called ’cold’ phonons or sim-
ply ’lattice’), the latter being characterized by the temperature Tl. This is the
physical picture described by the so-called (conventional) three temperature
model.
Within the approximation of an Einstein model for the phonon spectrum (a
non-dispersing distribution for the phononic modes given by F (Ω − Ω0)),
being

∫∞

0
dΩΩ2α2F (ne − np) the rate of energy transfer from electrons to

phonons (with nj = (eΩ/kBTj − 1)−1) and λ = 2
∫∞

0
dΩΩ−1α2F the dimen-

sionless electron-phonon coupling, the system of rate equations for the tem-
peratures Tj(t) is:

∂Te

∂t
= −3λΩ3

0

~πk2
B

ne − np

Te

+
p

Ce

(4.5a)

∂Tp

∂t
=

Ce

Cp

3λΩ3
0

~πk2
B

− Tp − Tl

τβ
(4.5b)

∂Tl

∂t
=

Cp

Cl

Tp − Tl

τβ
(4.5c)

Where nj are the Bose-Einstein distributions at the temperatures Tj: nj =
(eΩ0/kBTj − 1)−1. Cj(T ) are the electrons (j = e), hot phonons (j = p) and
cold phonons (j = l) specific heats, with Ce(T ) = γeTe. The fraction f of
strongly coupled phonon modes enters the model through the two phononic
specific heats. Finally, τβ is the (phenomenologic) phonon-phonon anharmonic
decay. On the contray to the 2TM, in the derivation of the 3TM a particular
form for the electron-phonon coupling, i.e., α2F (Ω) ∝ δ(Ω− Ω0) has been as-
sumed (electrons are coupled with just one phonon mode at frequency Ω = Ω0),
but no approximations are applied to the BE statistics.

Within this model, the data analysis revealed a weak (λ ≈ 0.2) electron-
phonon coupling, for a phonon mode with 40 meV 6 Ω0 6 70 meV. Moreover,
the fraction of coupled phonons turns out to be f ≈ 0.2, implying that the in-
teraction is highly anisotropic, and only a few modes are significantly coupled
(since 80% of the phonon modes have a weak interaction with the electrons).
These findings point toward a scenario in which the electron-phonon interac-
tion is not the main source of coupling in HTSC, even if this weak form of
coupling can cooperate with other stronger electron-boson interactions.
This model neglects the electron-phonon scattering with the 1−f lattice modes
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considered more weakly coupled, which thus would barely contribute to the
evolution of the electronic temperature Te(t). Anyway, the distinction between
the strongly coupled phonons and the other lattice vibrations is physically
meaningful as far as the strongly coupled phonons have a stronger coupling
normalized to their density of states (or specific heat).
A few words are worth to be spent on the way the specific heat must be
modeled. This is a task of fundamental importance. The authors considered
just one phonon frequency (Ω0, a delta) in the phonon spectrum. All phonon
modes have the same frequency. The specific heat within this model follows
straightforwardly from the specific heat definition:

C = 3NAkB

∫ ∞

0

dΩF (Ω)(
Ω

kBT
)2

e(Ω/kBT )

(e(Ω/kBT ) − 1)2

That is:

Cp(T ) = 3NAf
Ω2

0

kBT 2

e(Ω0/kBT )

(e(Ω0/kBT ) − 1)2
= 3NAfΩ0

∂np

∂Tp

Cl(T ) = 3NA(1− f)
Ω2

0

kBT 2

e(Ω0/kBT )

(e(Ω0/kBT ) − 1)2
= 3NA(1− f)Ω0

∂np

∂Tp

which satisfies: Ctot(T ) = Cp(T ) + Cl(T ).
Here NA is intended to give the correct normalization for Ctot, and must be
intended as a number of molecules per cm3.
An improvement to this method consists in taking into account the true func-
tional form of Ctot(T ), the total specific heat, as measured from experiments.
The phonons specific heat Cp(T ) is calculated exactly as before, assuming one
phonon frequency as the most coupled one, with the only difference that Cp(T )
must be balanced in such a way that, for f → 1, it must be Cp(T ) → Ctot(T ).
Finally, the lattice specific heat Cl(T ) is calculated as Cl(T ) = Ctot(T )−Cp(T ).
However, the best way of estimating the specific heat would require the knowl-
edge of the whole phonons spectrum F (Ω). The total specific heat then follows
straightforwardly from the definition. The phonon specific heat Cp(T ) is cal-
culated by selecting a proper subset of F (Ω), and balanced in the described
way. This ensures the specific heat is modeled taking into account the actual
phonons distribution.
To apply this model to the case of all-optical experiments, the problem of con-
necting the electron and phonon dynamics to the transient dielectric properties
arises. In the most general case, the transient reflectivity can be modeled as
follows:

∆R/R = c1 ·∆Te + c2 ·∆Tp + c3 ·∆Tl (4.6)

or
∆R/R = c1 ·∆Te + c2 · (f ·∆Tp + (1− f) ·∆Tl) (4.7)

It must be pointed out that the choice of the coefficients cj relating the temper-
ature increase to the transient reflectivity is of extreme importance and must
be carried out with much care, in order to obtain stable results. Usually the
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coefficients cj (j=1, 2, 3) are free fitting parameters. This lead to a level of
uncertainty in the estimation of the value of λ.
Finally, it must be noted that the experimental evidences so far described,
obtained with time-resolved ARPES, refer to a system in the superconducting
state, at a base temperature T=30 K. With all-optical measurements, it is not
possible to obtain the electron-phonon coupling in the superconducting state,
since the observed dynamics is slowed down by a bottleneck effect, as described
by the Rothwarf-Taylor model [156]. The problem is that on the contrary to
photoemission, which directly probes the electronic temperature Te, the optical
transient signal is proportional [111] to the superconducting state excitations,
when the system is in the superconducting state. Thus, the electron-phonon
coupling with optical techniques can only be inferred measuring the normal
state properties. This shouldn’t be a problem, since it is thought that the
electron-phonon coupling doesn’t change upon crossing Tc.

The same conventional Three-Temperature Model has been recently used [27]
to interpret experimental results obtained by analyzing the ultrafast electron
diffraction by Bi2212 and Bi2223 crystals. Samples are excited by a 1.55 eV
- 120 fs ultrashort pulse, while the probing is done by a synchronized elec-
tron beam, which produces a diffraction pattern, whose peak intensities are
recorded. Here, the lattice (cold phonons) temperature can be directly in-
ferred measuring the relative intensity of the (00) diffraction rod (which gives
the structural dynamics along the c axis, along which the ’cold’ phonons are
supposed to act), and the data are interpreted directly fitting the three tem-
perature model lattice temperature Tl to the same parameter extracted from
the data. The latter can be derived by considering the Debye-Waller model,
in which ∆Tl(τ) ∝ − ln(I(τ)/I0), being I0 the unperturbed (00) spot inten-
sity and I(τ) the intensity of the same spot at the pump-probe delay τ . The
experimental findings evidenced a directional electron-phonon coupling (here
I refer to the ’hot’ phonons, i.e., the more strongly coupled to electrons, which
are thought to be ’in-plane’): the coupling is stronger when the excitation di-
rection (pump electric field polarization) is parallel to the Cu-O bond, while it
appears weaker at 45 degrees (along the nodal direction), where the relaxation
dynamics slows down. This happens only when the sample is in the super-
conducting state. The evidence that it exists an anisotropic electron-phonon
coupling even in the Cu-O plane (probed analyzing the c-axis phonon dynam-
ics related to the cold-phonons) is explained by the authors with a stronger
coupling between the antinodal charge carriers and the out-of-plane buckling
vibration of the oxygen ions in the Cu-O planes.

Limits of the Three-Temperature Model
The 3TM is applicable only when a thermal distribution for the excited elec-
trons is reached thanks to electron-electron scatering mechanisms, in such a
way an effective temperature Te can be associated to the excited population.
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Thus it is not applicable when a gap in the density of states is opened. The
3TM is thus stictly applicable to HTSC only at room temperature and on the
OP and OD regions of the phase diagram. It is well-known that in cuprate
superconductors [77], in the superconducting state, the probed excitations are
quasiparticles which occupy a precise region of k-space, and namely the antin-
odal one, where the gap has its maximum. Thus, the probed excitations have a
strongly non-thermal distribution, which impedes the application of the 3TM
to reproduce the measured dynamics. The fact that a non-thermal distribution
of excitations is obtained in the presence of a gap is explained by the block-
ing of electron-electron scattering away from the node, because of the limited
phase space in the antinodal region. Recently, this speculation has been ob-
served experimentally by time-resolved photoemission experiments, analyzing
the electronic thermalization in various k-directions of the Brillouin zone of a
Bi2212 sample [41].
In the conventional 3TM, electrons are directly coupled only with the so-called
strongly-coupled phonons. To take into account the direct coupling of electrons
with different kinds of bosonic excitations, we propose a generalized version of
the 3TM, accounting for the energy exchange among the different degrees of
freedom of a system in a phenomenological way.

4.3.3 A generalized Three-Temperature Model

In order to overcome some of the limitations of the conventional three tem-
perature model, and to provide a model which is able to fully reproduce the
relaxation dynamics of a system whose electron-boson coupling is described
by a general bosonic glue Π(Ω) made of different contributions, we developed
a new model in which we assign a temperature Tj (j=p for storngly coupled
phonons, j=l for weakly coupled phonons or lattice) to each different bosonic
population the electrons scatter with, and whose coupling λj (here again j=p,l)
with the electrons derives from a particular subset Πj(Ω) of the total bosonic
glue Π(Ω):

λj = 2

∫ ∞

0

dΩ
Πj(Ω)

Ω

where: Π(Ω) =
∑N

j=1Πj(Ω); obviously λ =
∑N

j=1 λj.
The various Πj(Ω) linearly contribute to the total bosonic glue Π(Ω), which
thus accounts for all the possible degrees of freedom the electrons can exchange
energy with. N defines the number of temperatures (and degrees of freedom)
considered in the model.
If we consider only phonons (both strongly and weakly coupled) as possible
mediator bosons, we obtain a three temperature model in which the phonon-
phonon anharmonic coupling term is replaced by a direct electron-weakly-
coupled-phonon interaction term, which carries a coupling strength λl (absent
in the conventional three temperature model). The model we propose is the
following (here the anharmonic term has been completely neglected, but it can
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be nevertheless considered in peculiar situations):

∂Te

∂t
=

G(Πp, Tp, Te)

γeTe

+
G(Πl, Tl, Te)

γeTe

+
p

γeTe

(4.8a)

∂Tp

∂t
= −G(Πp, Tp, Te)

Cp

(4.8b)

∂Tl

∂t
= −G(Πl, Tl, Te)

Cl

(4.8c)

Where:

G(Πb, Tb, Te) =
6γe
~πk2

B

∫ ∞

0

dΩΠb(Ω)Ω
2[N(Ω, Tb)−N(Ω, Te)] (4.9)

and: N(Ω, Tj) = (eΩ/kBTj − 1)−1.
The differential reflectivity can be modeled in the usual way (as reported in
4.6 and ) or with the expression:

∆R/R = c1 ·∆Te + c2 · (∆Tp + (λl/λp) ·∆Tl) (4.10)

In order to highlight the differences this model introduces with respect to
the conventional Three-Temperature Model, we perform some simulations nu-
merically integrating the systems of coupled differential equations, using the
same values for the specific heats (electronic and total) and for the parameters
λp=0.3, p=2 J/cm3, f=0.1. I consider also a model in which an anharmonic

coupling term of the form Tp−Tl

τβ
couples equations 4.8b and 4.8c, exactly as

it enters in equations 4.5b and 4.5c. The main difference with respect to

Figure 4.8: a) Numerical integration of the system of equations of the con-
ventional 3TM, 4.5. b) Numerical integration of the system of equations of
the generalized 3TM, 4.8. c) The generalized 3TM plus an anharmonic decay
term is considered. In the three cases, the electronic temperature evolution ∆Te

(red), the strongly-coupled phonons temperature evolution ∆Tp (blue) and the
weakly-coupled phonons temperature evolution ∆Tl (green) are reported. The
common parameters are: λp=0.3, p=2 J/cm3, f=0.1. In a), τβ=800 fs; in b),
λl=0.2; in c), λl=0.15, τβ=1.2 ps.

the conventional 3TM stands in the overshoot of the temperature Tp, which
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is ascribed to the fact that being the electrons directly coupled also to the
weakly coupled phonons (lattice), they cool down fastly and the hot phonons
remain at an elevated temperature from which they relaxes more slowly with
respect to the electrons, given their higher specific heat. As a consequence,
the lattice warms up fastly with respect to the conventional 3TM case. In
the conventional 3TM, the weakly coupled phonons heating turns out to be
small since they directly loose energy (anharmonically) interacting with the
lattice. In principle, the effects of an anharmonic (phonon-phonon scattering)
term and a direct electron-lattice coupling term can coexist. If both coupling
(electron-lattice and anharmonic one) are present (panel c)), the overshoot of
the temperature Tp can be removed. The values for λl without the anharmonic
term must be considered as an upper limit.

The Four Temperature Model (4TM)
This model can be easily extended to take into account the electron scattering
with other (than phonons) bosonic populations, which could be of electronic
origin, for instance antiferromagnetic spin fluctuations. This is done by simply
adding a new (fourth) equation which describes the evolution of this bosonic
population temperature, Tbe. In a natural way, this population will be char-
acterized by its own specific heat, Cbe (which could be of difficult evaluation,
and in general very small) and by its coupling with electrons, λbe, coming from
a specific part Πbe(Ω) of the total bosonic glue Π(Ω). The implicit assumption
of all the previous models was that both spin and charge fluctuations ther-
malized within the pulse duration (and were thus considered as a whole with
the electrons), with the phonons representing the only possible channel for the
electrons relaxation. The new equation overcoming this limitation is:

∂Tbe

∂t
= −G(Πbe, Tbe, Te)

Cbe

Moreover, a coupling term: +G(Πbe,Tbe,Te)
γeTe

must be added to the first equation

describing the Te(t) temporal evolution.
The more general way to model the differential reflectivity in this 4TM is the
following:

∆R/R = c1 ·∆Te + c2 ·∆Tbe + c3 ·∆Tp + c4 ·∆Tl (4.11)

In this way, we get a four-temperature-model (the fourth temperature being
the one of the electronic bosons be) which can be of great importance in or-
der to correctly estimate the coupling of electrons with the different bosonic
populations. At this purpose, it becomes of fundamental importance the spec-
tral resolution, which, combined with the temporal resolution, allows to point
out whether the electrons are coupled to some bosonic modes of electronic
origin. It must be pointed out that, since Cbe is small (of the same order of
the electronic specific heat Ce = γeTe), the new equation contributes little to

75



4. Non-Equilibrium Physics of HTSC

the electronic temperature evolution, and Tbe ≈ Te (this happens also in the
very first part of the relaxation dynamics, during the pulse duration). The
point is that the population j = be carries a finite value of λbe. The spectral
resolution can help in pointing out what is the true temperature evolution of
the system, with the following argument: according to the Extended Drude
model, the electronic temperature can be disentangled from the bosonic one
(see sections 3.5.2, 3.5.3), and the fact that Te ≈ Tbe or Te > Tbe gives differ-
ent spectral responses (see the simulations reported in 4.4 and the analysis in
Chapter 6). If the spectral response at early pump-probe delays is in agree-
ment with the one simulated in the case Te ≈ Tbe, it means that a bosonic
population with small specific heat (and thus of electronic origin) is coupled
with the electrons. Indeed, if electrons were coupled only with phonons, it
couldn’t be Te ≈ Tbe at early delays, for considerations regarding the phonons
specific heat Cp, which makes the phonons warming on longer timescales. The
former situation revealed the actual one, as pointed out in Chapter 6. Time
resolved spectroscopy thus revealed a powerful technique in order to assign the
correct value of λ to the various bosonic populations. The relations Tc = Tc(λ)
presented in 2.4 finally allowed to clarify which bosonic population is responsi-
ble for the actual material Tc. Moreover, the spectral resolution allows both to
evaluate the subsets Πj(Ω) of Π(Ω) related to the various bosonic populations
(being Π(Ω) determined from static measurements) and to fix the coefficients
cj in expression 4.11, thus limiting the number of free parameters of the fit.
The results revealed a strong (λ ≈ 1) electron-boson coupling, with bosons
which are other than phonons, and must thus be of electronic origin. Con-
cluding, we can say that in HTSC a strong electron-boson coupling is hidden
from the point of view of the electron dynamics, but its actual presence is re-
vealed by the spectral resolution. Non-equilibrium spectroscopy thus revealed
a very powerful and unique technique in order to shed light on the problem of
electron-boson coupling in strongly correlated materials.

4.3.4 Modeling the absorbed power density

In this section some considerations about the power density p [J/(cm3·s)],
deposited by the laser pulse in the system, are done.
The following equalities hold:

p(t) = p0
2
√
ln 2√
π

e−4 ln 2 t2

τ2 =
P0

V

2
√
ln 2√
π

e−4 ln 2 t2

τ2 =
E

V · τ
2
√
ln 2√
π

e−4 ln 2 t2

τ2

Where p0 is the pulse mean power density, P0 is the pulse mean power, E the
energy per pulse, V the volume in which the energy is deposited, and τ the
pulse temporal FWHM , determined for example by auto- or cross-correlation
measurements.
Usually, the volume V is calculated as follows: V = A ·d = π(FWHM/2)2α−1,
that is, the excited volume is a cylinder which top area is that of a disk of diam-
eter FWHM (determined experimentally), and which height is the penetration
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depth d, the inverse of the (wavelength dependent) absorption coefficient α.
To improve the model and obtain more reliable results, two steps are required.
The first is to take into account the actual shape of the pump pulse (Gaussian)
and the finite size of the probe pulse, which is Gaussian too. The second is
to consider the role of the finite penetration depth of the pump pulse. This
is done numerically, calculating ∆R/R(ω) through a transfer matrix method,
when a graded index with exponential profile proportional to exp(−z/d) (be-
ing d the pump pulse penetration depth) is assumed.

Gaussian Profile for pump and probe beams
As far as the probe lateral size is kept smaller than the pump one (as always
happens in pump-probe experiments), the common procedure for calculating
the effective power density would be correct if the power distribution were
uniform in the beams section (disk). This is not the case, since the lateral
pulse profile is Gaussian. Thus, the actual Gaussian power distribution (given
by the pump pulse) must be taken into account, together with the Gaussian
probe pulse profile. The idea is to calculate which is the effective power density
to be considered in the simulations, with respect to the one calculated in the
homogeneous case, in order to be more quantitative.
A Gaussian power distribution for the pump pulse has been taken into account,
which is normalized in such a way the total absorbed mean power P is the same
of the homogeneous case (defined by the relation P = p·(πFWHM2/4), where
now I omitted the temporal dependence):

p ln 2e−4 ln 2r2/FWHM2
pu

(indeed:
∫ 2π

0

∫∞

0
rdrp ln 2e−4 ln 2r2/F 2

pu = P )
In the same way, a Gaussian distribution for the probe has been taken into
account, which is normalized to ’one’:

4 ln 2

πF 2
pr

e−4 ln 2r2/F 2
pr

(indeed:
∫ 2π

0

∫∞

0
rdr 4 ln 2

πF 2
pr
e−4 ln 2r2/F 2

pr = 1)

The effective power density in the non-homogeneous case thus results:

peff = p ln 2

∫ 2π

0

∫ ∞

0

rdre−4 ln 2r2/F 2
pr
4 ln 2

πF 2
pu

e−4 ln 2r2/F 2
pr = p ln 2

F 2
pu

F 2
pu + F 2

pr

If one considers the power distribution ratio with respect to that of the homo-
geneous case, it results:

peff/p = ln 2
F 2
pu

F 2
pu + F 2

pr

which depends on the relative spot sizes of the pump and the probe beams.
This relation indicates that the measured signal (obviously related to the Gaus-
sian case) refers to an effective power which is always smaller than the one
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calculated in the homogeneous case. This means that in the simulations the
actual power density must be reduced by a factor which is at least ln 2 ∼0.69,
in the case of a delta-like probe. If the probe spot size is one-third the pump
one, the factor becomes: 0.9 · ln 2 ∼0.62; if the probe spot size is half the pump
one, the factor results 0.8 · ln 2 ∼0.55. As far as the probe spot size becomes
closer to the pump one, the measured ∆R/R reduces, and the correction with
respect to the homogeneous case is important and important.

Role of the pump-beam finite penetration depth
To get quantitative results in models requiring a precise knowledge of the abso-
lute magnitude of a time-resolved signal, the problem of the finite penetration
depth must be faced. This is the case of the two, three and four temeprature
models presented so far.
The correction which takes into account this effect must be evaluated in a nu-
merical way. We employed the transfer matrix method. This method is widely
used in optics to analyze the propagation of electromagnetic waves (here the
probe ones) through a layered medium (in our case, the medium is made op-
tically inhomogeneous by the effect of the laser excitation with a pump pulse
whose penetration depth exponentially decays inside the material, and which
induces a modulation in the material refraction index). The reflection and
transmission of light from an interface between two media is described by the
Fresnel equations, and is governed by the refraction index (which will thus
be the natural quantity to consider). When multiple interfaces are present,
multiple reflections occur. Depending on the geometry of the reflection (which
determines the light path length), the reflections can interfere constructively or
destructively (for simplicity we will consider the case of normal incidence). The
overall reflection and transmission of a layered structure is the result of a huge
number of reflections, which is in general difficult to calculate. The trans-
fer matrix method was developed to this purpose. According to Maxwell’s
equations, there are simple continuity conditions for the electric fields across
boundaries from one layer to the next. If the field is known at the beginning
of one layer, the resulting one at the end of the layer can be obtained from
a simple matrix operation. The effect of a stack of layers can be represented
as the product of the individual layer matrices. The final step of the method
involves converting the fields back to reflection and transmission coefficients.
We assume the exponentially decaying pump power profile modulates the (com-
plex) refraction index in a linear way: the pump-induced modification of the
refraction index will thus decay exponentially too in the direction perpen-
dicular to the sample surface. The fact that

∫∞

0
dze−z/d = d ensures that

the pump-induced modification of the refraction index at the sample surface
equals the one calculated in the homogeneous case (in which the excited area
is a cylinder of height d = α−1). This is helpful since one can consider, as
a starting point for the simulation, the transient refraction index values ob-
tained in the homogeneous case. The pump-induced modification of n then
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drops to zero in a distance of about 3d, where the equilibrium refraction in-
dex is recovered. We make a simulation in which the sample is decomposed
in many thin films parallel to the sample surface; each is 1 nm thick and is
characterized by a refraction index n = n0 + ∆nhome

−z/d, where z = m · 1
nm, for the m-th layer. The result of the transfer matrix method simulation is
(probe) wavelength dependent, and it is directly the new value of the transient
reflectivity, to be compared to the one of the homogeneous case. The graph
below shows the original transient reflectivity, as obtained in the homogeneous
(non-layered) case, and the one corrected for the finite penetration depth, ob-
tained through the simulation described, assuming a pump penetration depth
d (we use the value d =166 nm, the Bi2212 penetration depth at the pump
wavelength λ =790 nm). The simulation result for the case d=infinity (infi-
nite penetration depth), which superposes to the homogeneous case result (as
it should be), is also reported. This ensures we implemented correctly the
method.

Figure 4.9: The result of the transfer matrix method applied to the time-
resolved optical signal in the energy domain is presented. Black line is the
original signal. Red line represents the signal corrected for the finite pene-
tration depth of the pump beam (166 nm for Bi2212), which creates in the
material a graded index with exponential profile. Thick gray line is a test sim-
ulation, performed for an infinite penetration depth of the pump beam, which
does not alter the signal, as it should be.

4.4 Differential Model for the Dielectric Func-

tion

In this section I introduce a model we developed to interpret the transient spec-
tra measured with the novel time-resolved spectroscopic set-up, described in
5. I anticipate that with this novel pump-probe set-up, the energy resolution
is added to the conventional temporal resolution of the optical pump-probe
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method. This is achieved by exploiting a broadband probe pulse, with a wide
spectral content (1 to 2 eV in particular). With this method, the time-resolved
signal is measured in both the time domain, as a function of the pump-probe
delay τ , and in the energy domain, as a function of the probe pulse energy ~ω.
The spectroscopic information, which is related to the modification on ultrafast
timescales of the dielectric function, allows to better clarify the true physical
origin of the observed signals. One important result of this approach is that
we will be able to constraint the coefficients cj appearing in the expressions
4.6, 4.3.3, 4.10, 4.11, thus limiting the number of free parameters in the fitting
of the 3TM (or 4TM) to experimental data in both time and energy domains.
The coefficients cj are instead free fitting parameters in the case the 3TM (or
4TM) is fitted to data only in the time domain, impeding reliable results for
the electro-boson coupling to be achieved. More details can be found in the
analysis done in 6.
In the following, I will refer to this approach as the differential dielectric func-
tion approach. The term differential underlines the fact that this model allows
to establish a precise relationship between a time-resolved optical signal in the
energy domain and a peculiar (pump-induced) modification of the equilibrium
dielectric function of the system, originating the signal itself.

An essential requirement for this approach is that the equilibrium optical prop-
erties of the material under investigation are completely understood. This
problem has been deeply tackled in section 3.7 for the Y-Bi2212 sample,
at various temperatures. In other words, the equilibrium, experimentally
measured (usually by ellipsometric techniques) complex dielectric function
ǫ(ω, T ) = ǫ1(ω, T ) + iǫ2(ω, T ) must be satisfactorily reproduced by fitting to
it a model composed of a Drude oscillator (in the Extended Drude formal-
ism) and a sum of Lorentz oscillators, representing respectively the intraband
transitions (low-energy side) and the interband ones (high-energy side). This
model will constitute the static, equilibrium dielectric function ǫeq(ω, T ), the
starting point of our approach. Usually this model is constituted by a huge
number of parameters (30-40), as it is clear from section 3.7.
The final quantity we measure with the time-resolved spectroscopic setup is
the transient reflectivity ∆R/R, which includes the frequency information ω:
∆R/R(ω, τ), where τ is the pump-probe delay. This quantity is defined as
follows:

∆R/R(ω, τ) =
Rex(ω, τ)−Req(ω)

Req(ω)
(4.12)

where Req(ω) is the static reflectivity (which does not depend upon τ , since it is
measured by blocking the pump beam), related to ǫeq(ω) through formula 3.3,
and Rex(ω, τ) is the excited reflectivity (which now depends upon the pump-
probe delay τ), which analogously will be related to a new, non-equilibrium
dielectric function, which we call excited dielectric function, indicated with
ǫex(ω, τ). This dielectric function will describe the effect on the material elec-
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tronic structure, induced by the pump beam. In principle, this dielectric func-
tion will be as similar as possible to the static one: our approach is to vary
the smallest subset of parameters necessary to catch the transient reflectivity
spectrum at delay τ , with the great majority of the parameters being unvar-
ied. The number of oscillators is never modified. Only slight perturbations of
the parameters are considered throughout this work (as we work in a very low
excitation level regime).
The pump excitation effect on the equilibrium dielectric function, resulting
in a non-equilibrium dielectric function, can be of different nature. It can be
mainly thermal, which means the transient spectrum can be reproduced by
varying only the temperatures comparing in the Extended Drude formalism
(see section 3.7), or can be of different kind (though a small heating of the
system is obviously always present, which is given by the energy deposited in
the system by the pump pulse). If we consider other effects related to the low-
energy side of the dielectric function, the pump pulse can for example modify
the shape of the glue function in the Extended Drude model, or can modify
the Gap in the density of states. While if we consider the high-energy part
of the dielectric function, a pump-induced modification of the Lorentz oscil-
lator parameters can take place. A plasma frequency modification for some
oscillators indicates a spectral weight shift, while a modification in the central
frequencies or widths of some oscillators, indicates a modification of the band
structure.
It has to be emphasized that even the variations of the dielectric function low-
energy side parameters can induce a change in the ∆R/R at much higher ener-
gies, typically around the plasma frequency, which is about 1 eV for Y-Bi2212.
On the contrary, the modification of the interband oscillators parameters typ-
ically produces changes in the ∆R/R which are confined around the central
frequency of the involved oscillator. Below, a few examples reporting on the
effect on the optical properties of an impulsive thermal heating of the system,
triggered by the absorption of the pump pulse energy, are presented and com-
mented. I will present at first some exaggerated examples, to point out which
is the actual effect even in the static dielectric function. Then, I will show
which is the effect on the ∆R/R(ω) of a pump-induced only-thermal modifi-
cation of the dielectric function, in various conditions for the coupling of the
electrons with the different bosonic degrees of freedom of the system. These
quantitative simulations are performed for an Y-Bi2212 sample at T=100 K.
It is by the differential-dielectric-function method here presented, with the
help of the spectroscopic information, that we have been able to understand
the microscopic origin of the observed signals, for the normal, pseudogap, and
superconducting phases of the Bi2212 family of high temperature superconduc-
tors. These information will be presented in detail, respectively, in chapters 6,
7, 8.
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Figure 4.10: Here I report the effect on the static reflectivity of an heating of
the system from T=300 K to T=500 K, being T the temperature appearing
in the extended Drude model. The effect of the heating can be reproduced
by simply increasing, for the lowest temperature situation, the damping term
γimp. This means the heating implies a reduction of the conventional scattering
time τ = γ−1

imp. From this simulation, we also argue that the heating effect
is not frequency-dependent, since γimp is constant.

Figure 4.11: Here I report the simulated transient reflectivity variation, ∆R/R,
arising from the heating of the system from T=300 K to T=500 K in equilib-
rium conditions.
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Figure 4.12: Here I report the effect on the static reflectivity arising from
a modification of the Drude plasma frequency of the system, ωp, and by a
reduction of the electron-boson coupling, expressed by the Glue Function Π(Ω).
This effect cannot be reproduced in an intuitive way. A cooling of the system
is not enough to account for a reduced electron-boson coupling strenght.

Figure 4.13: Simulation of the ∆R/R(ω) induced in Y-Bi2212 at T=100 K by
a purely heating effect. Te, Tbe, Tp, Tl are respectively the electrons, electronic
bosons, strongly coupled phonons and weakly coupled phonons temperatures.
The temperature increments ∆Tj are calculated through the 4TM (see section
4.3.3 for further details), for different scenarios: non-thermal scenario, in which
the electrons are decoupled from all the bosonic degrees of freedom (red line);
quasi-thermal scenario, in which electrons are strongly coupled only with a
subset of the bosonic degrees of freedom (blue line); quasi-thermal scenario,
in which electrons and all bosons are thermalized at the same elevated tem-
perature with respect to the thermal bath one (green line). The ∆R/R(ω) is
calculated with the differential dielectric function approach and the Extended
Drude model presented in 3.5.2. The aim of this picture is to emphasize how
different physical scenarios lead to a completely different spectral response
∆R/R(ω).
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Chapter 5
Time-Resolved Spectroscopy

5.1 Introduction

The novel results presented in this thesis work have been made possible by a
novel experimental technique, the time-resolved optical spectroscopy. This
technique constitutes the natural extension of the conventional (one-color)
time-resolved ultrafast pump probe technique, in which the spectral (energy)
resolution is added to the intrinsic temporal resolution of the technique (∼100
fs). In this way, an effective spectroscopy with temporal resolution is achieved.
This chapter, after a brief introduction to the time-resolved methods, describes
in detail the techniques developed in this work to obtain the spectral resolu-
tion. I can anticipate that I fulfilled this task in two complementary ways:
exploiting a white-light supercontinuum pulse to cover the visible region of
the electromagnetic spectrum (1.2-2.2 eV, i.e., 1050-550 nm, i.e., 9500-18000
cm−1), and a tunable infrared pulse (obtained through an optical parametric
amplifier, OPA), to cover the infrared part of the spectrum (0.5-1.1 eV, i.e.,
2450-1100 nm, i.e., 4000-9000 cm−1).

5.2 Motivations

The pump-probe approach is today declined in a wide field of time-resolved
measurements, well beyond time-resolved optics. In the pump-probe frame-
work, two synchronized pulses are employed. One is the so-called pump beam,
exciting in a non-equilibrium condition the sample, while the other is the so-
called probe beam, used to measure, as a function of the time delay with
respect to the former, the effect produced by the excitation on one quantity
of interest. The first time-resolved experiments, made possible by the advent
of pulsed laser sources, were in the field of optics. In these all-optical pump-
probe experiments, both the pump and the probe beams are ultrashort (∼100
fs) laser pulses, typically in the near-IR region. They are quasi-monochromatic,
in the sense that their bandwidth is typically the minimum required by the
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indeterminacy principle for the pulse to be ultrashort (∼10 nm for a ∼100
fs, 800 nm pulse). With all-optical pump-probe measurements, the probed
quantities are the optical properties of the sample, namely, the reflectivity R
or the transmissivity T . On the contrary to the pump beam, which is often
the fundamental of the laser source, soon became clear how a different probe
could provide new advances. Considering an all-optical pump-probe, the tun-
ability of the optical probe is possible since long time. Usually it is achieved
thanks to light-conversion devices, known as Optical Parametric Amplifiers
(OPA, see section 5.6). In this way, the spectral range that can be probed is
considerably widened (the 200-20000 µm range can be explored). However, the
non-equilibrium optical properties can be probed singularly, one-wavelength at
a time. Moreover, such light conversion devices work only in combination with
high-power laser sources, which are not well suited to perform experiments on
fragile materials. However, more recently it was demonstrated that the probe
can be tuned in the far-IR or THz (1 THz ∼ 4.1 meV) spectral range with
conventional, low power sources. This opened the access to the probing of the
non-equilibrium optical properties in the infrared spectral range. As an ex-
ample of application of these techniques to probe the non-equilibrium optical
properties of cuprate superconductors, I may cite, respectively for mid-IR and
THz: [101, 100, 102, 20, 19] and [12, 99]. The study of the evolution of the op-
tical properties, simultaneously in a wide range of energies, is a possibility that
only very recently is encountering an increasing interest. This is made possi-
ble thanks to the so-called supercontinuum pulses, i.e., very broadband, white
light pulses, which energy content can exceed 1 eV. Joining the spectral res-
olution to the time-resolved approach considerably helps in the interpretation
of the observed non-equilibrium dynamics. Applications of this technique to
strongly correlated electronic materials have been recently reported [82, 169].
The problem is that in general such pulses require high-power sources (see
section 5.6) to be generated, and are again not well suited to investigate from
the non-equilibrium point of view materials which ground state can be easily
altered, quenched or vaporized by an excitation.

Only recently it has become possible to generate supercontinuum pulses by us-
ing low-energy laser sources, thanks to the use of Photonic Crystal Fibers (see
section 5.7 for further details). In this thesis, I developed a set-up exploiting
this new possibility. The important result has been that a novel pump-probe
system allowing to measure simultaneously the temporal evolution of the time-
resolved optical signal in a wide range of energies has been developed. This
setup, on the contrary to the ones based on high-power laser sources, is char-
acterized by an enhanced sensibility, and allows to probe the non-equilibrium
optical response of a material which is only slightly brought out of its equilib-
rium condition. This ensures the ground state of the system is not strongly
perturbed, with the measured optical response accounting for the typical exci-
tations of the ground state itself. This setup constitutes the perfect match for
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materials which ground state is a phase which free energy only slightly differs
from the one of the other allowed phases. This is the case of superconductors or
materials exhibiting charge density wave or spin density wave ordering. These
phases are vaporized for extremely low values of pump fluence [168].
In particular, the spectral resolution combined with the temporal one allows
to understand the physical origin, i.e., on the microscopic level, which origi-
nated the non-equilibrium optical signal. This is often precluded to conven-
tional time-resolved measurements, probing the time-resolved optical signal
at a fixed wavelength. This can be understood by the observation that the
spectral resolution allows to interpret the non-equilibrium optical signal by
differential models applied to the sample dielectric function. By doing so, be-
ing the dielectric function related to the electronic structure and the allowed
optical transitions of the material, a close correspondence can be established
between a non-equilibrium signal in the energy domain and one excitation-
induced effect on the material electronic structure.
It is for this reason that we call this novel experimental technique the time-
resolved spectroscopy. It is a spectroscopy, since the spectral resolution has
been achieved. It is non-equilibrium, with the peculiarity that the weakly-
excited states can be probed, providing information precluded to static spec-
troscopy, that only the joined spectral and temporal resolutions can provide.
The access to the dynamics, from which the effects related to the thermal
heating can be disentangled from the purely electronic ones, and the fact that
the ground state of the system is not sensibly affected, make this technique
the ideal tool to probe the strongly correlated electronic materials, in which an
interplay of different phenomena dominate the non-equilibrium optical signal.

For completeness, I must remember that in the last few years the pump-probe
approach has been successfully applied also to non-all-optical techniques. Time
resolved photoemission and time-resolved electron diffraction are widespread-
ing techniques. The former technique allows to measure the temporal evolution
of the electronic structure, while the latter allows to study the temporal evo-
lution of the crystal structure, after the sample is brought out-of-equilibrium
by the absorption of a pump pulse. In both situations, the pump pulse excit-
ing the sample is an optical, laser pulse, while the probe pulse is respectively
a high-energy photon (&6 eV) photoemitting electrons or an electron bunch
which diffraction pattern from the sample is recorded. Examples of application
of these techniques on cuprates are respectively: [145, 41] and [27].

5.3 Time-resolved basics: background, sources,

useful definitions and beam diagnostic

It is a long time that time-resolved optical measurements are being carried
on on solid state systems. The first examples of such kind of measurements,
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that allowed to study the transient, non equilibrium (optical) properties of
solid state systems on very short timescales (ps and fs), are dated 1980−1990
[165, 63, 64, 163, 25, 24, 87].
The key-element for this kind of study is an ultrafast laser system capable of
producing a train of ultrashort pulses, with a temporal duration of 100-1000
fs. Other important parameters of the laser light pulses are their photon en-
ergy (or wavelength) and the number of pulses per unit of time (this quantity
is known as repetition rate of the source, measured in Hz). For Ti:Sapphire
sources, that is, the most common laser systems today available for research
purposes, the pulse photon energy equals 1.55 eV (i.e. 800 nm, 12500 cm−1);
this is called the fundamental of the laser. Ti:Sapphire, i.e., Ti doped Al2O3,
is the active medium inserted in the laser cavity.
The majority of time-resolved measurements published up to now, are per-
formed by using the fundamental energy (or its harmonics: 2nd - 3.14 eV
(400 nm); 3rd - 4.51 eV (266 nm), 4th - 6.28 eV (200 nm)) to measure the
transient optical properties. This is what we call conventional (or one-color)
pump-probe measurements. This approach, although capable of revealing the
non-equilibrium dynamics of a system on a timescale (< 1 ps) not accessible
to other non-optical techniques, has an important limit: the dynamics can
be measured at a single and fixed energy. This prevents, in most situations,
the understanding of the microscopic origin of the (differential) time-resolved
optical signal. To achieve this ambitious goal, the range of energies for which
the non-equilibrium dynamics of a system is measured, must be widened. This
opens the way to the knowledge of the non-equilibrium dielectric function of
a system, from which a great amount of information can be, in general, ex-
tracted. The realization of this target will be described in detail in the next
sections of this chapter.

Laser sources classification
The average power at the output of a standard laser system is of the order
of some (1-4) Watts. Depending on the repetition rate of the source, three
classes of lasers can be distinguished today. The key parameter is the energy
per pulse, measured in J.

• The so-called oscillators produce train of pulses at 80-100 MHz: this
results in an energy per pulse of the order 5-50 nJ/pulse. This source
can be coupled to an acousto-optic device to control the repetition rate
of the source, from some MHz to single-pulse. This device is called pulse-
picker (if it is placed outside the cavity) or cavity-dumper (if it is placed
inside the cavity, resulting in a minor amount of losses). Both these
devices are useful in reducing the average thermal heating of the sample
under study. This is mandatory in the field of low-temperature physics.

• The regenerative-class of laser systems have repetition rate tunable from
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10 to 300 KHz, and produce pulses with a typical energy of about 5 µJ.

• Finally, the amplified laser systems, with repetititon rate around 1 kHz
(10 Hz to 5 kHz operation is often achievable), produce pulses with energy
per pulse in the mJ (1-10) range.

Thus, the three classes of sources differ in the level of the energy-per-pulse: nJ,
µJ, mJ. Since we deal with solid state materials which ground state phase can
be easily vaporized by laser excitation [168, 81], we employed both a cavity-
dumped oscillator and a regenerative system (which enables to take advantage
of many non-linear optics phenomena, as we will see). Fig. 5.1 sketches the
proper pulse parameters to perform a pump-probe experiment on a solid state
system, for the three classes of laser sources. Advantages and drawbacks for
each source are pointed out.

Figure 5.1: This scheme summarizes the main parameters of laser pulses pro-
duced by different laser sources. Assuming a spot size of 50 µm and a fluence of
the order of 50 µJ/cm2 (see [168] for the reason), it turns out that the optimal
laser system is the one with a repetition rate in the range 0.25-1 MHz. An
oscillator would heat the sample too much, while with an amlified system the
problem stands in the fact that the probe pulse - which must be less intense
than the pump pulse, would be too weak to be detected.

Optical Pump-Probe
Conceptually, the time resolved approach, which in the optics field is realized
through the so-called pump-probe technique, is simple. The train of pulses
produced by the laser source is divided in two arms by a beamsplitter (a par-
tially reflective mirror). The more intense one (usually from 70% to 90% of
the total power) is used to excite the sample, and is called pump beam, while
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the less intense one (10% to 30% of the total power) is employed to measure
the pump-induced change in the optical properties of the sample, and is called
probe beam.
By optical properties I mean the reflectivity R of the sample, or its transmis-
sivity T (if the sample is transparent to the actual probe wavelength), or both.
Thus, the probe beam reflected or transmitted from the sample, is collected
with a sensing element (usually a photodiode) and the generated electric sig-
nal is acquired and digitized. On the contrary, the pump beam is dumped.
In the time-resolved approach, the relative change (transient) in the optical
properties is measured. This means that the measured quantity is the rela-
tive variation induced by the pump. In a typical time-resolved experiment,
the measured quantity is the difference between the reflectivity Rpumped of the
excited (pumped) system and the reflectivity Runpumped of the equilibrium (un-
pumped) system, divided by the equilibrium reflectivity, that is:

∆R

R
(ω, τ) =

Rpumped(ω, τ)−Runpumped(ω)

Runpumped(ω)
(5.1)

τ is the actual delay between the pump and probe beams; expression 5.1, in
principle, also depends on ω, the frequency of the probe photon energy ~ω.
The ∆R/R(ω, τ) is usually very small with respect to the values Rpumped and
Runpumped. In practice, R is the reflected light intensity from the sample, and
not the true reflectivity. However, since, as it is always the case, the incident
intensity I0 on the sample is unchanged, R has the same meaning of the ac-
tual reflectivity, in the ∆R/R expression. The same argument holds for the
transmissivity T. Both the quantities ∆R/R and ∆T/T have the advantage of
being universal, i.e., independent (as far as one works in a linear regime) from
the incident probe intensity I0. Usually, ∆R/R ranges from 10−2 to 10−6. This
means that the detection system, described subsequently, must be very accu-
rate. It must have a dynamic range able to reveal signal variations as small
as one part over one million, ie, ∼1 µV, if the total ligth intensity produces a
signal R∼1 V on the detector. The detection system must be characterized by
a signal-to-noise ratio (S/N) higher than the 1/(∆R/R) induced by the pump
pulse.

Pump-probe delay, τ
In expression 5.1, τ is the time delay between the arrival of the pump and
probe pulses on the sample. It is of the order of tens of fs, and, if one wants
to exploit the full temporal resolution of the system, it is of the same order of
the pulse duration. The time resolution, as small as the laser pulse duration,
comes from the fact that the ultrashort probe laser pulses sample the reflectiv-
ity or the transmissivity of the sample, ’integrating’ it on a time window equal
to that of the pulse duration.
The delay τ is varied, to study the dynamics of the system, simply changing
the relative length of the optical path of the pump and the probe arms. This
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is achieved with a mechanical delay stage or with a coil, on which a couple
of mirrors (to reflect the beam) are mounted. One µm of displacement intro-
duces a delay equal to 6.66 fs between the pump and probe beams (1µm · 3.33
fs/µm · 2, where the 2 comes from the doubling of the path upon reflection).

Time-resolved optical trace
To measure a pump-probe trace (a plot of the ∆R/R or ∆T/T for a number
of pump-probe delays τ), two types of approach are possible.
The first consists in acquiring the ∆R/R signal point-by-point, modifying the
relative delay and subsequently acquiring the signal, for a time long enough to
obtain the desired noise level in the measurement (usually, 1 s signal average
per point is enough to obtain a S/N of the order 105, for a ∼1 MHz repetition
rate source).
The second approach consists in scanning quickly the delay between pump and
probe, and acquiring continuously and synchronously the ∆R/R signal. The
temporal windows of the acquisition should be kept as small as possible not to
lower the temporal resolution, thus, to lower the noise in the measurements,
many scans are needed, which must then be averaged. Usually, 100-1000 scans
are enough to obtain a S/N of the order 105, for a ∼1 MHz repetition rate
source. This method (called ’fast scan’) requires a fast (and with the lowest
possible inertia) delay stage. This approach constitutes a clear advantage be-
cause, since every scan is completed on a time of the order of 1 s, it helps
suppressing the disturbing effects related to the laser source fluctuations and
the effects of the sample degradation (when the sample is placed inside a cryo-
stat, for example). The drawback is that the delay stages designed for this
task have a short travel range, and the amount of data to acquire is huge, thus
this approach is limited to small ranges of delay (of the order of 10-50 ps). If
one needs to explore a wider range of delays (this depends on the dynamics
one wants to analyze), the point-to-point approach is the only one that can be
exploited. The speed (in mm/s, or ps/s, if one converts the displacement in
delay) of the delay stage, vD, and the acquisition time window tW of the ac-
quisition system set the temporal resolution of the measurements according to
the following formula: Resolution(ps)=vD(ps/s)·tW (s). This quantity is often
larger than the limit resolution given by the pulse duration, in the case of fs
laser; what it is important is that this quantity must be smaller than the dy-
namics one wants to measure. Some numbers are helpful: if vD=10 ps/s∼1.5
mm/s for the delay stage, and the acquisition time window tW is set to 1 ms,
the maximum achievable temporal resolution is 10 fs. If a 10 ps pump-probe
scan is required, each scan would take 2 s (2·1 s, since the delay stage must go
back and forth).

Direct digitization of the signal vs Lock-in acquisition
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The acquisition of the signal must be done taking in mind that very often,
extremely small variations in the signal (less than one µV) must be detected.
The direct digitalization of the photodiode electric signal is thus a poor idea
in the great majority of the experiments. This would require very high reso-
lution digitizers (> 16 bit: over a 1 V full-scale, 16 bit means ∼15 µV, which
is too much in many cases), which are rare and expensive. This approach is
also very sensitive to the various sources of electrical noise. Anyway, to obtain
a differential signal, the procedure is to acquire the reflected signal R with
(’pumped’) and without (’unpumped’) the pump beam, and performing the
difference with the correct parity (which must be sensed in some way). The
most common way to modulate the pump status is to make use of a so-called
optical chopper, a device constituted by a disk with a mask of regular holes
(designed in such a way to achieve a 50% duty cycle for the modulation), which
is put in rotation by a high speed motor. The laser beam is thus chopped by
the disk at a frequency ranging from ∼1 Hz to ∼100 kHz (with a proper choice
of the disk mesh).
The Lock-In amplifier solves the resolution problems coming from a direct
digitization of the signal. By using a complex algorithm based on Fourier
transforms, multiplications and filtering of the signal, carried on by a fast DSP
(digital signal processor), this device can extract, from an electric signal of
high intensity, only a component which has a frequency equal to that fed in
by an external reference. If one modulates the pump beam with a chopper
(whose frequency reference is brought to the lock-in), and the pumping has
an effect on the optical properties of the system, detected with a photodiode,
connected to the lock-in input, the lock-in output will be only - and directly
- the pump induced variation of the optical properties, ∆R. To obtain the
quantity ∆R/R, the static signal R must be sampled in some way. This is a
minor problem, since R is of the order of 1 V. The advantage of this approach
is that all sources of noise (with frequency different from the chopper one)
are intrinsically suppressed. In general, the higher the chopper frequency f ,
the lower the noise level ∝ 1/

√
f , for the noise related to the acquisition sys-

tem. In the case of lock-in acquisition, the acquisition time window tW defined
about the fast scan method equals the lock-in integration time. The chopper
frequency must be higher (10 times or more) than t−1

W .

Temporal and Spatial superposition
To perform a pump-probe experiment, the temporal and spatial coincidence
conditions, for the pump and probe beams on the sample, must be achieved.
The condition for which pump and probe impinges simultaneously on the sam-
ple is called temporal coincidence. This means that the pump and probe arms
have the same optical length, and thus this particular delay τ is defined τ0 = 0.
Often, but not always, at this particular delay one observes the maximum vari-
ation of the optical properties.
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For what concern the spatial coincidence condition, the maximum of the time-
resolved optical signal is achieved when the probe beam is exactly at the center
of the (pump) excited area. To make the measure more reliable, usually the
pump spot on the sample is kept larger than the probe spot, and this is ob-
tained by focusing the pump beam on the sample with a lens with focal length
bigger than the focal length of the lens on the probe beam. This ensures that
the probe probes an area which is uniformly excited. The spatial superposition
of the beams on the sample is checked with a CCD camera, equipped with an
objective collecting the light scattered by the sample.
To avoid interference effects on the sample, usually the pump and probe beam
polarizations are kept orthogonal. This helps also to prevent that the pump
light scattered by the sample reaches the detector, simply placing a polarizer
in front of it. Another solution to improve the measurements quality is to
place the delay stage on the pump path: the fact that the pump spot is bigger,
and that the pump should not be collected, drastically reduces the effect of
misalignments, that would produce non-physical variations in the signal.

5.3.1 Beam Parameters

Key parameters that must be known in order to correctly set up a measure-
ment and interpret the acquired data are the spot size and the pulse duration,
for both the pump and the probe beams, on the sample. Typically, laser pulses
are Gaussian both in space and in time. They remain Gaussian up to the sam-
ple, if they are properly propagated.

Spot lateral size
Two methods can be employed to measure the spot size. The first consists
simply in measuring the intensity profile of the beam itself, when impinging on
a scattering material placed at the sample position. This task is achieved by
imaging the spot on a CCD (Charge-Coupled-Device) camera. To have a good
resolution, since typical spot sizes are of the order of 20-50 µm and the CCD
pixel size is of the order of 5 µm, a magnifying objective is often used. Then,
a Gaussian profile is fitted to the image, along various directions, to extract
the beam size.
The second method is called ’the knife-edge’. The position of a knife, mounted
on a precision translation stage, is scanned perpendicularly through the beam,
in the same position where the sample would be. By means of a photodiode, the
total transmitted intensity is acquired, as a function of the knife position. This
intensity equals the integral along one axis (defined by the direction of move-
ment of the knife) of the product of the Gaussian pulse intensity, multiplied
by a step function expressing the knife position. The integral of a Gaussian
function can thus be fitted to the acquired trace, to extract the actual spot
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size. In this work, the spot lateral size equals the spot FWHM (Full-Width-
at-Half-Maximum).

Pulse temporal width
The temporal duration of ultrashort laser pulses can be measured by acquiring
their sum frequency intensity [93], generated in a non linear crystal (usually
BBO, beta-barium borate) placed at the sample position, as a function of the
pump-probe delay τ . Sum frequency generation (SFG) is a non-linear process
involving the energy mixing of two photons [93]. If pulses are Gaussian in
time, their sum frequency signal is Gaussian too. Mathematically, the SFG
process is expressed as a convolution of the intensities Ij(t) of the two pulses:

C(τ) =
∫ +∞

−∞
Ipump(t)Iprobe(t− τ)dt, being C(τ) the sum-frequency signal.

If the pump and probe optical paths are different, i.e., contain a different
number of dispersing optical devices, only the pulses cross-correlation can be
determined. The pump-probe cross-correlation sets the lower limit for the tem-
poral resolution the system can provide. If the two optical paths are similar,
the measure can be approximated to an auto-correlation. Assuming that the
pulses are Gaussian, their individual duration is given by their autocorrelation
divided by a deconvolution factor, equal to

√
2 for Gaussian pulses [84].

The cross- (or auto-) correlation sum-frequency signal versus the pump-probe
delay τ contains the information of the pulse duration. In practice, to extract
this information, a Gaussian function is fitted to the sum-frequency signal.
In this work, the pump-probe cross-correlation is expressed as the temporal
FWHM (Full-Width-at-Half-Maximum) of the correlation signal.

Fluence
The pump fluence is defined as the energy per pulse divided by the area illu-
minated by the pump beam spot. It is usually expressed in µJ/cm2. The spot
area is calculated from the pump spot lateral FWHM, which is carefully deter-
mined with the methods described above. Indicating the pump fluence is the
most common way to express the pump excitation intensity of the system. The
probe beam fluence should be always kept orders of magnitude weaker than
the pump one, to avoid further perturbations of the system. Typical values
for the pump fluence employed in this work are comprised in the range 1-100
µJ/cm2. Working at the lowest fluence values requires some level of care. As
we will se, some interesting physics is learnt just at this (low) level of excitation
(∼10 µJ/cm2), since HTSC are very susceptible to an external perturbation,
particularly when they are in the superconducting phase.

Up to now, a general overview on the time-resolved approach has been pro-
vided. Anyway, the details of the various optical setups employed are described
in the subsequent sections of this same chapter. For what concerns one-color
measurements, a basic experimental system requires no more components than
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those already described. The setup we used is sketched in section 5.4. Sections
5.6 and 5.7 are devoted to the newly developed spectroscopic setups.

5.4 The one-color pump-probe technique

The laser source used for the one-color time resolved experiments is a cavity-
dumped Ti:Sapphire oscillator, producing 1.55 eV, 120 fs laser pulses. This
source is pumped by a solid state diode-pumped Nd:YVO4 pump system, the
Coherent Verdi V-10 (whose output is limited to 4 W). The main feature of
this laser is the cavity dumper device, that allows to continuously tune the
repetition rate of the source from about 2 MHz down to single shot, choos-
ing an integer submultiple of the laser cavity repetition rate, equal to 54.3
MHz. This device is fundamental when one needs to reduce the effect of the
average heating of the sample under test. This is a key requirement in many
experimental conditions. The setup employed is schematized in Fig. 5.1. The
description and aim of the various optical components is reported in the figure
caption. The acquisition method is based on lock-in detection coupled to a
fast scan of the pump-probe delay.

Figure 5.2: The scheme of the one-color pump-probe setup used is reported.
Pump and probe beams are generated thanks to a 90%T-10%R beamsplitter.
To focus the pump and probe beams on the sample, we employ respectively
20 cm and 10 cm focal lenght lenses, resulting in a spot size of ∼40 µm and
∼20 µm. This ensures we probe an uniformly excited area.

Important requirements common to all the optical schemes are the manipula-
tion of the polarization state of the laser pulses and their attenuation. Having
in mind that the polarization state of the laser output is linear and horizon-
tal, one can rotate this linear polarization by means of a lambda/half (λ/2)
waveplate (the angle of rotation of the linear state, α, is equal to 2θ, being θ
the angle of the plate axis with respect to the horizontal), or a circular polar-
ization state can be achieved by means of a lambda/quarter (λ/4) waveplate
(whose axis is oriented at an angle θ = ±45◦ with respect to the horizontal
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line). In our setups, for both the pump and the probe beams, we employ lin-
early polarized fields. The possibility to rotate the relative polarizations of the
pump and the probe beams is important since it allows to investigate possible
anisotropies in the optical response or in the excitation process. To attenuate
a (linearly polarized) laser beam, a lambda/half waveplate plus a polarizer is
used. The output polarization is linear, and parallel to the polarizer axis. The
output intensity, if the input polarization and the polarizer axis are horizontal,
and theta is the same as before, is: I = I0(cos

2(θ) − sin2(θ))2, being I0 the
incident intensity. The optical components are often designed to work at a
single wavelength, but broadband components (which work in a wide range of
wavlenghts) also exist.

5.5 Toward the time resolved spectroscopy

So far, I described the pump and probe approach for conventional one-colour
(probe) measurements, with the details of the optical layout we employed for
this kind of measurements (Fig. 5.1), and I defined some common important
concepts which are universal in the field of time-resolved optics. As I anticipate,
the novelty of this thesis is to extend this approach to a configuration in which
the probe is no more a monochromatic pulse, but rather a broadband pulse
which contains a continuum of wavelengths (supercontinuum), or it is a quasi-
monochromatic pulse which can be continuously tuned across a wide range
of energies. This allowed us to achieve time-resolved spectroscopy, i.e., to
combine the temporal resolution with the spectral one. The time-resolved
signal of expression 5.1 is indeed wavelength dependent, and this additional
information opens the way to a new physics, adding a ’dimension’ (the energy
resolution) in our measurements. This new dimension finally allowed us to
assign a clear physical origin to the measured transient signals, as reported in
Chapters 6, 7, 8.
The two different approaches we followed are described in this chapter, starting
from the tunable probe configuration, which is a straightforward evolution of
the single-color setup. Finally, a comment about the excitation (pump beam)
role. In the work reported here, the pump photon-energy is fixed, and equal
to 1.55 eV (i.e., 800 nm). A systematic study of the effects of the excitation
photon-energy tuning on the transient optical properties is beyond the scope
of this work. However, we checked that the results were independent on the
pump photon energy, repeating the most meaningful measurements with a
SHG pumping. Despite this, a systematic study of the excitation mechanism
could reveal some interesting features.
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5.6 Tunable-Probe Pump-Probe Setup

The pump-probe setup described in this section was designed to perform time-
resolved measurements with a probe energy in the near infrared region of the
electromagnetic spectrum. In particular, the probe energy can be continuously
tuned in the range 1100-2450 nm (i.e., 1.1-0.5 eV, 9000-4000 cm−1). The pump
is kept fixed at the fundamental energy value of 1.55 eV.
While the details of the optical setup are similar to those described in Fig.
5.1, what it is different is the laser source. The conversion of a 1.55 eV beam
into a (tunable) infrared beam requires to exploit a non linear phenomenon,
called parametric amplification. The device which allows to do this is called
optical parametric amplifier, also known as OPA. These non linear phenomena
requires energy per pulse of the order of µJ/pulse, thus a regenerative laser
source must be employed.
Our laser source is the Coherent RegA 9050 system, a Ti:Sapphire laser system
pumped by a Verdi V-18 solid state laser (producing 18W of monochromatic
CW (continuous wave) radiation at 532 nm). The final laser output consists
of a train of 1.55 eV, 50 fs laser pulses. The repetition rate of this source
can be continuously tuned from 10 to 300 kHz. At a 250 kHz repetition rate,
the one we used, the output power is about 1.5 W. This gives an energy per
pulse of about 6 µJ. Very briefly, the scheme of this complex laser system is
as follows: the 532 nm output (18 W) of the Verdi diode-pumped Nd:YVO4

pump system is splitted in two parts: ∼6 W are brought to a Ti:Sapphire
optical oscillator (Mira Seed), while the remaining ∼12 W are borught to the
regenerative cavity (RegA). The oscillator produces a train of <100 fs, 1.55
eV pulses, with a fixed repetition rate of 80 MHz. These pulses are fed in a
stretcher, a device based on diffraction gratings which aim is to increase the
temporal duration of the laser pulses. These pulses are the seed pulses to be
amplified by the regenerative cavity, in which they are fed in after having been
temporally-stretched. In the regenerative multi-pass cavity the amplification
process takes place. This process happens because the seed pulses pass through
a Ti:Sapphire active medium for a proper number of times (20 to 30), until the
desired energy has been reached for the pulse. The injection of the seed pulse
in the cavity and the ejection of the amplified pulse are both obtained with
an acousto-optic device (a cavity dumper). This device is a SiO2 cell, whose
index of refraction is modulated by a strain wave induced by a piezoelectric el-
ement, driven by a proper radiofrequency, in such a way that the beam passing
through the cell is diffracted when the radiofrequency is applied. A complex
electronics synchronizes the timing of the injection with the 80 MHz pulse train
of Mira Seed, and manage the injection and ejection phases of the radiofre-
quency for the acousto-optic device. The seed pulses and the amplified pulses,
which propagate collinearly, are separated thanks to a faraday rotator coupled
to a polarizer. The amplified pulse is then recompressed with a grating-based
compressor. The seed pulse must be stretched before the amplification, other-
wise the peak intensity would be too high for a good amplification process to
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occur. Obviously, not all the seed pulses are amplified: the RegA repetition
rate is a sub-multiple of the seed laser repetition rate; the actual seed pulse to
be amplified is picked by the cavity dumper, the others are dumped.
The 70% of the laser system output is fed to the OPA, for wavelength con-
version. The resulting energy per pulse is of the order of 4 uJ. The remaining
30% is employed for the pump in pump-probe experiments. The Optical Para-
metric Amplifier is the Coherent OPA 9850. Its output consists in two beams,
called signal and idler, whose energy can be continuously varied in a specified
range. The infrared (1100-1600 nm) part of a white-light supercontinuum,
generated focusing 25% of the total power in a Sapphire plate, is amplified
in phase-matching conditions in a Type II BBO nonlinear crystal, exploiting
a two-pass cavity design. The pump beam used for the amplification process
is the remaining 75% of the total power entering the OPA. Two aspects are
worth to be described in more detail: the supercontinuum generation and the
amplification process itself. The supercontinuum generation is achieved in a 2
mm thick Sapphire plate, on which is focused (with a short focal lenght (30
mm) lens) an energy of about 1 µJ/pulse. In this way, a stable supercontinuum
can be obtained. The generation threshold in Sapphire is about 500 nJ/pulse.
Over this threshold, a self-focusing effect, related to the Kerr effect, occurs,
and the intensity-dependent index of refraction of the material, being the in-
coming pulse spatially Gaussian, behaves like a lens for the pulse itself. Thus,
extremely high pulse intensity develops, and various non linear phenomena co-
operate to broaden the spectral content of the seed pulse. The most important
non linear phenomena is the self phase modulation. The amplification process
takes place in a 1 mm thick BBO non linear crystal. This process in called
parametric amplification, and involves three beams (photons). In this process,
the energy and momentum conservation relations, for the three photons, are
satisfied simultaneously. These three beams / photons are: the seed beam,
the one which will be amplified, and which comes from the supercontinuum:
this will be the signal, s; the pump beam, which will be depleted after the
amplification, indicated with p, and the idler, i, which is generated to match
the energy and momentum conservation relations. ωj and kj are respectively
the angular frequencies and momenta of the three beams. The energy and
momentum conservation relations write:

ωi = ωp − ωs

ωp = ωs + ωi

ki = kp − ks

The second expression indicates that one pump photon is annihilated, and two
new photons, the signal and the idler, whose energy sum equals the pump
one, are generated. There is thus a transfer of energy from the pump, which
will be depleted, to the signal and the idler. The seed pulse coming from the
supercontinuum ’tells’ the system which frequency will be amplified. If the

98



5.6. Tunable-Probe Pump-Probe Setup

axis orientation for the crystal matches the momentum conservation relation
between the pump and the seed beams (this implies the so-called phase match-
ing condition is satisfied), a good amplification efficiency is achieved. Starting
from the sub-nJ energy level of the seed, a mean energy of more than 400
nJ/pulse is obtained for the signal, in a two step amplification process in the
same BBO crystal.
Being 1.55 eV, 800 nm the energy of the pump beam, the degeneracy condition
for the amplification process will be that for which both the signal and the idler
have the same energy of 0.75 eV, 1600 nm. The signal output is comprised in
the interval from 1100 to 1600 nm, while the idler output ranges from 2450
to 1600 nm. They are generated in a collinear geometry, and thus are both
present at the OPA output. Signal and Idler have (linear) orthogonal polariza-
tions, thus they can be alternatively selected with a polarizer. The energies of
the couple of produced signal and idler can be tuned continuously in the range
indicated. Once aligned, the tuning of the device is quite simple. It consists in
the modification of the phase matching angle of the non-linear crystal, and in
the compensation of the delays between the pump and the seed or signal, for
both the two amplification steps. The signal and idler pulse duration has been
characterized with a cross correlation with a 50 fs 800 nm pulse, when the OPA
is seeded with a 50 fs pulse. The result is that the average pulse duration is of
about 100 fs. Now that the laser radiation sources have been described, a brief
description of the optical layout used to carry the experiments is provided. A
schematic of the optical layout is presented in Fig. 5.3. In this configuration,
the pump and the probe beams reach the optic bench being already divided.
The pump beam comes directly from the RegA output, while the probe beam
comes from the OPA output: it is either the signal or the idler pulse. In this
way, the probe pulse can be tuned continuously from 1100 to 2450 nm. To
switch from signal to idler, a polarizer is used, which is rotated by 90 degress
to select the signal (horizontal) or the idler (vertical). To ensure the polariza-
tion of the two is the same on the sample, a broadband lambda/half waveplate
plus a second polarizer (kept fixed) is employed. To compensate for the optical
path of the OPA (about 5 m), the pump path is lengthened exploiting the re-
flection from some retroreflectors. The probe pulse must be attenuated by an
amount of 100 to 10000 (with a neutral density filter with optical density (OD)
continuously variable from 2 to 4) to ensure it is weak enough to be employed
as a probing beam. To introduce a carefully variable time delay between pump
and probe beams, the pump beam is brought to a retroreflector mounted on a
coil motor. This device (APE ScanDelay 50) is computer controlled and allows
to introduce a delay ranging from 10 to 50 ps in the beam path. Its motion
equals a triangular wave, with a rise-time tunable from 0.1 to 5 s. This means
that a complete pump-probe scan can be acquired in a time ranging from 0.2 to
10 s (5 to 0.1 Hz rate). This device is designed to allow acquisitions in the ’fast
scan’ configuration I described in section 5.2. We set the relevant parameters
as follows: for a 10 ps scan, a rise time of 0.2 s was chosen. With a lock-in
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Figure 5.3: Here I report the experimental layout of the pump-probe system.
The top panel schematizes the laser system, while the bottom panel describes
the optical layout of the system.

acquisition time of 1 ms, this results in a temporal resolution of 50 fs, of the
same order of the pump pulse duration. Then the pump pulse passes through
a telescope (built with two 25 cm focal lenght sperical mirrors), in which focus
is placed the disk of a high speed chopper. The beam need to be focused since
we wanted to reach high chopping speeds, and to achieve this the disk mesh
to be used is quite small (<500 µm). In particular, we set the chopping speed
to 13 kHz. This value has been chosen in such a way it is comprised between
the laser repetition rate (250 kHz; doing so, about 10 laser pulses are blocked,
and 10 passes) and the lock-in integration time (1 ms, ie, 1 kHz, in such a way
that at least 10 modulation cycles are integrated). The pump beam can be at-
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tenuated with a computer controlled lambda/half waveplate, placed behind a
polarizer made of two Brewster angle windows. In this way, the measurements
can be automatically repeated at various values of excitation intensity. Finally,
the pump beam is focused on the sample with an anti-reflection coated 40 cm
focal length lens. The probe path is much simpler: no particular devices are
needed, and the beam is focused with a 25 cm focal length spherical mirror.
The choice of a spherical mirror has been done since this optical component
is achromatic (the probe can range from 1100 to 2450 nm). This ensures the
probe spot size is almost constant in the entire spectral range. We obtained
100±5 um for the pump FWHM and 50±5 um for the probe FWHM, at the
sample position. The reflected or transmitted beam from the sample is imaged
onto pin photodiodes of the InGaAs type. Two photodiode types (which differ
in the doping of the sensing area) help to cover the whole probe energy range.
They are Thorlabs DET10C and DET10D, which detect light respectively in
the 700-1800 nm and 1200-2600 nm range. Placed in front of the photodiode,
an RG 1000 filter blocks the scattered light coming from the 1.55 eV pump
beam. The detection system is based on a lock-in acquisition. This allows us
to reach a signal to noise level as high as 106, averaging about 200 scans (last-
ing 0.4 s each). To obtain the ∆R/R signal, the static quantity R is measured
averaging the photodiode signal over 10 ms windows, and sampling them with
a 16 bit-100 kHz digitizer. The same digitizer acquires the analog X and Y
fast outputs of the lock-in amplifier, from which is calculated the ∆R signal,
and the position signal coming from the ScanDelay. To obtain a plot of the
∆R/R signal at the different probe wavelengths, the OPA must be manually
tuned. This procedure requires some time (everything must be kept aligned),
so that a complete ∆R/R map requires some hours to be collected (considering
a pump fluence of ∼100 µJ and 20 lambda-points).

5.7 Supercontinuum-Probe Pump-Probe Setup

In this setup the spectral resolution enters in a natural way, since the probe
pulse is itself a broadband pulse, with a wide energy content. No need to
manually tune the probe wavelength is necessary anymore, which often results
in misalignment problems. The main difference with respect to the setups de-
scribed till now, stands in the acquisition system. Here, the spectral signal, at
a fixed pump-probe delay, is acquired simultaneously in a wide spectral range,
thanks to a multichannel linear detector (a linear array of photodiodes on
which the spectrum is dispersed) which is digitized using an analog-to-digital
acquisition board. No lock-in detection is possible in this setup, and this re-
sults in a poorer signal-to-noise ratio with respect to lock-in based acquisitions.
But since no dead time dedicated to tuning and realignment is spent, the fi-
nal result is similar: the acquisition of the transient time-resolved spectra at
different pump-probe delays can be repeated many times in a fully automated
way. With respect to the tunable-probe approach, the ∆R/R 2D map is con-
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structed following a different ’filling’: transient spectra at a fixed pump-probe
delay (which is then scanned in the point-by-point configuration) are collected.
On the contrary, different time-resolved traces at fixed wavelength (to be man-
ually tuned) were collected in the previous approach. In our case, the linear
array sensors have 128 pixels: this implies that the spectral resolution is much
higher than the previous approach, and also narrow spectral features can be
detected.

After a brief description of the optical system and the acquisition system we
developed for this task, particular importance will be devoted to the char-
acterization methods for the broadband supercontinuum pulses. The next
paragraph of this chapter will be entirely devoted to this aim. A brief de-
scription of the mechanisms which produce the white light continuum starting
from a monochromatic seed pulse, will reveal that the temporal structure of
these pulses can be far from trivial. Since the temporal structure of the probe
pulse reflects itself in a pump probe spectrally resolved scan, for the data to be
correctly interpreted and presented, the temporal structure of the pulse (the
temporal distribution of the various wavelengths) must be a priori character-
ized. In this way, the raw data can be corrected from the unphysical features
related uniquely to the probe temporal structure. Thus, a review of some
techniques we developed and employed to obtain the supercontinuum pulse
spectrograms (time and energy maps of the pulse) will be presented, evidenc-
ing pros and cons of each technique.

A supercontinuum pulse can be generated following two different approaches.
As a common starting point, an ultrashort (∼100 fs) monochromatic laser
pulse must be focalized in a medium, in such a way that very high peak inten-
sities are reached. Depending on the material one chooses, the initial energy
per pulse must belong to a completely different energy range. In the case of
bulk materials (such as Sapphire, CaF2, BBO) or liquids (water, ethanol), the
threshold for supercontinuum generation is of the order of ∼500 µJ/cm2. Fol-
lowing this approach, the first broadening of a monochromatic ultrashort pulse
was demonstrated [3, 4] in 1970. The temporal structure of these pulses is in
general quite simple: the various wavelengths have a linear and positive chirp,
related to that of the material in which the generation occurs. To generate a
supercontinuum following this approach, one needs an amplified laser system,
which is a rather complex and expensive machine. On the contrary, super-
continuum pulses can be generated starting from pulses with a much lower
energy per pulse, of the order of some nJ/pulse, if one exploits the recently
developed photonic crystal fibers (PCF). The first report on a PCF-generated
supercontinuum is dated 2000 [152, 107, 158, 61]. Following this approach, su-
percontinuum pulses can be generated using a standard oscillator laser source.
The drawback is that the temporal structure of these pulses is more compli-
cated, and must be known in some way prior to use these pulses as probe
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pulses in time-resolved experiments. The temporal structure is involved be-
cause it follows the effective dispersion characteristic of the fiber, and because
of the various physical phenomena which contributes to the broadening of the
spectrum. From now on, for dispersion characteristic I mean the behavior of
the group velocity dispersion (GVD) versus the radiation wavelength.

A few words about the PCFs are worth to be spent. An optical fiber is con-
stituted by two concentric materials: the internal one, named core, in which
the light is guided, and the external one, the cladding. The most common ma-
terial for both the constituent is fused silica. The light propagation through
an optical fiber is made possible by the phenomenon of the total internal re-
flection: this phenomenon confines the light inside the material with higher
refraction index (the core), since the reflectivity at the interface is one if the
incident angle θi is bigger enough (it must be bigger than the critical angle
θc, that is θi > θc = arcsin(ncl/nc), being nc and ncl the refraction index of
the core and the cladding, respectively). This condition is easily satisfied for a
beam propagating inside an optical fiber. In a conventional optical fiber, the
(wavelength dependent) refraction index of the core is made bigger than that
of the cladding, upon a proper doping of the material. The problem is that the
dispersion characteristic of the fiber will be the same of the material, and this
makes the conventional optical fibers not well suited to the production of super-
continuum: a short pulse temporally broadens and thus cannot non-linearly
interact with the fiber core material (for fused silica, zero dispersion occurs
close to 1.5 µm). On the contrary, the dispersion characteristic of photonic
crystal fibers is designed in such a way the dispersion is zero close to the seed
wavelength (which is usually 800 nm, the fundamentalof Ti:Sapphire lasers).
Doing so, the (ultrashort) seed pulse remains short upon propagation in the
fiber, and the high peak intensities make it non-linearly interact with the core.
The desired dispersion characteristic for the a PCF is obtained (see Fig. 5.4)
thanks to a microstructured cladding, which is usually composed of a regular
(computer designed) pattern of holes which surround the core. This peculiar
design results in an effective refraction index, for the cladding, which is smaller
than the core one, with the advantage that the dispersion characteristic can
be enginerized as one needs. From the cladding enginerized structure, which
resembles that of some crystals, the photonic crystal fibers take their name.
Many non linear phenomena, which take place in the fiber core, contribute and
cooperate to the broadening of the monochromatic (800 nm) seed pulse into
a broadband white light supercontinuum pulse. These phenomena are: the
self phase modulation, the Raman scattering, the four wave mixing and the
solitonic fission. The last is specific to the light propagation in optical fibers.
For a detailed description of these phenomena I suggest Ref. [61]. Since many
physically different phenomena participate in the spectral broadening of the
seed pulse, the pulse temporal structure will be rather involved, and difficult
to be predicted. Anyway, the pulse temporal structure will closely follow the
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Figure 5.4: The dispersion characteristic of our PCF is reported (left). On the
right, a section of the same fiber reveals its actual inner strucure.

fiber dispersion characteristic shape.
The PCF we employed is the CrystalFiber FemtoWhite 800. This fiber is 12
cm long, and its core diameter is 1.6 µm. This ensures extremely high peak
intensities develop for an ultrashort (∼100 fs) laser pulse propagating into it
(10 nJ/pulse results in an intensity of more than 3 TW/cm2). This allows the
pulse non-linearly interact and broaden into a white-light continuum which
ranges from 450 to 1600 nm. The zero-dispersion for this fiber happens at 750
nm. This fiber is polarization maintaining, thus the supercontinuum is linearly
polarized, in the same direction of the incoming pulse. The peculiarity of this
fiber, enclosed in a solid aluminum housing, is that its end are collapsed up to
a diameter of 30 µm: this solution allows an easy coupling of the seed pulse,
and ensures a high stability of the coupling condition, resulting in a highly
stable output. The fiber numeric aperture (NA) is 0.27. The seed pulse must
be focalized in the collapsed end of the fiber with a lens whose focal length
ensures no power losses; in our case, we choose an aspheric lens. In the same
way, the supercontinuum output must be collimated; for this purpose, we em-
ployed an aspheric doublet (which limits chromatic aberrations, since we deal
with a broadband pulse).

A PCF based pump-supercontinuum probe setup, seeded by an optical os-
cillator, offers a great versatility. The spectral resolution of this system is
limited to the visible and near infrared regions of the spectrum; in particular,
the range 500-1050 spectral region can be explored in the setup we developed.
This range is limited entirely by the sensibility range of the detectors. The
fiber itself, if correctly aligned, generates a spectrum in the range 500-1600
nm. The detectors instead are sensible in the spectral range 200-1050 nm.
Thus, a wide spectral region in the infrared cannot be detected. Only very
recently, new linear sensors has been designed which allow to extend the sen-
sibility in the infrared up to 1600 nm. These will constitute a perfect match
with the PCF, even if in the infrared region, because of the solitonic fission,
the pulse temporal structure is very irregular. Currently, I’m testing a new
setup based on these novel sensors (Hamamatsu G11608), which are sensible
in the range 500-1700 nm. On the other hand, new PCFs which extend the
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limit in the infrared up to 3-4 µm (with a conventional 800 nm seeding) has
been designed [106, 58]. But the lack of linear sensors working in this range
makes the spectroscopy in the mid-IR far to be achieved. The time-resolved
spectroscopy in the infrared spectral region (in particular, for λ>1600 nm) is
thus, up to now, only possible employing wavelength conversion devices (OPA
or DFG) coupled to amplified laser systems, which I described in section 5.6.
The pump-supercontinuum probe setup will be now described. The output

Figure 5.5: Here I report the experimental setup we designed to perform time-
resolved spectroscopic measurements. Key elements are the Photonic Crystal
Fiber employed to generate the supercontinuum pulse, and the acquisition
system based on fast linear array sensors.

of a cavity-dumped Ti:Sapphire oscillator (producing ∼120 fs, 1.55 eV laser
pulses, with a repetition rate easily and continuously tunable from 1 MHz
down to single shot) is splitted in two arms by a 70% T, 30% R beamsplit-
ter. The more intense beam constitutes the pump beam. It passes through
a magnetic delay stage (Micos LMS-80), which introduces and controls the
pump-probe pulse delay, and through a low-frequency chopper (Scitec 300CD,
which chopping speed is set to 20 Hz), which aim is to introduce a modula-
tion on the pump beam, necessary to perform the differential measurement of
the (pump-induced) transient reflectivity. The status (parity) of the chopped
pump beam is sensed through a photodiode, on which a small percent (∼4%)
of the pump beam, picked by a wedged window, is focused with a short focal
length lens. Then, the pump beam passes through a motorized lambda/half
waveplate, followed by a fixed polarizer, to allow for a precise pumping inten-
sity control. Finally, the pump beam is focused at the sample position through
an achromatic doublet with 20 cm focal length (Thorlabs AC254-200-B). The
obtained pump spot FWHM is 38±2 µm. The rest of the splitted intensity
constitutes the probe beam. It is focused with an aspheric lens (Thorlabs
C230TM-B) into the PCF. The supercontinuum output is collimated thanks
to an achromatic doublet (Thorlabs AC010-080-B), designed to work in the
wavelength range 650-1050 nm. The alignment of the seed into the PCF re-
quires some level of care; anyway, once done, the day-to-day alignment is a
straightforward task. The supercontinuum beam is propagated by means of
Silver mirrors. The beam is focused at the sample position thanks to a 10
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cm focal length achromatic doublet (Thorlabs AC254-100-B). We obtained a
probe beam FWHM of 20±4 µm, for the whole wavelength range 500-1050 nm.
The superposition of the pump and probe beams is cheked with a CCD camera
equipped with a 10x magnifying objective. The sample reflected or transmitted
supercontinuum beam is collimated with 10 cm focal length spherical mirror
(Thorlabs CM254-100-P01). The collimated beam is directed toward an SF11
prism, which disperses the various wavelengths toward different positions in
space. A 20 cm focal lenght achromatic doublet is placed after the prism; in
the focus of the doublet, the linear array photodiode sensor is placed. The
sensor we employed is the Hamamatsu S8380-128Q. It is a device composed
of 128 pixels, each 50 µm wide. The total active area, on which the super-
continnuum is dispersed through the prism, is thus 6.4 mm long. The pixel
height equals 2.5 mm. The dispersion characteristic of the prism on the sensor
is simulated thanks to a numeric simulation (taking into account the prism
material (SF11) refraction index and the (refraction index dependent) prism
dispersion law). In this way, the calibration of the array (the correspondence
pixel-to-wavelenght) is achieved. Some specific wavelengths are selected with
interference filters and their position on the sensor is recorded, to allow for the
calibration to be performed. To allow an efficient suppression of the super-

Figure 5.6: The scheme of the dispersion of the white-light pulse onto the
linear array sensor, obtained thanks to a prism, is shown in the figure. The
calibration procedure for the system consists in the assignment of a wavelenght
to every pixel of the array, simulating the actual dispersion of the prism system,
which is anchored by measuring the position of several selected wavelenghts.

continuum intensity fluctuations, the non-interacting (with the sample) beam
is sampled with a second linear array sensor. This constitutes the reference
sensor. The (pixel-by-pixel) ratio of the signal sensor signal to the reference
sensor signal will be a quantity which fluctuates less than the two single quan-
tities. This is the quantity which will be employed for the experiments. To
build the reference path, a small amount of the supercontinuum beam (∼4%)
is picked by an uncoated wedged window. The optical path of this beam to-
ward the second sensor is build in such a way it is as similar as possible with
respect to the signal optical path. The acquisition of a transient spectrum
∆R/R(ω, τ) at fixed pump-probe delay τ , is straightforward, if one exactly
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knows the pump parity. To calculate the ∆R/R(ω, τ), the Rpumped(ω, τ) and
Run−pumped(ω, τ) = Run−pumped(ω) are the only quantities that must be ac-
quired (the ’unpumped’ spectrum does not depend on the pump-probe delay).
Usually, for each transient spectrum at fixed pump-probe delay, 2000 spectra
are recorded and averaged. This takes about 1 s. Part of these spectra will
be ’pumped’, part ’unpumped’. The pump parity is sampled together with
the spectra, thus the ∆R/R(ω, τ) can be computed. To obtain a time and
spectrum resolved map of the material optical response, many transient spec-
tra, for different pump-probe delays τ , must be collected. Usually, we record
about 250 delay points for a 6.6 ps total delay scan, which results in a tem-
poral resolution of 26.4 fs. The spectral resolution of this system is about 2
nm/pixel toward the visible part of the spectrum (500 nm) and 6 nm/pixel
toward the infrared side (1050 nm). This resolution is not constant because of
the dispersion characteristic of the prism. Anyway, it is a good value and it is
enough to evidence spectral feature in the time-resolved signal. The choice of
a grating to disperse light would have produced a linear dispersion, thus a con-
stant resolution (in nm), but at the expense of a much lower intensity efficiency.

A dedicated acquisition system has been developed and constructed to per-
form this kind of measurements. No commercial systems for this purpose are
available yet. The acquisition system is devoted to both the control of the
linear array sensors and the acquisition of their outputs. The software part,
developed in a LabVIEW environment, controls the acquisition and saves the
time and energy resolved maps as 2D matrices. I anticipated that no lock-in
acquisition is possible with this acquisition scheme. This is due to the sensors,
the Hamamatsu S8380-128Q (plus the control electronics C7883), which make
available the data in a serial form: the voltage information (proportional to
the illumination level) for the 128 pixels is output on the same electrical line
at a 2 MHz rate (if one drives the devices at 8 MHz), thanks to an integrated
shift register circuit. Thus, the data acquisition can be performed solely by
digitizing (in our case with a National Instruments high speed digitizer, the
NI PCI-5922, which offers two independent ADCs with 22 bit of resolution at
a 2 MHz acquisition rate) the train of voltage values for the 128 pixels. This
limits the final signal-to-noise ratio to a value slightly better than 104, with an
acquisition time of about 1 s. The acquisition is performed simultaneously for
both the sensors, and the pixel-by-pixel ratio of the two voltages is immediately
computed. The parity signal for the pump status is acquired with a standard
National Instruments M-Series board, the NI PCIe-6251. The Hamamatsu
sensors, in order to work, need two control signals: one is an 8 MHz clock,
which drives the shift register for the pixel voltage value reading; the other is
a lower-frequency signal whose frequency inverse equals the integration time
of the sensor, equal for every pixel. The frequency of this signal has an upper
bound, which is 15625 kHz (or 64 µs). This is the value needed to complete
a scan of the whole array (128 pixels · 0.5 µs/pixel, since the sensors respond
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at a 2 MHz rate when driven with an 8 MHz clock, which is the maximum
allowed value). This signal is fed to both the arrays (in addition to the setting
of the integration time, it starts the output of the data toward the video line)
and to the acquisition boards, for which acts as trigger for the acquisition of
the data. The acquisition is synchronized to the laser trigger, in such a way
that the same number of pulses is acquired for every spectrum, and a constant
illumination level (thus of signal) is generated, independently of the (tunable)
laser repetition rate. Since the range of repetition rates we use is comprised
between 100 kHz and 1 MHz, the laser trigger must be divided by some integer
value. Single shot acquisition is not possible (it would also result in a signal
close to the background level). After some tests, we conclude that an optimal
value is 256: this means that every spectrum is the result of the accumulation
of 256 laser pulses. With this divider, the laser repetition rate can be as high
as 4 MHz for the system to work correctly. Anyway, the maximum repetition
rate one can set is about 1 MHz: the limit is given by the acquisition boards,
which cannot handle a trigger event rate of more than some (4-5) kHz. All the
digital timing signals for the sensors and the acquisition boards are generated
by an ad-hoc circuit based on high-speed and low-latency logic gates.

5.8 The characterization of a supercontinuum

pulse

This section is devoted to the presentation of some methods to perform the
characterization of a supercontinuum light pulse. These methods are recently
attracting much interest [37, 184], given the growing appeal and diffusion
of pump-probe setups with spectral resoluton, in the time-resolved scientific
community. Pulse characterization is indeed a fundamental step to perform
whether broadband supercontinuum pulses are going to be employed as probe
pulses in time-resolved pump-probe measurements. In fact, the temporal struc-
ture of the probe pulse affects the measurements, and, particularly when the
temporal structure of the pulse is not trivial (as it is the case for PCF gener-
ated supercontinuum pulses), a detailed knowledge of the pulse spectral and
temporal intensity distribution (spectrogram) must be obtained, through a
careful characterization procedure we present here in detail. The information
extracted from the characterization procedure are enough to correct the mea-
surements from the pulse temporal structure, making them pulse-structure-
independent as they should be.

The experimental apparatus with which the characterization procedure can
be carried on, is the same as presented before; if needed, the specific differ-
ences will be highlighted. A comparison of the advantages and drawbacks for
each method will be also presented.
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5.8.1 Pulse characterization through a VO2 thin film
solid state switch

This technique works in a reflection geometry and requires no modification
of the pump-probe setup I described: the pulse characterization can thus be
performed in situ, in the same experimental run of the programmed measure-
ments.
The idea is to take advantage of the photoinduced insulator-to-metal phase
transition of a vanadium-dioxide (VO2) high quality thin film sample. In fact,
it has been demonstrated that, upon photoexciting a VO2 sample with ul-
trashort laser pulses of proper fluence (F>Fc=250 µJ/cm2 [154]), a 2nd order
phase transition (both electronic and structural) from the low-temperature
(T<Tc=340 K) monoclinic and insulating phase to the high-temperature ru-
tile and metallic phase (T>Tc=340 K) can be photoinduced [31, 29]. This
happens on an ultrafast timescale (<100 fs), and is in no way related to the
much slower thermal phase transition. After photoexcitation, the system re-
mains in a metastable state for about 1 ns: for this reason the term ’switch’
has been employed. The phase transition manifests itself with the collapse of
the energy gap, which characterizes the insulating phase. This has an effect on
the material optical properties, which change abruptly and by a big amount
(many percent for the case of the reflectivity) after the phase transition has
been photoinduced. This makes the VO2 film an optical switch, which activa-
tion is triggered by the pump pulse, and which optical properties are probed by
the probe pulse, in a pump-probe experiment. Obviously, the transient optical
response of the material extends throughout a wide range of energies, allowing
to characterize a broadband pulse in the visible and mid-IR spectral region.
About VO2, it has been demonstrated that the exciting radiation couples to
the structural degrees of freedom; the induced change in the crystal structure
is then followed by the electronic structure, which adapts itself to the new
structural configuration. This observation comes from both the observation
that the transition can be induced by an exciting wavelength smaller than the
material energy gap (∼0.6 eV), and that there exist a bottleneck of about 80
fs [30] lasting from the photoexcitation of the system and the change of the
optical properties (related to the gap collapse). This 80 fs bottleneck poses a
lower limit to the shortest pulse that can be characterized. Anyway, in our
case, being the pump pulse of about 120 fs, this limitation is not important:
the limit to the temporal resolution achievable from this technique is the big-
ger among the material response (80 fs) and the actual pump pulse temporal
duration (FWHM).
In practice, the (temporal) optical response of the VO2 sample is regarded as a
smeared step function, whose ’activation’ is given by the pump pulse. We will
thus assume that the VO2 switching behavior in the time domain can be mod-
eled by a step function (the abrupt change in the optical properties triggered
by photoexcitation), convoluted with the 80 fs activation time (the bottleneck)
and the 120 fs pump pulse. This results in the smeared step function. The
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Figure 5.7: Here I report the raw measurement carried on on the VO2 mul-
tifilm sample (panel a)). In panel b) some cuts of the measurement at fixed
wavelenght are reported, while panel c) contains a fixed-delay cut, representing
the transient spectral response of the system.

time-resolved measurement (reported in Fig. 5.7) can be interpreted as fol-
lows: each vertical slice is the normalized difference between the reflectivity
of the excited and the unexcited sample (of which we now know the temporal
behavior). Depending on the relative temporal position of the pump (which
activates the switch) and the (broadband) probe pulses, different situations
can occur: if the probe pulse comes before the switch is activated, the ∆R/R
will be zero (on the left side), since the probe sees the unexcited material. On
the contrary, if the probe pulse comes after the switch has been excited, for
all the wavelength (on the right), there will be a non-zero ∆R/R, because the
probe pulse sees the excited optical properties of the sample, since it comes
entirely after the phase transition has taken place. In between these limit sit-
uations, only some spectral regions of the probe pulse see the pump-excited
optical properties. This fact allow to know exactly where the various spectral
components of the broadband pulse are temporally located, since one exactly
knows where the pump pulse is.
Now, if one fits a function, which is the convolution of a Gaussian function
(representing the probe pulse) and the described material response, to the var-
ious temporal slices of the pump-probe measurement, it is possible to extract
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(as fitting parameters) the temporal duration of each spectral slice of the su-
percontinuum pulse, and its temporal position. The probe intensity cannot
be inferred, since the wavelength dependent material response is not known
with precision. These two parameters allow for a complete characterization
of the spectro-temporal structure of the pulse, and the pulse spectrogram can
be calculated starting from those values. The fit results are reported in the

Figure 5.8: Here I report the supercontinuum pulse spectrogram, retrieved
with the fitting procedure described in the text.

graphs below. The temporal duration of the different spectral components of
the supercontinuum pulse ranges from 100 fs in the UV to 200 fs in the in-
frared. With this information in mind, and the relative time-position of the
same wavelengths, the time-resolved measurements can be corrected. Making
use of a differential dielectric function model, we verified that the VO2 spectral
optical response could be reproduced assuming the closing of the electronic gap
after the photoexcitation. To do this, we consider a vertical slice of the data
reported in Fig. 5.7, at a pump-probe delay such that the probe pulse entirely
comes after the pump pulse. A function described below has been fitted to this
trace. For the details of the differential dielectric function approach, we refer
to 4.3. Actually, in this context, the model has been adapted: both the equi-
librium and the excited reflectivity from the sample have been modeled taking
into account the multiple reflections given by the thin multifilm structure of
our sample, composed of three layers: a 20 nm thick VO2 film, a 330 nm thick
Si3N4 buffer layer, and a Silicon substrate, which thickness has been considered
infinite. Each material has its own dielectric function; we assume that only the
VO2 one is changed upon excitation, in the excited model. In particular, the
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Figure 5.9: The fitting parameters at the base of the pulse spectrogram re-
ported in Fig. 5.8 are here reported.

VO2 static dielectric function has been modeled with four Lorentz oscillators,
which energies are respectively 1.25, 2.8, 3.6, 4.9 eV. The excited dielectric
function, characterizing the material in the photoinduced metallic phase, is
somewhat modified: the lowest-energy oscillator, related to transitions across
the band-gap, has been replaced with a Drude term, modeling the free electron
contribution to the dielectric function in the metallic phase. The remaining
three oscillators present slight changes in their energies (respectively equal to
2.8, 3.5, 4.5 eV). This reflects the fact that the modified structure slightly
modifies the band structure, and thus the optical transitions, of VO2. The
fitting parameters of this complex model are only the ones modeling the VO2

excited dielectric function. The results are compatible with a photoinduced
metallic phase. The best fit of this model to the data is reported in the figure
below. Overall, this characterization technique consists in an experimentally

Figure 5.10: Here I report the fit to the fixed-delay time-resolved spectrum,
performed as described in the text.

simple procedure which can be performed in situ, simply placing a VO2 film
at the samples position. The clear advantage is that the VO2 switch optical
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response extends in a wide energy range, thus allowing for the simultaneous
characterization of a broadband ultrafast pulse. The drawback is that the ex-
traction of the pulse characteristic parameters, from the raw measurement, is
a rather time-consuming procedure, since it requires a non-trivial fitting pro-
cedure. Thus, the pulse characterization cannot be an on-line task. It requires
some level of post-processing. Also, to obtain a good ∆R/R signal, allowing
for a good signal-to-noise level in a reasonable time, a pump fluence as high as
3-5 mJ/cm2 must be available, which is not so common if one works with an
oscillator laser system.
A unique feature of this technique, coming from the fact that it is developed
around a material exhibiting a switching behavior, is that it allows laser diag-
nostic, in the sense that it can reveal pre- or post- pulses in the laser output,
without performing long and time-consuming temporal scans. With this tech-
nique indeed we revealed a post-pulse in the laser output, which appears as the
flat signal at 800 nm, clearly visible in Fig. 5.7. The weak post-pulse cannot
non-linearly interact with the PCF core, thus remains monochromatic, but it
is revealed by this technique.

5.8.2 Pulse characterization through two-photon absorp-
tion in ZnSe and ZnS

This technique allows for a fast characterization of a broadband pulse, ex-
ploiting the two-photon absorption process [109] in an insulating transparent
material. It works in a transmission geometry. As we will see, this technique is
quasi on-line, but it has the important drawback that the deduced pulse shape
is correct as far as the wavelengths to be characterized are far from the visible
spectral region. We employed two different materials: ZnSe and ZnS. These
two materials allow for a different choice of the gate pulse energy, the fixed-
energy pulse (in the two-photon process) employed to induce the absorption:
1.55 eV for ZnSe, 1.55 eV or 3.14 eV for ZnS.
The two-photon absorption process we exploit for this characterization method
can be described as follows. The photon absorption in a bulk material is al-
lowed if the photon energy is higher than the material gap energy. This equals
2.55 eV (490 nm) in ZnSe, and 3.45 eV (360 nm) in ZnS (see Fig. 5.11 for
a plot of the materials transmission, from which the energy gap for both the
materials is inferred). In general, a photon can be either regarded as two
physically different photons, coming from two physically different beams, un-
less they interact in the same position and at the same time (the two beams
must reach the interacting area at the same instant). The absorption effi-
ciency will be lower, since in the absorption process a virtual, intermediate
state is involved. The application of this idea to a pump-probe experiment,
is straightforward. A temporally short, fixed-energy beam, the pump beam
of a pump-probe setup, will constitute one of the two pulses. This pulse is
named gate pulse. Its temporal duration poses a lower-limit to the temporal
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Figure 5.11: Here I report the measured static transmittivity of our ZnSe and
ZnS samples.

resolution of the technique. Its energy must be lower than the material en-
ergy gap. Also, the more monochromatic the pulse is, the more the energy
resolution of the technique will be. The delta-energy missing from the gap
material (∆E=Egap-Egate) determines the range of photon energies which can
be absorbed from the second beam. This is usually the (broadband) probe
pulse of a pump-probe setup, which is detected with the broadband setup de-
scribed in section 5.7. The probe pulse, in general, has a temporal duration
which is much higher than the pump, gate pulse. Scanning the relative tem-
poral position of the gate pulse with respect to the broadband probe pulse,
the absorption will happen, in principle, at different positions, and will involve
different spectral portions of the pulse, depending on the actual pulse shape.
The transient absorption is thus a signal which allow to reconstruct the pulse
spectrogram. Thus, a negative (since what one measures is the absorption)
map of the pulse, which temporal and spectral resolution is limited by the
gate pulse characteristics, will be obtained. The ∆E defined above, and the
material-dependent gap energy, constitutes the limits of the broadband pulse
energy range one can characterize. Energies smaller than ∆E cannot be ab-
sorbed; energies bigger than the gap one are absorbed directly and thus can
not be timely resolved: they simply cannot be characterized.
I anticipated we employ two different materials for the characterization of the
same pulse: ZnSe and ZnS. They appear as polished 2 mm thick optical win-
dows, which we placed at the sample position for pulse characterization. The
theoretical range of energies ZnSe allow to characterize is 1-2.55 eV (490-1240
nm): the former equals ∆E=(2.55-1.55) eV= 1 eV. This energy range is in
excess of what we need (500-1050 nm). On the contrary, we employed ZnS
to perform pulse characterization in the experimental situations in which the
pump is the laser 2nd harmonic (3.14 eV). This experiment would not be possi-
ble with ZnSe, since it would absorb directly this gate energy. The theoretical
energy range allowed for characterization is, in these experimental conditions,
0.31-3.45 eV (390-4000 nm).
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The left plots of Fig. 5.12 and 5.13 contain the two-photon absorption measure-
ments (on ZnSe and ZnS respectively), from which I’ll retrieve the spectrogram
of our supercontinuum probe pulse. In fact, these measurements do not di-
rectly represent the spectrograms, since the temporal (and spectral) structure
of the pump gate pulse is involved. As it is possible to see, the pulse temporal
structure in the visible spectral region (more evident in the ZnSe measurement)
is clearly distorted. Moreover, in ZnS the absorption lasts much longer than
the pulse duration (even if the pulse shape is preserved, as I’ll demonstrate
below). Since the (unknown) energy-dependent material absorption efficiency
is involved, the true pulse intensity cannot be inferred from these measure-
ments. The fitting of a single-gaussian function (convoluted with the gate

Figure 5.12: Here I report the raw measurement on ZnSe (left) and its recon-
struction by a fitting with one Gaussian function (right). White dots represent
the center of the Gaussian at different wavelenghts.

Figure 5.13: Here I report the raw measurement on ZnS (left) and its recon-
struction by a fitting with one Gaussian function (right). White dots represent
the center of the Gaussian at different wavelenghts.

pulse Gaussian shape) to the fixed-wavelenght-slices of the above plots allowed
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us to extract both the temporal duration (deconvoluted from the gate pulse
one) and the temporal position of the broadband probe pulse spectral slices.
The fits to the data are reported in the right plots of Fig. 5.12 and 5.13. The
fitting parameters results are reported in Fig. 5.14 (a and b), for what concern
the temporal positions of the broadband probe wavelenghts, as obtained by
the two materials. I do not report the retrieved temporal duration for such
spectral components, instead, since the results are not physically meaning-
ful. Summarizing, the clear advantage of this technique is that it produces

Figure 5.14: The central position of the pulse for each wavelenght is reported
here for ZnSe (left) and ZnS (right).

a quasi-online result for the spectrogram of an ultrashort, broadband pulse.
Since the ∆T/T signal is quite high even with low gate fluences (∼10−2 with
F<1 mJ/cm2), the actual measurement takes a few minutes to achieve a good
signal-to-noise level. On the contrary, the drawback stands in the fact that the
results are not reliable for wavelenghts in the visible spectral range (in partic-
ular, for λ . 750 nm). This can be argued by looking at Fig. 5.15, where the
results are compared to that obtained thrugh the VO2 switching technique.
The courious thing is that both ZnSe and ZnS behave in the same way, ruling
out the possibility the deviation from the actual pulse shape comes from the
vicinity of the radiation to the material energy gap or from the energy differ-
ence between the gate and the probe energies. Moreover, this method cannot
be employed to deduce the pulse temporal width: the extracted temporal du-
rations are misleading (in particular for the ZnS case), probably because of the
fact that the absorption process involves some metastable states.

5.8.3 Pulse characterization through XFROG technique

This technique is the most direct way to obtain a spectrogram of a pulse,
since the characterization involves only electronic processes which happens on
a time-scale much shorter than the pulse durations (∼10−15 s). For this rea-
son, the results obtained with this method constitute a benchmark for every
other pulse characterization method. On the contrary to the two techniques
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Figure 5.15: A comparison of the results obtained through different techniques
is reported: the two-photon absorption method is not accurate in the visible
spectral region.

described before, this technique requires a completely different experimental
setup, and thus cannot be performed online during a programmed experimen-
tal run. Also, it requires a certain level of care.
This technique consists in the generation of the sum frequency between a spec-
tral portion of a broadband pulse and a monochromatic gate pulse, obtained in
a non-linear crystal. It is one of the possible applications of the XFROG (cross
correlation frequency resolved optical gating) technique [176]. In our case, we
employ a 1 mm thick Type I BBO crystal, and record the sum frequency gen-
erated between a gate (pump) 1.55 eV pulse and a spectral region of the broad-
band supercontinuum (probe) pulse. The sum frequency will be generated only
in conditions of temporal coincidence for the two pulses. The difference of this
technique, with the one described in section 5.8.2, is that a phase matching
condition (representing the momentum conservation between the two pulses
wavevectors), for the sum frequency to be efficiently generated, must be sat-
isfied. Absorption, instead, requires no phase matching conditions to occur,
and different wavelengths can be analyzed (absorbed) at the same time. The
phase matching condition, which limits to a (usually) narrow spectral interval
the spectral region that can be explored at the same time, is realized upon
rotation of the non linear crystal optical axis with respect to the beams linear
and parallel polarization axis. The tuning of this angle allows different probe
spectral regions to be alternatively found in phase matching condition with
the gate pulse, resulting in a high frequency resolution (xFRog).
Performing such a kind of measurement is a time-consuming task: for a fixed
pump-probe delay, the crystal axis must be rotated to allow the different spec-
tral regions of the broadband probe pulse to be analyzed. This is obtained
through a motorized, computer controlled, rotation actuator. This procedure
must be repeated for a proper amount of pump-probe delays, for a good time-
resolution. If we suppose to characterize a spectral interval 600-1100 nm, with
a 1.55 eV, 800 nm gate, the phase matching angle varies from 25.2◦ to 34.1◦ for
BBO. Since we employ a common BBO crystal cut for SHG (second harmonic
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generation) at 800 nm, characterized by a 29.2◦ phase matching angle, this
means the crystal must be angle-dithered in the interval (-4, +5)◦. We di-
vide this interval in 40 discrete steps. The sum frequency is recorded through
a high-resolution UV fiber spectrometer (Ocean Optics SD2000), which al-
lows for a spectral resolution better than 1 nm. The energy conservation law,
~ωsf = ~ωg + ~ωpr (being respectively ωsf , ωg, ωpr the sum-frequency, gate
and probe frequencies), relates the measured wavelength to the correspond-
ing analyzed probe wavelength. For the range 600-1100 nm (2.06-1.13 eV),
assuming a 1.55 eV, 800 nm gate, the sum-frequency will mainly be in the
UV range: 3.61-2.68 eV (343-463 nm). The need to use a spectrometer comes
from the fact that we need a calibrated and high resolution device. The latter
requirement follows because the wide analyzed range (600-1100 nm), on which
we need a good resolution, is translated into a much narrower spectral range
(considering the wavelengths) by the energy conservation law.
The measurements we obtained, with the corrected wavelength axis, is re-
ported in Fig. 5.16. The measurement is obtained with 150 delay steps (with

Figure 5.16: The XFROG measurement of the supercontinuum pulse is here re-
ported. The wavelenght axis is corrected acounting for the energy conservation
in the wave mixing process.

13.2 fs resolution), and each vertical slice is the mean of the intensities ob-
tained from each of the 40 different selected phase matching conditions. This
measurement is proportional to the pulse spectrogram. As usual, the inten-
sity is not proportional to the actual pulse intensity, since the (non-constant)
conversion efficiency is involved. It also contains the effect of the gate pulse.
Nevertheless, the shape is the same of the probe pulse: we can appreciate the
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high spectral and temporal resolution of this technique, when compared to the
previous ones. The higher resolution allows to reveal the fine structure of the
pulse, evidencing the solitonic features for ~ω < ~ωseed, being ~ωseed=1.55 eV
the PCF seed energy. The pulse extends temporally for about 1 ps in the
spectral range 700-1100 nm. The pulse duration, after deconvolving for the
120 fs gate pulse, is about 100 fs around 700 nm, while it increases up to ∼300
fs around 1000 nm, due to the presence of solitonic structures.
The clear advantage of this technique is its unbeatable resolution, both in
the spectral (thanks to the phase matching condition) and temporal (only
electronic processes are involved) domains. On the contrary, it requires a long
time to be performed (more than one hour, since the phase matching condition
must be continuously tuned), and cannot be performed within the conventional
pump-supercontinuum probe setup.

5.9 Cryostat System

We employed an open cycle cryostat (Helitran LT-3-B) to allow the tempera-
ture of the samples be varied in the range 10-350 K. This range can be achieved
only when the coolant is liquid helium. Also liquid nitrogen can be used as
coolant; in this case, the temperature range is limited to the interval 77-350
K. The coolant is transferred from the storing dewar to the cryostat with a
transfer arm. The temperature near to the sample region is accurately mea-
sured with a calibrated Cernox sensor. A computer controlled heater, with a
PID feedback system, stabilizes the sample temperature within ±0.1 K from
the set temperature. The system is kept in UHV thanks to a pumping system
composed of a Scroll pump plus a Turbomolecular pump. A base pressure as
low as 5·10−9 mbar can be reached inside the UHV chamber; this ensures that
no sample degradation takes place, even after many hours of measurements at
very low temperatures. The UHV chamber is equipped with a CaF2 UHV op-
tical window, through which the pump and probe beams reach the sample. A
copper shield shields the samples region from the rest of the chamber, limiting
the heat transfer toward the cold finger area.
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Chapter 6
Electron-boson coupling in the
normal state

6.1 Introduction

This chapter illustrates the results obtained in the normal state (T=300 K) of a
Y-Bi2212 optimally doped sample, by time-resolved optical spectroscopy. Ex-
ploiting the spectroscopic information of our technique, and analyzing the ex-
perimental results within the differential dielectric function approach, I demon-
strate that, in a time interval limited by the temporal resolution of our tech-
nique (∼100 fs), the fermionic quasiparticles photoinjected in the system by a
pump pulse, quickly interact with bosonic excitations characterized by a very
strong coupling to electrons (λ>1), specific heat smaller than the electronic
one, and an energy distribution extending to ∼350 meV. In particular, three
subsets of the total bosonic glue function (Π(Ω), determined by conventional
spectroscopic ellipsometry) have been disentangled: bosonic excitations of elec-
tronic origin, strongly-coupled phonons, and the rest of lattice vibrations. The
main finding of our analysis on the non-equilibrium optical properties of Y-
Bi2212 in the normal state is that the portion of Π(Ω) arising from the electron
coupling with bosons of electronic origin, such as spin fluctuations or current
loops, fully accounts for the high critical temperature of the compound. This
suggests that bosonic excitations of electronic origin are the most important
factor in the formation of the superconducting phase at high temperatures in
the cuprates.

6.2 Time-resolved optical spectroscopy at T=300

K

In this paragraph I report and discuss the time and frequency resolved pump
probe reflectivity measurements performed at T=300 K on three Y-Bi2212
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6. Electron-boson coupling in the normal state

samples with different doping. The probed energy range is 1.2-2 eV, i.e., 600-
1000 nm, while the pump fluence is 10 µJ/cm2. The three samples differ for
the doping level. An underdoped (UD, Tc=83 K, p=0.128), an optimally doped
(OP, Tc=96 K, p=0.16) and an overdoped (OD, Tc=83 K, p=0.2) sample have
been measured, in order to explore the evolution of the pump-induced reflec-
tivity variations as a function of the doping level in the normal state. The
measured reflectivity variations, i.e., ∆R/R(ω, τ), as defined in section 4.4,
are reported in Fig. 6.1.

Figure 6.1: The temporally and spectrally resolved plots for the transient
reflectivity in the normal state phase (T=300 K) of Bi2Sr2Y0.08Ca0.92Cu2O8+δ

are here reported for three doping levels: p=0.128 (UD sample), p=0.16 (OP
sample), p=0.2 (OD sample). The 800 nm, 1.55 eV signal is in agreement with
measurements performed with one-color probe. The cuts (evidenced in red) at
τ=100 fs pump-probe delay are reported in the right graphs, evidencing the
spectral strucutre of the transient signal. The pump fluence is 10 µJ/cm2.

Looking at the data, the main evidence is that both the spectral shape of the
transient reflectivity and its dynamics are doping-independent. All samples ex-
hibit a positive ∆R/R(ω, τ) that monotonically decreases in amplitude in the
visible region. I checked by single color measurements at 3.14 eV probe energy
that the transient reflectivity vanishes in the UV. The relaxation dynamics is
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6.2. Time-resolved optical spectroscopy at T=300 K

governed by a double exponential decay, with a fast component of about 300
fs, followed by a slower one, with a decay time of about 2 ps. This double
relaxation dynamics is usually interpreted [145, 27] as the thermalization of
the photoinjected fermionic quasiparticles with a subset of strongly-coupled
phonons (sub-ps dynamics) and the rest of the lattice (ps dynamics). The
energy-resolved information, in this case, brings the evidence of a structureless
spectral response.

To address the microscopic origin of the measured ∆R/R(ω, τ) signal, I ex-
tended the probed spectral region to the infrared, exploiting the tunable in-
frared probe setup described in section 5.6. I used both the signal and idler
beams, to cover the spectral range 0.5-1 eV (1200-2400 nm) and add dis-
crete time-traces (one every 50 nm) to our time-and-energy resolved reflec-
tivity plots. Here I present the obtained results only for the OP sample, on
which the complete differential analysis will be carried on. Similar results are
obtained on the underdoped and overdoped samples. The extended transient
spectrum for the OP sample is presented in Fig. 6.2.

Figure 6.2: a) The measurement on the Optimally Doped sample is extended
toward the infrared, up to 0.5 eV. b) The total transient spectra for selected
pump-probe delays τ are reported.

Thanks to the extended probed energy range (0.5-2 eV), I observe that the
spectral response has a more structured form. It turns from positive in the
visible to negative in the infrared, with the crossing point which falls close
to the dressed plasma frequency of the system (∼1 eV, see Figure 3.6). On
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6. Electron-boson coupling in the normal state

the contrary, the dynamics in the infrared is characterized by the same decay
rate observed in the visible. In the infrared, the maximum reflectivity vari-
ation maintains a value of about −2·10−4 up the lowest probed energy (0.5 eV).

All the analysis described in the following sections will be carried on on the
optimally-doped sample (see Fig. 6.2), since in this system the total Π(Ω) is
maximum [179], while the use of the extended Drude formalism (see Chapter
3, section 5.2) still appears a reliable approximation [179, 170]. The physical
scenario disclosed by the data will be at first qualitatively described in sec-
tion 6.3, while a more rigorous and quantitative approach will be adopted in
sections 6.4 and 6.5.

6.3 Ultrafast thermalization with bosonic ex-

citations

The aim of this section is to demonstrate that the transient spectrum shown
in the left panel of Fig. 6.2 can be reproduced by a quasi-thermal scenario,
within the differential dielectric function model described in section 4.4. Quasi-
thermal scenario means that the measured pump-induced effect on the optical
properties can be accounted for simply by modifying the effective temperatures
of the bosonic excitations in the Extended Drude. No other parameter in the
non-equilibrium model must be modified to reproduce the data.

The key point to extend the Extended Drude model, extensively discussed
in Chapter 3, to non-equilibrium experiments is that the electron self-energy,
Σ(ω, T ), entering in the calculation of ǫ(ω, τ), can be factorized into [105]:

Σ (ω, T ) =

∫ ∞

0

Π(Ω)L (ω,Ω, T ) dΩ

where L (ω,Ω, T ) is the kernel function, already defined in section 3.5.2, that
accounts for the thermal activation of the bosonic excitations and of the
QPs. The kernel function L (ω,Ω, Te,b)= -2πi[N (Ω, Tb) +1/2]+Ψ(1/2+i(Ω-
Ω′)/2πTe)-Ψ(1/2-i(Ω+Ω′)/2πTe), where Ψ is the Digamma function andN(Ω, Tb)
the Bose distribution at temperature Tb, can be decomposed into different
terms depending on the electronic (Te) and bosonic (Tb) temperatures. The
independent variation of Te and Tb is expected to induce different modifications
of the dielectric function.

Fig. 6.3 shows the expected relative variation of the reflectivity, i.e., ∆R/R (ω)=
[R (ω, T +∆T )-R (ω, T )]/R (ω, T ), in the non-thermal (∆Te>0, ∆Tb=0) and
quasi-thermal (∆Te = ∆Tb>0) scenarios. The difference between the two cases
is more significant in the spectral region close to the dressed plasma frequency,
Ωp≃1 eV, i.e., an energy scale much higher than the energy scale of the bosonic
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6.3. Ultrafast thermalization with bosonic excitations

Figure 6.3: The results of a simulation for two electron-boson coupling scenar-
ios are reported. The resulting ∆R/R(ω) signals present marked differences.
In one case, electrons are decoupled from all bosons (∆Te>0, ∆Tb=0, yel-
low line), while in the other case, electrons are strongly coupled with bosons
(∆Te=∆Tb>0, gray line).

function.

In Fig. 6.4 I report two energy-resolved traces of ∆R/R(ω, τ) at fixed delays:
a) τ=100 fs, i.e., before the complete thermalization with the small subset of
strongly-coupled phonons, b) τ=4 ps, i.e., after the thermalization with all the
lattice. In the simple scenario of the conventional three-temperature model de-
scribed in section 4.3.2, Te is predicted to be decoupled from the temperature
of the phonons (both the subset of strongly-coupled phonons and the rest of
the lattice) in the very first instants (≪100 fs) after the pump excitation. On
the ps timescale, i.e., after the thermalization with phonons, the quasi-thermal
scenario with Te≃Tb is recovered.

Comparing the ∆R/R(ω, τ) measured on the OP sample at τ=100 fs (Figure
6.4a) and τ=4 ps (Figure 6.4b) to the relative variation of the reflectivity cal-
culated in the non-thermal (yellow solid line in Figure 6.4a) and quasi-thermal
cases (dashed lines in Figure 6.4a and 6.4b), I come to the major point of
this chapter, i.e., on a timescale (≤100 fs) faster than the electron-phonon
thermalization, the measured ∆R/R(ω, τ) is related to the variation of the
temperature of some bosonic excitations participating to Π(Ω), while the non-
thermal scenario with ∆Te>∆Tb is never observed. The fast timescale (≪100
fs) of the thermalization with these bosonic excitations implies a very large
coupling and a relatively small specific heat, and strongly suggests that this
process involves bosonic excitations of electronic origin.
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6. Electron-boson coupling in the normal state

Figure 6.4: a) ∆R/R(ω, τ) experimental data at τ=100 fs pump-probe delay
are compared with the simulated ∆R/R(ω) obtained both for the non-thermal
(yellow solid line) and the quasi-thermal (gray dashed line) scenarios. The lat-
ter result agrees with the experimental data. b) ∆R/R(ω, τ) experimental data
at τ=4 ps pump-probe delay are compared with the simulated ∆R/R(ω) (gray
dashed line) obtained for a quasi-thermal scenario, in which ∆Te=∆Tb=0.22
K. A perfect match between experimental data and simulation is achieved, in-
dicating that the system is completely thermalized after 4 ps after excitation.

6.4 Dynamics of the energy transfer to bosonic

excitations

The qualitative analysis, reported in the previous section, of the measured
∆R/R(ω, τ), demonstrated some important issues:

• on all the timescales, the ∆R/R(ω, τ) signal is mostly determined by
the increase of the effective temperature of the bosonic excitations that
contributes to the total bosonic glue Π(Ω).

• the temporal dynamics evidences two distinct decays: a fast component
of∼300 fs, and a slower one, with a decay time of∼2 ps. These timescales
are related to the coupling of electrons with two different subsets of
phononic excitations: a small fraction (f<1) of modes (with specific
heat f ·Ctot, Ctot being the total specific heat) that are strongly-coupled
to the electrons (strongly-coupled phonons, p) and determine the fast
decay time; the rest of the lattice (l) that regulates the slower dynamics.

• on a timescale (≤100 fs) faster than the electron-strongly coupled phonons
thermalization, the fermionic quasiparticles photoinjected in the system
by the pump pulse quickly interact with bosonic excitations character-
ized by a very strong coupling to electrons and a very small specific heat.
These features strongly point to an electronic origin of these excitations.

The most straightforward way to reconcile these results is to solve a set of four
coupled equations, describing the temporal evolution of the effective electronic
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6.4. Dynamics of the energy transfer to bosonic excitations

temperature (Te) during the relaxation process toward equilibrium, through
energy exchange with the three subsets of the total Π(Ω), determined through
equilibrium spectroscopy (see section 3.7.1 and figure 3.8). This is equivalent to
assume that the total bosonic function is given by Π(Ω)=Πbe(Ω)+Πp(Ω)+Πl(Ω)
where Πbe refers to the bosonic excitations of electronic origin at the effective
temperature Tbe, Πp to the small fraction of strongly-coupled phonons (p) at
Tp [145] and Πl to all other lattice vibrations at Tl.
Although the possibility of defining effective temperatures for the electrons and
the bosonic excitations is subjected to some limitations that will be discussed
in section 6.6, this extension of the more conventional two/three temperature
model [7, 145] allows to obtain a fully consistent analysis of the ∆R/R(ω, τ)
data both in the time and frequency domains.
In this picture, the rate of the energy exchange among the different popula-
tions is given by [7] a four-temperature model (4TM):

∂Te

∂t
=

G(Πbe, Tbe, Tbe)

γeTe

+
G(Πp, Tp, Te)

γeTe

+
G(Πl, Tl, Te)

γeTe

+
p

γeTe

∂Tbe

∂t
= −G(Πbe, Tbe, Te)

Cbe

∂Tscp

∂t
= −G(Πp, Tp, Te)

Cp

∂Tl

∂t
= −G(Πl, Tl, Te)

Cl

G(Πb, Tb, Te) =
6γe
~πk2

B

∫ ∞

0

dΩΠb(Ω)Ω
2[N(Ω, Tb)−N(Ω, Te)]

with b=be,p,l and N(Ω, T )=(eΩ/kBT − 1)−1 the Bose-Einstein distribution at
the temperature T . The specific heat (Cp) of strongly coupled phonons is pro-
portional to their density of states and is taken as a fraction f of the total
specific heat, i.e., Cp=f · Ctot.
In principle, the numeric solution of these equations can be fitted to the mea-
sured relative reflectivity variation at a fixed wavelength to determine the dif-
ferent fractions (Πb(Ω)/Π(Ω)) of the total Π(Ω). However, since time-resolved
optical techniques do not provide a direct measurement of Te and Tbs, this pro-
cedure requires the assumption that the measured ∆R/R(τ) is proportional
to the electronic and bosonic temperatures through some arbitrary coefficients
appearing in expression 4.11, which I recall here:

∆R/R(τ) = c1 ·∆Te(τ) + c2 ·∆Tbe(τ) + c3 ·∆Tp(τ) + c4 ·∆Tl(τ)

In Fig. 6.5 I report two time-resolved traces of ∆R/R(ω, τ) at fixed wave-
length, i.e., 800 and 2400 nm. The solid lines are the fit to the data, using
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6. Electron-boson coupling in the normal state

Figure 6.5: Two fixed-wavelenght time-resolved traces, respectively for 800 nm
and 2400 nm probe, are reported. Black lines are the fit to the data performed
with the 4TM. Fitting results are discussed in the text.

the solutions of the 4TM and fixing the values Ce/Te=γe=10−4 Jcm−3K−2,
Ctot=2.27 Jcm−3K−1 and assuming an absorbed power density of 0.6 J/cm3

and a pulse cross-correlation of 180 fs for the 800 nm measurement and 280 fs
for the 2400 nm measurement. The temporal evolution of ∆Te, ∆Tbe, ∆Tp and
∆Tl is reported in Fig. 6.6. I note that, during the cooling process, the temper-
ature Tp is transiently larger than Te and Tbe. This is related to the lack, in the
4TM, of any term for the anharmonic decay of the strongly coupled phonons
[145], that directly couples the 3rd and 4th equations of the 4TM. Including
this term, does not significantly alter the results of the fitting procedure. In
Table 6.1 typical values of the electronic and bosonic temperatures at τ=0 and
τ=4 ps are reported.

Figure 6.6: The result of the numeric integration of the 4TM equations system,
showing the temporal evolution of the temperatures Te, Ts, Tp, Tl, is reported.
The simulation is performed with the paramters extracted by the fitting of the
model to the 800 nm data.
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Table 6.1: Electronic and bosonic temperatures at particular pump-probe de-
lays τ , from a 4TM simulation at T0=300 K.

Temperature τ=0 τ=4 ps
∆Te 1.46 K 0.26 K
∆Tbe 1.46 K 0.26 K
∆Tp 0.69 K 0.26 K
∆Tl 0.09 K 0.26 K

While the temporal dynamics is satisfactorily reproduced (see Fig. 6.5) by
the simple 4TM, the determination of the different Πb(Ω)/Π(Ω) fractions is
prevented by the arbitrary assumption of the coefficients cj that determine
the proportionality between ∆R/R(τ) and ∆Te(τ), ∆Tbe(τ), ∆Tp(τ), ∆Tl(τ).
To decisively narrow the phase-space of the parameters of the fitting proce-
dure and univocally disentangle the different contributions to the total bosonic
glue, the fully consistent and simultaneous analysis of the time- and frequency-
resolved data will be developed in the next section.

6.5 Simultaneous spectral and temporal anal-

ysis

Within the extended Drude model (see section 3.5.2), the optical conductivity
is given by:

σ (ω, T ) =
ω2
p

i4πω

∫ ∞

0

f (ω + ǫ, T )− f (ǫ, T )

ω − Σ (ω + ǫ, T ) + Σ∗ (ǫ, T )
dǫ

where ωp is the plasma frequency and f (ǫ, T ) the Fermi distribution. Σ (ω) is
the electron self energy depending on the bosonic glue Π(Ω) and on the Kernel
function L(ω,Ω, T ), as described in section 3.5.2.
As a consequence, the relative strengths of Πb(Ω) (b=be,p,l) determine both the
intensity of the reflectivity variation and the temporal evolution of the temper-
atures Tb, through the 4TM reported in the previous section. The simultaneous
fit of the calculated ∆R/R (ω, τ, Te, Tbe, Tp, Tl) to the data reported in Fig. 6.2
in the time- and frequency domain, significantly narrows the phase-space of
the parameters of the model, as compared to single-color measurements and
allows us to unambiguously extract the different contributions to Π(Ω) and to
estimate Cbe and Cp.
This procedure is not trivial from the technical point of view. Considering that
the energy distribution of phonons is limited to <90 meV, I assume that, for
Ω>90 meV, Π(Ω)≃Πbe(Ω). Within this assumption, the functional dependence
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6. Electron-boson coupling in the normal state

of ∆R/R(ω, τ) on Πb(Ω) is simplified as a parametric dependence on the coeffi-
cients pb, where Πbe(Ω)=pbeΠ(Ω<90 meV)+Π(Ω>90 meV), Πp(Ω)=ppΠ(Ω<90
meV) and Πl(Ω)=plΠ(Ω<90 meV).
Considering the constraints given by the relations ∆R/R(ω, τ)=F (pbe, pp, pl, Cbe,
Cp, Cl;ω, τ) (F being the generic function expressing the dependence on the
parameters contained in the definition of the σ(ω), see expression 3.13) and
Π(Ω)=

∑

b Πb(Ω) (Π(Ω) being the total glue function determined through equi-
librium spectroscopy and reported in the Figure 3.8), the free parameters of
the fitting are four. From the fit to the rise time of the time-resolved sig-
nal, it is possible to obtain an upper limit to the value of the specific heat of
the electronic excitations, i.e., Cbe≤0.1Ce. Fixing the values Ce/Te=γe=10−4

Jcm−3K−2 and Ctot=2.27 Jcm−3K−1, I am able to simultaneously perform the
fit to the data reported in Fig. 6.2 in the time and frequency domain with only
two free parameters, i.e. Cp and any of the pb. Furthermore, the small influence
of the variations of Cp on the fit results (i.e. ∂F/∂Cp≪∂F/∂pb), significantly
narrows the parameters phase-space of the model, allowing to unambiguously
haul out the different contributions to Π(Ω). The result of the fitting procedure
in the frequency domain, is shown in Fig. 6.7 for the ∆R/R(ω, τ) spectrum at
τ=100 fs. The black lines are the maximum and minimum ∆R/R(ω, τ=100
fs), considering the experimental uncertainty in the laser fluence and spot
dimensions. The values of ∆R/R(τ=100 fs) measured at each wavelength,
satisfactorily fall within the two lines.

Figure 6.7: The ∆R/R(ω, τ) signal at τ=100 fs pump-probe delay is reported.
The gray shadowed area accounts for the experimental uncertainties in the
both the measurement of the incident pump fluence and in the determination
of the pump and probe spot sizes, which have been considered in the fitting
procedure.

Figure 6.8 summarizes the main results of this analysis. The 10 µJ/cm2 pump
pulse gently increases the electronic temperature by ∆Te ∼2 K. The entire
high-energy part and ∼46% of the peak (yellow areas) instantaneously ther-

130



6.5. Simultaneous spectral and temporal analysis

malize with electrons at a temperature Tbe ≃Te. The spectral distribution and
the value of the specific heat of these excitations (Cbe<0.1Ce) demonstrate their
electronic origin and are compatible with both the spin fluctuations and cur-
rent loops scenarios, described in section 3.5.4. On a slower timescale (100-300
fs), the electrons thermalize with the strongly coupled phonons, that represent
∼20% of the phonon density of states (Cp=0.2·Cl), but are responsible for
∼34% of the coupling (blue area) in the peak of the bosonic function at 40-75
meV. Prominent candidates as strongly coupled phonons are the buckling and
breathing Cu-O optical modes (see section 3.7.1). The third and last measured
timescale is related to the thermalization with all other lattice modes (80% of
the total) that include all acoustic modes and the IR- and Raman-active modes
involving c-axis motion of the Cu ions and provide ∼20% of the coupling (green
area) in the peak of Π(Ω).

Figure 6.8: This scheme summarizes the scenario taking place in the normal
state (T=300 K) of Bi2Sr2Y0.08Ca0.92Cu2O8+δ for the electron-boson coupling,
as determined by the combined spectral and temporal analysis of time-resolved
spectroscopic measurements. The total bosonic glue Π(Ω) has been disentan-
gled in three subsets, evidenced by different colors: yellow for the area arising
from coupling with bosons of electronic origin (be); blue for the area related
to the coupling with strongly coupled phonons (p); green for the area related
to the coupling with weakly coupled phonons (l). The evolution of the three
bosonic temperatures is also reported.
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6. Electron-boson coupling in the normal state

Table 6.2: Important parameters for the electron-boson coupling in the nor-
mal state, from the combined spectral and temporal analysis of time-resolved
spectroscopic data.

Boson λj Ω̃j Cj Tc

j=p, strongly coupled phonons 0.4±0.2 60 meV 0.2·Ctot 2-30 K
j=l, weakly coupled phonons 0.2±0.2 47 meV 0.8·Ctot 0-12 K

j=be, electronic bosons 1.1±0.2 87 meV <0.1·Ce 105-135K
Total 1.7 69 meV (Ctot + Ce) 137 K

6.6 The bosonic glue and Tc

These results have fundamental implications for the identification of the pair-
ing mechanism in cuprates. The electron-boson coupling λb=2

∫

Πb (Ω) /Ω dΩ
is calculated for each subset b of the bosonic excitations, considering the ex-
perimental uncertainties. In the strong-coupling regime (λb<1.5), the critical
temperature for d-wave pairing [128] in a Fermi liquid with pseudopotential
µ∗=0 is approximately given by an extended version of the Mc Millan’s equa-
tion [8]:

Tc = 0.83Ω̃ exp[−1.04(1 + λb)/gλb]

where lnΩ̃=2/λb

∫∞

0
Πb(Ω)lnΩ/ΩdΩ, λb=2

∫

Πb (Ω) /Ω dΩ is the electron-boson
coupling constant and g∈[0,1] is a parameter that accounts for the d-wave na-
ture of the superconducting gap. The upper bound g=1 corresponds to the
case in which Πb(Ω) entirely contributes to the d-wave pairing.
The coupling with strongly coupled phonons (λp=0.4±0.2) is in complete agree-
ment with the values measured on similar materials via different techniques,
such as time-resolved photoemission spectroscopy [145], time-resolved electron
diffraction [27] and single-color high-resolution time-resolved reflectivity [75].
Although this value is rather close to the threshold of the strong-coupling
regime [129, 159], the small value of Ω̃ gives Tc=2-30 K, that is far from be-
ing able to account for the high-temperature superconductivity of the system.
The coupling of electrons with all other lattice vibrations is even smaller in
strength (λl=0.2±0.2) and provides an upper bound of the critical tempera-
ture of Tc≃12 K. Finally, the large coupling constant (λbe=1.1±0.2) and the
larger Ω̃ value of the electronic excitations, give Tc=105-135 K, and hence ac-
counts alone for the high-critical temperature. All the λb values, the Ω̃ values,
the specific heats and the maximum attainable critical temperatures Tc are
reported in Table 6.2.
The measured value of λbe and the spectral distribution of the electronic
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excitations constitute a benchmark for theories of superconductivity in the
cuprates. In particular, they indicate that the antiferromagnetic spin fluctua-
tions [48, 170] and the loop currents [182] are the most probable mediators for
the formation of Cooper Pairs. I remark that our results are rather indepen-
dent of the assumption of the histogram-like form of Π(Ω) and robust against
modifications of the details of the equilibrium dielectric function. In fact, the
outcome of this work strongly supports the factorization of the self energy
into a temperature-dependent kernel function and a temperature-independent
function Π(Ω) (see Eq. 3.19) even under non-equilibrium conditions. Although
I do not exclude a-priori that: i) Πbe(Ω) may be modified and new magnetic
excitations emerge at low temperatures, particularly in the pseudogap phase
[116]; ii) the upper limit used in the determination of the bosonic function can
hide possible contributions to Π(Ω) even above 1 eV; iii) the electron-phonon
coupling may cooperate in driving the superconducting phase transition, our
results suggest that bosonic excitations of electronic origin are the most impor-
tant factor in the formation of the superconducting state at high temperatures
in the cuprates.

6.7 Limits of the N-temperature model and

uncertainty in the determination of λ

The applicability of the two/three temperature models and their extension to
the four 4 temperature model (reported in sections 4.3.1, 4.3.2, 4.3.3), relies on
the assumption of a quasi-thermal electronic and bosonic distribution, thermo-
dynamically defined by the effective temperatures Te and Tb (with b=be,p,l).
This model has been used to satisfactorily interpret both time-resolved pho-
toemission [145] and time-resolved electron diffraction [27] data on Bi2212. In
particular, the time-resolved ARPES data reported in Fig. 6.9 have been often
considered as the evidence of the formation of a Fermi-Dirac electron distribu-
tion at an effective temperature, within 50-100 fs from the pump excitations.
The departure from the quasi-thermal distribution is limited to a high-energy
tail with an intensity of about 2 order of magnitude smaller than the Fermi-
Dirac function. This hot electron tail is usually considered negligible in terms
of the time-domain dynamics described by the generic N-temperature model.

Nevertheless, the basic assumption of all these quasi-thermal approaches is
that the electron-electron scattering time (τe−e) is much smaller than the
electron-phonon scattering time (τe−ph). In standard metals this condition
is not always fulfilled. In particular, the electron-electron scattering time is
determined by the Pauli principle and is given by (see equation 17.66 in [11]):
1/τe−e=A(kBT )

2/~EF , where A is of the order of 1. Considering the typical
values of the parameters for metals, I obtain τe−e∼10−10 s, which is signifi-

133



6. Electron-boson coupling in the normal state

Figure 6.9: a) The time-resolved ARPES spectra acquired 200 fs before (black
dots) and 100 fs after (red dots) the arrival of the pump pulse (T0=30 K) are
reported. b) The time-resolved ARPES spectra acquired at τ=0 fs (azure line)
and at τ=200 fs (black line) are reported. The hypothetical spectrum of an
electronic system that has fully thermalized at Te=770 K (dashed violet line) is
superimposed. c) The logarithmic plot of the kF spectrum, collected at several
pump-probe delays, is reported. From [145].

cantly larger than the typical relaxation time (10−12 s) at room temparature
in metals. To overcome this problem, an analytical approach to the Boltzmann
equation [96], which is free of any quasi-equilibrium approximation, has been
recently developed. In this work, two-different regimes have been discussed:
the high-temperature (Te,Tb≫TD, where TD is the Debye temperature) and
the low-temperature (Te,Tb≪TD) regime.
In the high-temperature case, the analytical treatment yields the relation:

λe−ph < ω2 >=
2π

3

kBTl

~τ̃e−ph

(6.1)

where τ̃e−ph is the exponential decay time of the time-resolved signal related to
the electron-phonon coupling. This relation is applicable also when τe−e>τe−ph.
As compared to the similar formula by Allen [7] (see formula 4.2), the electron-
phonon coupling λe−ph is predicted to be linearly dependent on Tl instead of
Te, with a factor 2 that is absent on the original relation.
In the low-temperature case, it is calculated that the N-temperature model
overestimates λe−ph of a factor 8/(5·c(r)), c(r) being a coefficient ranging from
8/5, when the ratio r=τe−e/τe−ph is 0, to 1 in the limit r→∞. In other words,
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6.7. Limits of the N-temperature model and uncertainty in the determination of λ

when τe−e≪τe−ph the N-temperature model is fully valid, while in the con-
ditions τe−e≫τe−ph the quasi-thermal model overestimates λe−ph of a factor
8/5=1.6.
This approach based on the Boltzmann equations has been used to reassess
[76] the electron-phonon coupling values, previously estimated through the
simple 2TM, in metals. Slightly smaller values of λe−ph are found for the most
common metals, with the maximum difference in NbN and V3Ga, where λe−ph

must be corrected of a factor 2.

In contrast to simple metals, the evaluation of τe−e in strongly-correlated sys-
tems and in cuprates, in particular, is a subtle problem, since the applica-
bility of arguments based on the Fermi-liquid theory is questionable. It has
been recently demonstrated [74] that below the value p=0.2 of hole-doping
in cuprates, the strong electronic correlations drive a suppression of the co-
herent part (the quasiparticles) of the nodal ARPES spectra. This marks a
clear departure from Fermi-liquid behaviour and a more rapid than expected
crossover to Mott physics, where the elementary excitations are strongly local-
ized on the Cu-O sites. Close to the optimal-doping (0.1<p<0.2), the system
does not have completely lost the concept of quasi-particle, but is very close
to the Mott behavior dominated by incoherent excitations. In other terms, the
strong Coulomb repulsion among the conducting electrons strongly decreases
the scattering time τe−e eventually driving the complete failure of the Fermi-
liquid picture in the uderdoped side of the phase diagram. At optimal doping,
the extended Drude model can be recovered, provided that the effect of strong
electronic correlations is accounted for by a bosonic glue Π(Ω) of electronic
origin.
In Ref. [76], τe−e≃1.4 ps is estimated considering a Fermi-liquid with an elec-
tron effective mass m∗=4m and an effective dielectric constant ǫeff≃30. This
estimation, based on the possibility of defining quasiparticles as in a conven-
tional Fermi Liquid, appears rather crude, and completely neglects the role of
the electronic correlations in the material. Furthermore, the concept of effec-
tive dielectric function appears questionable in systems dominated by localized
excitations with very short coherence length. A value of τe−e at least two-order
of magnitude smaller can be easily obtained assuming a slightly larger effective
mass and a smaller ǫeff . Accidentally, the use of the analytical solutions of
the Boltzmann equations in cuprates [75] provides exactly the same value of λ
than the one obtained through the conventional three-temperature model, i.e.,
λ∼0.5 in La1.85Sr0.15CuO4 and ∼0.25 in YBa2Cu3O6.5, casting further doubts
on the conjecture that τe−e≫τe−ph in these systems. The same authors ar-
gue that the values of the electron-phonon coupling in La1.85Sr0.15CuO4 and
YBa2Cu3O6.5 does not account for the very high-critical temperature of the
system.
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6. Electron-boson coupling in the normal state

In the most pessimistic limit, i.e., τe−e≫τe−ph, the use of the solution of the
Boltzmann equations to evaluate λ even strengthen the main conclusions of
this chapter. Since in Y-Bi2212 TD∼ 300 K, our experiment falls between the
low- and high-temperature regimes discussed above. Nevertheless, I can use
the two limits to estimate the possible corrections to λp, in the case of complete
failure of the N-temperature model, i.e. τe−e≫τe−ph.
Adopting the expression 6.1, I obtain a value of λp< ω2 >=360-440 meV2 for
the OP sample, corresponding to λp=0.22-0.28 for a phonon frequency ω=40
meV.
Assuming the low-temperature limit, the maximum overestimation of λp is
given by a factor 8/5. In our case, the fit of the 4TM to the time-resolved
data (see Figure 6.5) gives λp=0.4 that, multiplied by 5/8, gives 0.25. These
values are well within the estimated range of λp=0.4±0.2, reported in section
6.5. The large error bars associated to this value include: i) the experimental
uncertainty in the pump fluence; ii) the possibility of adding to the 4TM a
term that accounts for the anharmonic coupling of strongly-coupled phonons
and the lattice (see section 4.3.3); iii) the possibility of the failure of the 4TM
in the limit τe−e≫τe−ph. Therefore, all the conclusions about the role of the
bosonic excitations of electronic origin in the formation of the superconducting
condensate are robust even against the failure of the 4TM used to reproduce
the temporal dynamics of the ∆R/R(ω, τ).

I note that from the analysis of the equilibrium optical spectroscopy data
on Y-Bi2212 [178] (see Fig. 6.10), the frequency-dependent scattering time
ranges from 5 fs at very low frequencies to a constant value <1 fs at about 1
eV. On the basis of the results reported in this chapter, these very fast scat-
tering processes are dominated by the scattering of fermionic quasiparticles
with bosonic excitations of electronic origin. Therefore, the non-equilibrium
population created by the pump pulse, instantaneously interacts with these
excitations [183] before the electron-phonon scattering processes. The role
of this very fast electronic processes in quickly establishing a quasi-thermal
population is an open fundamental question in the field of strongly-correlated
systems out-of-equilibrium.

I conclude this section presenting the results of the numeric integration of the
systems of equations for both the 2TM and the 4TM. The results shown in
Fig. 6.11 are the ∆R/R(τ) (obtained by formula 4.11 for the 4TM), normal-
ized to the incident pump fluence. The electronic and the total specific heats
have the same values in both models. From the numeric solution of the system
of coupled differential equations, it is possible to argue that only in a limit
of very high pump fluence the decay rate predicted by the 2TM ceases to be
fluence-independent. On the contrary, in the 4TM case, this effect is almost
completely suppressed. I ascribe this result to the fact that, when the electrons
are considerably heated by the absorption of an high fluence laser pulse, their
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Figure 6.10: a) The in-plane optical conductivity of Y-Bi2212 for a number
of selected temperatures is reported. b) The resulting frequency dependent
scattering rate, defined as 1/τ(ω)=Re

[

ω2
p/4πσ(ω)

]

(see Methods in [178]), is
reported. From [178].

specific heat Ce=γe · Te (being γe=10−4 Jcm−3K−2) becomes similar (Ce ∼0.2
Jcm−3K−1 at Te ∼2000 K, the maximum electronic temperature of the system
in the case Ipump=10000 µJ/cm2) to the strongly coupled phonons (10% of
the total phonons) specific heat, Cp ∼0.227 Jcm−3K−1. Thus, in the 4TM,
electrons heat less than what predicted by the 2TM, with the relaxation dy-
namics which is a complex interplay of the contributions from the electrons
and strongly coupled phonons relaxation. For the 2TM, the decay rate evolu-
tion, resulting from the numeric integration of the equations, is in agreement
with the limit of applications of Allen Formula 4.2, which predicts a fluence-
dependent decay rate at very high temperatures. By this simulation, it is also
possible to argue that the limit in which the decay rate is linear with fluence is
extremely high as compared to conventional metals, since in cuprates the pen-
etration depth of light at 800 nm is about one order of magnitude larger than
in metals (I remember that our measurements are performed with Ipump=10
µJ/cm2).
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6. Electron-boson coupling in the normal state

Figure 6.11: a) Simulation of the ∆R/R(τ), as predicted by the 2TM. b)
Simulation of the ∆R/R(τ), as predicted by the 4TM. In both cases, the
results are normalized to the incident pump fluence. The departure from a
constant decay time starts only at very high pump fluences. For the 4TM, this
effect is further reduced.

6.8 Conclusions

The results of the novel time-resolved optical spectroscopy and the related dif-
ferential analysis reported in this chapter, have fundamental implications in
the comprehension of the mechanisms leading to unconventional superconduc-
tivity in cuprates. Here I summarize the main conclusions of the analysis:

• On a timescale faster than electron-phonon thermalization, I demon-
strated that the measured ∆R/R(ω, τ) signal is caused by the variation
of the temperature of bosonic excitations of electronic origin, character-
ized by a strong coupling with electrons and a very small specific heat.

• The temporal dynamics exhibit two dynamics (respectively on the ∼300
fs and ∼2 ps timescales), revealing that two subset of phonon populations
are coupled, with different coupling strength (λp=0.4±0.2, λl=0.2±0.2),
to the electrons.

• By simultaneously fitting in the time and frequency domains an extended
Drude model, in which the temperature evolution is governed by the 4TM
rate equations, to the ∆R/R(ω, τ) signal, a fully self-consistent picture
is obtained.

• The quantitative results of this analysis reveal that electrons are strongly
coupled with a subset of the bosonic glue (Π(Ω)) extending up to ∼350
meV. The coupling λbe=1.1 and the high mean-frequency Ω̃=87 meV
of this subset alone, account for the high critical temperature of the
system. Possible candidates as a source of coupling for the formation of
Cooper pairs, compatible with the evidenced characteristics, are either
antiferromagnetic spin fluctuations [48, 170] or current-loops [182].
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Chapter 7
Excitation-dependence of the
bosonic glue in the pseudogap
phase

7.1 Introduction

The pseudogap state is the most exotic and elusive phase of the phase diagram
of HTSCs, and the comprehension of the microscopic electronic mechanisms
behind is of paramount importance to reveal the nature of this intriguing phase.
Here I demonstrate that the non-equilibrium dynamics underlying this phase
are more complex than those observed for the normal state phase, suggesting
that the pseudogap in HTSCs is a state of matter where the fermionic quasi-
particles and the bosonic excitations are strongly intertwined.
This chapter illustrates the results obtained by probing, with time-resolved op-
tical spectroscopy, the non-equilibrium dynamics of Y-Bi2212 samples in the
pseudogap phase. Measurements are performed at T=100 K, the pseudogap
extending between T ∗ (∼140 K for OP samples and ∼200 K for UD samples)
and Tc. In this region of the p-T phase-diagram, the transient frequency-
resolved optical response is different from what observed in the normal state
and the simple quasi-thermal scenario does not account for the results.
Exploiting the time- and frequency-resolution of our technique and the differ-
ential analysis I demonstrate that, on the femtosecond timescale, the transient
optical response at T=100 K is dominated by an excitation-dependent bosonic
glue.
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7. Excitation-dependence of the bosonic glue in the pseudogap phase

7.2 Time-resolved spectroscopic measurements

at T=100 K

In Fig. 7.1 the time- and energy-resolved transient reflectivities ∆R/R(ω, τ)
collected at T=100 K for five Y-Bi2212 samples, are reported. The samples
span the p-T phase diagram from the underdoping to the overdoping regime,
as the oxygen content δ is varied. The doping levels p of the samples are:
p=0.128, p=0.16, p=0.176, p=0.197, p=0.2, corresponding to Tc values respec-
tively of 83 K, 96 K, 94 K, 86 K, 83 K. In contrast to the results obtained at
room temperature (see Fig. 1 of chapter 6), when the system is in the normal
state, here the spectral response is more structured and exhibits a clear, dop-
ing dependent, evolution, when moving from the underdoped to the overdoped
side of the phase diagram.

The time-trace extracted from the ∆R/R(ω, τ) plot in Fig. 7.1, for the UD
sample and at 1.55 eV energy, exactly reproduces the negative signal observed
by conventional single-colour pump-probe measurements on underdoped sam-
ples [117], at 1.55 eV probe energy. The negative time-resolved optical signal
characterizing the non-equilibrium optical response in the visible spectral re-
gion, for UD and OP samples, tends to vanish upon increasing the doping
level, as is evident from the right panels of Fig. 7.1. However, the ∆R/R(ω, τ)
signal reveals a positive feature toward the infrared spectral region, which is
almost doping-independent and is different in intensity from the normal state
signal. The picture emerging from the ∆R/R(ω, τ) plots of Fig. 7.1 is that at
T=100 K, the time resolved optical signal exhibits strongly doping-dependent
spectral features. The spectroscopic information reveals mandatory for the
comprehension of the intriguing interplay of physical processes which are tak-
ing place in this intriguing phase of matter. In this chapter I will demonstrate
that the negative time-resolved optical signal in the visible spectral region is
associated to the onset of the pseudogap. To address the origin of the tran-
sient ∆R/R(ω, τ) at T=100 K, I extended the probed spectral range to the
near infrared (0.5 eV) through an Optical Parametric Amplifier-based setup
(described in section 5.6).

Fig. 7.2 reports the measurements performed on the optimally doped sample,
along with some cuts of the ∆R/R(ω, τ) plot at fixed delay times, from which
the evolution of the transient spectral response is obtained. The full transient
spectrum shows two sign-change points. The first, evident from the visible-
range measurements alone, is at ∼1.35 eV (i.e., ∼900 nm), whereas the second
is in the infrared part of the probed spectral range, at ∼0.6 eV (∼2050 nm),
where the positive signal associated to the almost-doping-independent feature
vanishes, and the impulsive reflectivity variation becomes negative on the sub-
ps timescale. Although noisy, the transient signal at longer pump-probe delays
(the τ=3 ps trace of Fig 7.2b can be considered) reveals an interesting feature:

140



7.2. Time-resolved spectroscopic measurements at T=100 K

Figure 7.1: The temporally and spectrally resolved plots of the transient reflec-
tivity in the pseudogap phase (T=100 K) of Bi2Sr2Y0.08Ca0.92Cu2O8+δ are here
reported for five doping levels: p=0.128 (UD sample), p=0.16 (OP sample),
p=0.176 (OD sample), p=0.197 (OD sample), p=0.2 (OD sample). The cuts
(evidenced in red) at τ=0 pump-probe delay are reported in the right graphs,
evidencing the spectral strucutre of the transient signal. The pump fluence is
set to 10 µJ/cm2.
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7. Excitation-dependence of the bosonic glue in the pseudogap phase

Figure 7.2: a) The measurement on the Optimally Doped sample is extended
toward the infrared, up to 0.5 eV. b) The total transient spectra for selected
pump-probe delays τ are reported.

its sign is positive in the visible, while it is negative in the infrared. This
experimental evidence will be rationalized in section 7.3, as originating from a
thermal heating effect. The time-resolved transient signals reported in panel
b) of Fig. 7.2, extending in the energy range 0.5-2 eV, will constitute the basis
for our analysis, illustrated in the rest of the chapter.

7.3 Pump-induced heating of the bosonic ex-

citations

In this paragraph I simulate the transient reflectivity variation in the energy
domain, as expected in the pseudogap phase assuming a quasi-thermal heating
of the system. I will show that, while this thermal effect does not account for
the ∆R/R(ω, τ) for τ< 1 ps (i.e., in the sub-ps timescale), it well reproduces
the transient spectrum for longer delays (τ &3-4 ps), when the bosonic exci-
tations of the system are thermalized. To estimate the temperature evolution
of the system in the pseudogap phase, I use the 4TM already exploited in
Chapter 6, assuming that the electron-boson coupling has not changed upon
cooling down the sample from T=300 K to T=100 K (i.e., that the total glue
function Π(Ω) and the various λj have not changed). I remind that I demon-
strated that the electrons are coupled with three different bosonic populations:
bosons of electronic origin (i.e., antiferromagnetic spin fluctuations or current
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7.3. Pump-induced heating of the bosonic excitations

Table 7.1: Electronic and bosonic temperatures at particular pump-probe de-
lays τ , from the 4TM simulation at T0=100 K.

Temperature τ=0 τ=4 ps
∆Te 9.45 K 0.61 K
∆Tbe 9.45 K 0.61 K
∆Tp 1.13 K 0.72 K
∆Tl 0.11 K 0.43 K

loops), that I indicate with subscript j=be, strongly coupled phonons (j=p)
and weakly coupled phonons (j=l). For the simulation, I use the same val-
ues for λj reported in Chapter 6 (see Table 6.2). At a base temperature of
T=100 K the specific heats, both the electronic and the total ones, have a non
constant value, which is fully accounted for by the simulation. This provides
different values for the temperature increments ∆Tj (here j=e for electrons,
and j=be, p, l for the temperatures associated to the bosonic populations I
recalled before) with respect to those obtained for the system in the normal
state, for the same absorbed energy density of 0.6 J/cm3. The expected tem-
perature evolution profile is reported in Fig. 7.3 for ∆Te, ∆Tbe, ∆Tp and ∆Tl.
From the simulation I extract the ∆Tj values at τ=0 and τ=4 ps, respectively,
for the system in non-equilibrium condition and in the quasi-thermal regime,
when the bosons are thermalized. These values are reported in table 7.1.

Figure 7.3: The results of the numeric integration of the 4TM equations system,
for the temporal evolution of the temperatures Te, Tbe, Tp, Tl are reported. The
simulation is performed with the parameters determined from the analysis
of the ∆R/R(ω, τ) spectra at T=300 K (see section 6.5) From the obtained
temperature values, the system heatng in the pseudogap phase is inferred.

The calculated values for the electronic and bosonic temperatures are used
to simulate the ∆R/R(ω, τ) traces at τ=0 and τ=4 ps, expected for a quasi-
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7. Excitation-dependence of the bosonic glue in the pseudogap phase

thermal scenario. This simulation has been done with the differential dielectric
function approach (see section 4.4) and the EDM presented in section 3.5.2.
For clarity, I recall here the main expressions of this model. The Drude part
of the model dielectric function, related to the reflectivity by formula 3.3, is
given by:

ǫD(ω, T ) = 1− ωp
2

ω(ω + iM(ω, T ))
(7.1)

Where the Memory function M(ω, T ), given by:

M(ω, T ) = −iω

{
∫ +∞

−∞

f(ξ, T )− f(ξ + ω, T )

ω + Σ∗(ξ, T )− Σ(ξ + ω, T ) + iγimp

dξ

}−1

+ iω (7.2)

is a function of the electronic self-energy Σ(ω, T ), which is given by (in the
model presented in 3.5.2):

Σ(ω, T ) =

∫ ∞

0

α2F (Ω)L(ω,Ω, T )dΩ (7.3)

where the Kernel function L(ω,Ω, T ) writes:

L(ω,Ω, T ) = −2πi

[

n(Ω, T ) +
1

2

]

+Ψ

(

1

2
+ i

Ω− Ω′

2πT

)

−Ψ

(

1

2
− i

Ω + Ω′

2πT

)

(7.4)

It must be noted that in our simulations, the Glue Function Π(Ω), appearing
in equation 7.3 and expressing the electron-boson coupling is held constant
(i.e., independent from the heating given by the laser excitation), while only
the temperatures appearing in the BE (n) and FD (f) distributions of the
Kernel function (equation 7.4), which describes the thermal excitations of the
electrons and the glue, are changed. Values from Table 7.1 are considered.
The Glue Function Π(Ω) is factorized in three subsets, as illustrated in Fig.
6.8. Each one has its own bosonic temperature Tb: Tbe, Tp, Tl, entering the
Kernel function L(ω,Ω, T ).
The temporal traces obtained by the simulation described are reported in Fig.
7.4 and Fig. 7.5, respectively for τ = 0 and τ = 4 ps, together with the
experimental data. Comparing the results of the simulation to the measured
∆R/R(ω, τ) traces, I come to the major point of this section. That is, while
the spectrum obtained for the system 4 ps after excitation is well reproduced
by a quasi-thermal scenario, the spectrum at zero delay requires a more com-
plex picture than that of a purely (non-thermal) heating effect.

Fig. 7.4 clearly shows that the experimental and the simulated spectra, for a
pump-probe delay of τ=0 ps, are significantly different. In particular, a nega-
tive time-resolved optical signal is observed in the visible spectral region, and
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Figure 7.4: The simulation performed for a quasi-thermal scenario, assuming
that the electron-boson coupling constants λj are unchanged with the respect
to the ones determined for the normal state, is reported. The temperatures are
taken from Table 7.1. Comparison with data for τ=0 pump-probe delay shows
that a non-thermal heating effect alone is not enough to reproduce transient
data in the pseudogap phase, at small pump-probe delay.

cannot be reproduced by the simulation described, whereas the time-resolved
optical signal is positive in the infrared.
Therfore, in the pseudogap phase, other effects than a purely non-thermal heat-
ing are likely taking place, in the first instants after excitation. These effects
should be of non-thermal nature, given their fast dynamics. Their correct in-
terpretation is mandatory to shed light on the nature of the pseudogap phase.
The problem of assigning a physical origin to the ∆R/R(ω, τ) at τ=0 will be
tackled in the next section, making use of the differential dielectric function
approach (see section 4.4).
On the contrary, the fact that the spectrum measured at τ=4 ps pump-probe
delay is well reproduced by the simulation is supported by two high-resolution
one-color pump-probe measurements at probe energy of 1.55 and 0.6 eV, re-
ported in Fig. 7.5. This further confirms that at long pump-probe delays
(τ ∼3-4 ps) the system time-resolved optical response is quasi-thermal.

7.4 Excitation dependance of the Bosonic Glue

To properly reproduce the time-resolved optical signal at τ = 0, my strategy
will be to assume the thermal contribution calculated as described in section
7.3 as a fixed starting background. Then, the other physical contributions nec-
essary to correctly reproduce the experimental signal will be added, modifying
the related parameters in the excited dielectric function entering the differen-
tial dielectric function model.
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Figure 7.5: This graph demonstrates how the transient spectrum for τ=4
ps pump-probe delay is well-reproduced by a simulation in which the system
temperature is increased by 0.5K, that is, ∆Te=∆Tb=0.5 K. This indicates that
for pump-probe delays τ &4 ps, the system is completely thermalized at an
elevated temperature with respect to the thermal bath one. The signal is thus
dominated purely by a quasi-thermal heating effect, while signals arising from
other mechanisms are quenched. Two single-color pump probe measurements
confirm this scenario.

In particular, I will demonstrate that the measured ∆R/R(ω, τ) can be re-
produced by taking into account the following two contributions:

i) the impulsive quench of a gap in the density of states;

ii) the impulsive modification (decrease) of a low-energy peak of the Glue
function Π(Ω).
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Some comments are needed about these points. The point i) is accomplished by
replacing the Extended Drude strong coupling formalism with the formalism
described in 3.5.3, that is also strong coupling and accounts for a non-constant
DOS arising from the opening of an energy gap in the pseudogap phase [49]. It
is worth to point out that the models described in 3.5.2 and 3.5.3 coincide in
the limit of zero-gap, as I verified numerically, therfore I use the model in 3.5.3
without changing the parameters. Point ii) implies that the glue-function, thus
the electron-boson coupling, is no more insensible to external perturbations,
that is, it is no more fluence-independent, as it was proved to be in the normal
state phase. Thus, from now on I will assume that the Glue function Π(Ω)
can be directly modified by laser excitation. This will turn out to be a clue
observation, to address the origin of the ∆R/R(ω, τ) signal in the pseudogap.
Finally, a comment about our procedure. All the transient reflectivity changes
arise from the modifications of the Extended Drude model parameters, thus
are intrinsically entangled. However, since the variation of the parameters is
small (few percents), it has been possible to simulate the transient response
arising from each physical contribution alone, by considering individually each
contribution. I carefully checked that the sum of the three contributions is
exactly the same than the result of the three being considered together. With
this in mind, I illustrate which is the expected ∆R/R(ω, τ) arising from con-
tributions i) and ii) alone. Finally, i), ii) and the thermal effect are brought
together to reproduce the measured signal, after having considered the effect
of the pump beam finite penetration depth (see section 4.3.4).

i) Effect of the gap closing on the ∆R/R(ω, τ)
Having photoinjected excitations in the system with the pump pulse, it is rea-
sonable to assume that the gap opened in the density of states is partially
quenched. I start from the results of the fitting procedure of the equilibrium
model (section 3.5.3) to the experimental dielectric function at T=100 K, pre-
sented in 3.7.2, where I fixed a reasonable value for the gap width of ∆pg=350
cm−1 [153] and where I found a value for the gap amplitude of 1−Ñ(0, T ) = 0.3
(i.e., Ñ(0, T ) = 0.7). In the differential model, I assumed that the excitation
effect is that of increasing Ñ(0, T ), which corresponds to a pump-induced fill-
ing of the gap. However, I verified that an identical ∆R/R(ω, τ) is obtained
upon decreasing the ∆pg value.
The transient spectra obtained for Ñ(0, T ) equal to 0.74, 0.78, 0.82, 0.86 re-
spectively, are reported in Fig. 7.7. The simulated ∆R/R(ω, τ) presents a
positive spectral feature in the spectral range 5000-11000 cm−1, while it van-
ishes outside this range. Reducing a gap in the density of states implies that
carriers gain kinetic energy. This corresponds to an increase of the Drude
plasma frequency of the system (see the sum rule in section 3.6). I verified this
simple argument by performing a simulation for the expected ∆R/R(ω, τ), as-
suming an increase of the (Extended) Drude oscillator plasma frequency. The
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result is that in the spectral range of interest, the transient spectra are similar.

Figure 7.6: The effect of the laser excitation on the gap intensity Ñ(0, T )
is pictorially sketched. The effect of this modification on the ∆R/R(ω) is
reported in Fig. 7.7.

Figure 7.7: Here I show the simulated differential spectra obtained by only
modifying the value of the gap in the density of states. Values are reported on
the graph itself.

ii) Effect of the Π(Ω) excitation on the ∆R/R(ω, τ)
The signal originating from the impulsive modification of the lowest-energy
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peak intensity in the glue function Π(Ω) leads to a completely different and
peculiar ∆R/R(ω, τ). The value of the intensity of peak ’1’ of the Bosonic Glue
Π(Ω), 0.041, is obtained from the fitting of the Extended Drude model to the
equilibrium spectroscopic data. In Fig. 7.9 I report the simulated ∆R/R(ω, τ)
obtained changing this intensity to the values 0.040, 0.039, 0.038, 0.037, re-
spectively. It must be noted that the modification of the higher peak intensity
would lead to similar results.

Figure 7.8: The effect of the laser excitation on the Π(Ω) lowest-energy peak
intensity (I1) is pictorially sketched. The effect of this modification on the
∆R/R(ω) is reported in Fig. 7.9.

The resulting ∆R/R(ω, τ) shows a significantly different spectral shape, when
compared to the ∆R/R(ω, τ) related to the gap filling (Fig. 7.7). In fact, it
is negative in the visible spectral range, whereas it is positive in the infrared.
The sign changes around 8000 cm−1, i.e., ∼1 eV.

Our choice of modifying the lowest-energy peak in the Glue Function will
be now discussed in detail.
My argument is based on recent findings I will summarize here. Li et al. [116]
revealed the existence of a fundamental collective magnetic mode, which inten-
sity onset is associated with the T ∗ temperature, and with characteristic energy
of 52-56 meV. The measurements have been performed with the inelastic ne-
turon scattering technique, on a HgBa2CuO4+δ sample. Measurements on both
underdoped and optimally doped samples revealed the same phenomenon, but
at different onset temperatures, compatible with the actual T ∗ of the mate-
rial. These findings further support previous results [73, 115] obtained by the
polarized neutron diffraction technique, that demonstrated the existence of an
unusual magnetic order below T ∗. The magnetic mode observed by Li et al.
[116] (see Fig. 7.10) could be assigned to a typical excitation of this magnetic
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7. Excitation-dependence of the bosonic glue in the pseudogap phase

Figure 7.9: Here I show the simulated differential spectra obtained by only
modifying the value of the lowest-energy peak in the bosonic glue. Values are
reported on the graph itself.

order. All these results point toward a picture where the pseudogap regime
(which we found being a set of anomalous physical properties) constitutes a
genuine phase of matter, rather than a crossover phenomenon. The experi-
mental findings by Li et al. are summarized in Fig. 7.10.

Figure 7.10: a) A weakly dispersing collective magnetic mode (which intensity
is reported) has been identified on a HgBa2CuO4+δ sample. Its energy is ∼50
meV. b) The temperature dependence of the collective mode demonstrates its
connection to the pseudogap phenomenon. The mode onset temperature is
∼210 K for an OP sample and ∼350 K for an UD sample.

Since it has been experimentally demonstrated that in a copper-oxyde based
high-temperature superconductor, a new, temperature-dependent excitation
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mode, with electronic origin, rises at a temperature compatible with the sam-
ple actual T ∗, I assume that the lowest-energy peak of the bosonic glue can
be fluence-dependent. The correctness of this assumption is tested in the next
section, where I present the model fitting results to the experimental data. I
have to remark that this is only an assumption: I will not be able to reveal
which (low-energy) peak of the bosonic glue actually varies.

∆R/R(ω, τ) fitting to the experimental data.
Having addressed the individual effect on the ∆R/R(ω, τ), originating from
the photoinduced heating of the system, from the photoinduced gap filling and
from the photoinduced quench of one peak in Π(Ω), I consider them together.
In particular, I fit the total ∆R/R(ω, τ) arising from the three contributions
to the time-resolved data (at τ=0) in the energy domain.
The fit to the data is thus performed with only two free parameters, i.e., the
gap amplitude (1−Ñ(0, T )) and the lowest peak intensity (I1), being the ther-
mal effect simulated a priori and fixed. The result is reported in Fig. 7.11.
The contribution of the finite pump penetration depth to the signal is also
taken into account (see section 4.3.4). The fit result for the two parameters is:
1− Ñ(0, T )=0.2 and I1=0.0377.

Figure 7.11: Here I show the energy-resolved spectrum at a fixed pump-probe
delay τ=100 fs. The black line is the fit to the data, obtained as described in
the text. Fitting parameters are collected in Table 7.2.

Therfore, the experimental data are satisfactorily reproduced by assuming the
simultaneous presence of three effective physical processes in the pseudogap
phase. The three relevant spectral contributions, calculated considering the
fitting results, are shown in Fig. 7.12. Table 7.2 summarizes the differential
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7. Excitation-dependence of the bosonic glue in the pseudogap phase

Table 7.2: Differential fitting results for the pseudogap state.

Parameter Static Dynamic (from Fit)

Ñ(0, T ) 0.7 0.8
I1 0.041 0.0377

fitting results.

Figure 7.12: Here I show singularly the effect on the transient reflectivity
arising from the different ’ingredients’ of the fit. Values obtained are those
extracted by the fitting procedure.

Final remarks about the fitting procedure

• I want to emphasize that it does not exist another simple way of repro-
ducing the experimental ∆R/R(ω, τ), by varying other parameters in the
dielectric function.

• I use only two fitting parameters to reproduce the experimental values
of ∆R/R(ω, τ). The fitting procedure described requires the minimum
number of parametrs to correctly reproduce the experimental ∆R/R(ω, τ).

• The fact that the differential signal associated to the fluence dependence
of the Glue Function Π(Ω) is negative in the visible spectral range, where
the contribution related to the gap filling has a negligible effect, and the
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quasi-thermal heating effect gives a positive sign, is a clear evidence that
the signal observed by both single or broadband color measurements in
the near-IR / visible originates from this contribution. No other way of
reproducing this negative signal in the visible spectral range has been
found. In the next chapter, the onset of this signal is investigated, by
exploiting high-resolution single color measurements at 1.5 eV, in a wide
temperature range.

I leave to the next chapter the section devoted to the finding of the onset
of the effect related to the fluence-dependence of the Glue Function Π(Ω),
related to the first peak intensity (I1) modification, sice the results provide
clue information for the formulation of a phase diagram. As a concluding
remark of this section, it must be emphasized that in the pseudogap phase, a
peculiar mixture of different effects has been observed, having different origin
and properties. This observation is of paramount importance for reconstructing
the non-equilibrium phase diagram for copper oxide based high temperature
superconductors.

7.5 Conclusions

Thanks to the combined spectral and temporal resolutions, I have been able
to disentangle the physics underlying the pseudogap phase of an high temper-
ature copper oxide based superconductor. Two important effects, respectively
related to the impulsive quench of an energy gap present in the electronic
density of states, and to the impulsive reduction of the intensity of one peak
appearing in the bosonic glue, have been revealed, for an optimally doped sam-
ple. The negative ∆R/R(ω, τ) originating from the impulsive modification of
the lowest-energy peak intensity in the glue function Π(Ω) is dominant in the
underdoped side of the phase diagram. The scenario changes in the overdoped
side of the phase diagram, as will be pointed out in the next chapter. It must be
emphasized that in the pseudogap phase, the bosonic glue is no more fluence-
independent, in contrast to what demonstrated in the normal state. Here, the
fluence dependence of the bosonic glue in the pseudogap has been revealed.
The most straightforward interpretation of this experimental evidence is that
new bosonic modes are effective in this phase. This is compatible with the
findings reported in [116, 180], where a ground state for the system in the
pseudogap phase, governed by circulating orbital currents has been claimed.
These bosonic modes could be the ones originating from the (magnetic) fluc-
tuations of the system among the four degenerate ground states predicted by
the model reported in [116, 180]. This picture is summarized in Fig. 7.13.

As a concluding remark, it must be emphasized that the temporal resolution is
mandatory to disentangle the different effects in the pseudogap phase. By spec-
troscopic measurements at equilibrium, performed at different temperatures,
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Figure 7.13: The loop-current electronic order is sketched. A copper-oxide
based material with loop-current electronic order has four possible ground-
state configurations. In each configuration, pairs of electron-current loops flow
within each of the material unit cells, and produce a pair of oppositely directed
magnetic moments (plus and minus symbols denote a magnetic moment with
a direction that is perpendicular out of and into the plane of the page, re-
spectively). If the material condenses into the top configuration, it can locally
quantum-mechanically oscillate back and forth between it and the other three
configurations. This gives rise to three possible collective modes of oscillation.
From [180].

it is not possible to reveal such effects, since their contribution to the reflec-
tivity variation is completely overwhelmed by the dependence of the optical
properties on the temperature. The simulated reflectivity variation expected
for an increase in the temperature of the system in equilibrium conditions is
presented in Fig. 7.14. This signal has an intensity which is one order of
magnitude higher than the contributions related to the gap filling and to the
bosonic glue variation, over the same temperature range.
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7.5. Conclusions

Figure 7.14: In the left plot, I calculate the difference in reflectivity obtained
by heating the system, from T0=100 K, to 150, 200, 250, 300 K. In the right
plot, the ∆R/R arising from the same effect is calculated. In the inset, the
static reflectivity for T0=100 K is shown.
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Chapter 8
The Phase Diagram from
Non-Equilibrium Spectroscopy

8.1 Introduction

The aim of this final chapter is to summarize all the results of the novel time-
resolved spectroscopy developed and used in this work. The response to an
ultrashort excitation of the normal, pseudogap and superconducting phases of
the copper-oxide high-temperature superconductor Bi2Sr2Ca0.92Y0.08Cu2O8+δ,
provides a new comprehensive picture of the phase diagram of this system.
The chapter will start with the description of the non-equilibrium properties
of the system in the superconducting state, that have not been presented yet.
In contrast to what observed in the normal state and pseudogap phases, in the
superconducting phase the transient optical response in the near-IR / visible
spectral range can only be interpreted by assuming a pump-induced modifi-
cation of the high-energy dielectric function. I demonstrate that two optical
interband transitions at 1.5 and 2 eV are intimately related to the conden-
sate formation at Tc. The long-standing debate about the interplay between
high- and low-energy physics in these compounds, as a function of doping, is
finally addressed. In the superconducting state, the optical response is strongly
doping-dependent, with a clear crossover close to the optimal doping level re-
quired to attain the maximum critical temperature Tc for the BSCCO family.
This crossover delimits two regions in which superconductivity is driven by
an opposite mechanism: on the underdoped side of the phase diagram, super-
conductivity is driven by a direct kinetic energy gain (lowering), while on the
overdoped side of the phase diagram, superconductivity is accompanied by a
BCS-line kinetic energy loss, overcompensated by a gain in potential energy.
In this context, the superconductivity-induced variation of the spectral weight
of the interband transitions at 1.5 and 2 eV, fully accunts for the kynetic en-
ergy variation over the whole phase diagram.
This observation will be extremely helpful to the construction of a non-equilibrium
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8. The Phase Diagram from Non-Equilibrium Spectroscopy

phase diagram. The non-equilibrium p-T phase diagram we propose (non-
equilibrium indicating the way in which it has been obtained) is characterized
by a T ∗ line delineating a region in which the glue function is temperature-
dependent. This line intersects the superconducting dome close to optimal
doping, delimiting two p-T regions in which superconductivity is driven by a
different mechanism. This non-equilibrium phase diagram strongly points to-
wards a quantum critical point (QCP) within the superconducting dome, at
T=0. Nevertheless, the signature of a gap is found above Tc, over the whole
phase diagram. The onset of the gap is very broad in temperature, and follows
a line tangent to the superconducting dome, in the overdoped region.

8.2 Time-resolved optical spectroscopy at T=20

K

In Fig. 8.1 the ∆R/R(ω, τ) plots collected at T=20 K on four Y-Bi2212 sam-
ples (an underdoped (UD, Tc=83 K, p=0.128), an optimally doped (OP, Tc=96
K, p=0.16) and two overdoped (OD, Tc=86 K for p=0.197 and Tc=83 K for
p=0.2)) are reported. The pump fluence is kept at the low level of 10 µJ/cm2,
to avoid the complete vaporization of the superconducting condensate [81, 42]
when photoexciting the system.

The measured ∆R/R(ω, τ) signal shows many peculiar features. The re-
flectivity variation is about one order of magnitude more intense than the
one observed in the normal state and pseudogap phases. The decay time
of the ∆R/R(ω, τ) signal slows down to about one picosecond. Finally, the
∆R/R(ω, τ) spectroscopic signal is strongly doping-dependent, with rich and
complex spectral features. The right plots of Fig. 8.1, reporting the signals
in the energy domain, obtained by vertically-cutting the ∆R/R(ω, τ) plots at
τ=400 fs pump-probe delay, clearly show the doping dependence of the signal.
I choose to consider a pump-probe delay τ equal to 400 fs, since the maximum
signal variation is detected. In Fig. 8.2, the results from a number of samples
are compared.
The slowing down of the temporal dynamics of the time-resolved optical signal
in the superconducting phase (T<Tc) has been observed in many experimental
works [97, 53, 98, 164, 79, 77, 117], and it is explained within the Rothwarf-
Taylor model, accurately described in section 4.2. The sudden slowing down of
the temporal dynamics for T<Tc is due to a bottleneck effect originating from
the quasiequilibrium between the population of excited quasiparticles and of
high-frequency bosons (having energy >2∆), when the superconducting gap
2∆ is opened.
The signal at 1.55 eV probe energy, in the time domain, extracted by the
∆R/R(ω, τ) plots (not shown), perfectly reproduces the results obtained by
the one color pump-probe measurements reported in the literature [78, 117],
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8.2. Time-resolved optical spectroscopy at T=20 K

Figure 8.1: The temporally and spectrally resolved plots for the tran-
sient reflectivity ∆R/R(ω, τ) in the superconducting state (T=20 K) of
Bi2Sr2Y0.08Ca0.92Cu2O8+δ are here reported for four doping levels: p=0.128
(UD sample), p=0.16 (OP sample), p=0.197 (OD sample), p=0.2 (OD sam-
ple). The 800 nm, 1.55 eV signal is in agreement with measurements performed
with one-color probe. The cuts (evidenced in red) at τ=400 fs pump-probe
delay are reported in the right graphs, evidencing the spectral strucutre of the
transient signal. The pump fluence is 10 µJ/cm2.

for all doping levels. I also verified that the amplitude of the transient reflec-
tivity signal at 3.14 eV probe energy (i.e., 400 nm) is negligible, by perform-
ing monochromatic pump-probe measurements with a second-harmonic probe
beam. This information will be useful to correctly address the pump-induced
spectral weight transfer.
To check that the phenomenology observed in the superconducting phase, and
described so far, is independent from the excitation mechanism, I repeated the
measurements with a 3.14 eV pump beam. No differences with respect to the
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8. The Phase Diagram from Non-Equilibrium Spectroscopy

measurements reported in Fig. 8.1, performed with a 1.55 eV pump beam,
emerged. This ensures what we observed is related to an intrinsic response of
the superconducting phase, independent of the excitation mechanism.
In Fig. 8.2, I show the transient reflectivity spectra for a pump-probe delay
equal to τ=400 fs, for a number of samples with different dopings. The traces
for the samples with p=0.128 (UD sample), p=0.16 (OP1 sample (red dots),
the same sample which reslts are presented in Fig. 8.1), and p=0.197 (OD
sample) will constitute the basis for our differential analysis.

Figure 8.2: The spectrally resolved reflectivity traces at T=20 K, for a pump-
probe delay equal to τ=400 fs and a pump fluence equal to 10 µJ/cm2, are
reported here for a number of different samples. While OP samples OP1, OP2,
OP3 have the same nominal doping (p=0.16), sample OP3 has been exposed
to air for a longer time, resulting in a slight increase of the Oxygen content.

By directly comparing the ∆R/R(ω, τ) cuts at τ=400 fs pump-probe delay,
the evolution of the spectroscopic signal with doping can be argued. By in-
creasing the doping level, the all-positive reflectivity variation characterizing
the underdoped sample is gradually modified by a suppression of the signal
around 1.4 eV, which eventually evolves into a negative feature in the 1.1-1.5
eV energy range for the overdoped sample.

8.3 Transient reflectivity in the superconduct-

ing phase

In this paragraph I present the results of the fitting of the differential di-
electric function model (described in 4.4) to the ∆R/R(ω, τ) traces at fixed
pump-probe delays, for the UD (p=0.128), OP1 (p=0.16) and OD (p=0.197)
samples. Experimental data and the fitting results are presented in Fig. 8.3.
For all doping levels, the interpretation of the structured ∆R/R(ω, τ) in the
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1.2-2 eV energy range, cannot be accounted for by only assuming a modifica-
tion of the Extended Drude model parameters, as it happens in the normal
state and in the pseudogap. On the contrary, I have been able to account for
the structured variation of the reflectivity at high energies by only assuming a
modification of the first two interband oscillators, at 11800 cm−1 (1.46 eV) and
16163 cm−1 (2 eV), of the material dielectric function (the six oscillators used
to reproduce the high-energy part of the material dielectric function are listed
in section 3.7.3). The signals measured in the superconducting phase are the
fingerprint of a genuine modification of the dielectric function as excitations
are photo-injected, well beyond a simple broadening of the Drude function.
The fits to the data automatically satisfy the KramersKronig relations, be-
cause they are obtained as a difference between KramersKronig-constrained
Lorentz oscillators. The conservation of the total spectral weight is guaran-
teed by the constraint that the sum of the squared plasma frequencies of the
Extended Drude model (ω2

p,0) and of the interband oscillators (ω2
p,1, ω

2
p,2) is the

same (i.e., ω2
p,0+ω2

p,1+ω2
p,2=const) in both the static and the excited dielectric

function (the spectral weight of a Drude or Lorentz oscillator being dependent
only on its squared plasma frequency), as the FGT sum rule requires. Table
8.1 reports the parameters modified in the non-equilibrium dielectric function
to obtain the best fit to the data (only for the OP1 sample and for τ=400 fs),
reported in Fig. 8.3.

Figure 8.3: The main plot shows the fitting results to the τ=400 fs traces for
the UD, OP, OD samples. Below, the fit to the τ=400, τ=1 ps, τ=2 ps, τ=3
ps pump-probe delay traces is reported singularly for the three samples.

161



8. The Phase Diagram from Non-Equilibrium Spectroscopy

Table 8.1: Fitting results for the OP sample, at T=20 K, at τ=400 fs pump-
probe delay

Quantity Static τ=400 fs

T 20 K 38.8 K
ω01 11800 cm−1 11799 cm−1

ωp1 2358 cm−1 2383 cm−1

γ1 3644 cm−1 3698 cm−1

ω02 16163 cm−1 16176 cm−1

ωp2 6385 cm−1 6372 cm−1

γ2 8304 cm−1 8283 cm−1

Beyond the effect related to the modification of the high-energy oscillators, I
include in the fit the thermal heating of the system associated to the extra
energy deposited by the pump pulse in the system. The increase in the system
temperature has been calculated by considering the 4TM, with the same Glue
Function, subsets and coupling strengths argued by the analysis carried on
on the normal state phase data. Because of the smaller specific heats of the
system (both electronic and total) at T=20 K, the increase in temperature is
much higher than in the pseudogap or in the normal state. We estimated it to
be 38.8 K, for the OP1 sample at τ=400 fs. I underline that this effect does
not affect the total spectral weight.
The results of the differential fitting procedure are very stable on the choice of
the equilibrium dielectric function (our best fit to equilibrium data is reported
in 3.7.3). Indeed, the same results are obtained assuming a different equi-
librium dielectric function (for example with a different number of interband
oscillators or a different glue function). For this reason, the equilibrium dielec-
tric function used can be considered as a ”realistic” dielectric function, even if,
possibly, not the best dielectric function one can get (since the procedure to
obtain it is often questionable).

The fits are employed to calculate the relative variation of the optical conduc-
tivity ∆σ1(ω)/σ1(ω), reported in Fig. 8.4. The trend from positive ∆σ1(ω)/σ1(ω)
in the underdoped to a slightly negative ∆σ1(ω)/σ1(ω) in the overdoped sam-
ples reveals that the interband spectral weight variation, defined by ∆SWtot ≡
∆ω2

p,1/8 + ∆ω2
p,2/8 (see section 3.6), being ω2

p,1 and ω2
p,2 the squared plasma

frequencies of the 1.46 and 2 eV oscillators, strongly depends on the doping.
I remember that, at higher probe energies (3.14 eV), a negligible ∆R/R(ω, τ)
value for OP1 is observed, confirming that the interband transitions at ener-
gies larger than 2 eV are not significantly affected by the suppression of the
superconducting gap.
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Figure 8.4: The quantity ∆σ1(ω)/σ1(ω) has been calculated and reported for
the three samples, for the τ=400 fs situation. The relative spectral weight
transfer to/from the intraband spectral region is proportional to the integral
of the shadowed area.

Discussion of the results
In the simple energy-gap model for conventional (BCS) superconductors [60,
57], small changes of the interband transitions, over a narrow frequency range
of the order of ω0,i±∆SC/~ can arise from the opening of the superconducting
gap at the Fermi Energy. In contrast to this model, the partial suppression
of 2∆SC , photoinduced by the pump pulse, induces a change of the optical
properties over a spectral range (∼1 eV) which is significantly broader than
2∆SC<80 meV [187]. This result reveals a dramatic superconductivity-induced
modification of the Copper-Oxygen electronic excitations at 1.5 and 2 eV.
The photoinduced modification of ∆SWtot vanishes as Tc is approached from
below, demonstrating that this effect is exclusively related to the impulsive
partial suppression of 2∆SC . This is shown in Fig. 8.5 for the OP1 sample.

A further evidence of the direct relation between 2∆SC and ∆SWtot is obtained
by comparing the results obtained with the visible probe with the results of
time-resolved experiments with probe energy in the mid-infrared [102] and
THz [99, 12] regions. The findings reported therein directly show a recovery
time of the superconducting gap and condensate ranging from 2 to 8 ps, for
different families of cuprates, temperatures and pump fluences. From our re-
sults, the temporal dynamics of ∆SWtot, reported in Fig. 8.6 for UD, OP1 and
OD samples, is nearly exponential with a time constant τ̃=2.5±0.5 ps. The
∆SWtot variation is completely washed out at longer times (τ>5 ps), when the
complete electron-boson thermalization broadens the Drude peak, overwhelm-
ing the contribution of ∆SWtot. The correspondence between the timescales
observed in the mid-IR and THz spectral regions and the recovery time of
∆SWtot finally demonstrates the interplay between the excitations at 1.5 and
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Figure 8.5: The pump-induced modification of the spectral weight is a phe-
nomenon related to the onset of the superconducting state. This result, here
reported for the OP sample, is common to all doping levels. The interplay
between high and low energy scale physics is thus effective only in the super-
conducting phase. No spectral weght transfer have indeed been revealed either
in the normal state, or in the pseudogap phase.

2 eV and the superconducting gap 2∆SC .
For completeness, I report briefly on the results obtained for the energy gap
2∆SC(τ) temporal evolution (being τ the pump-probe delay), calculated within
a time-dependent Rothwarf-Taylor model. More details can be found in [42].
The minimum value for 2∆SC(τ) with respect to the unperturbed gap ∆(0),
which indicates the maximum gap closing, is achieved 400 fs after excitation,
when the gap amplitude is 80% of the maximum. This justifies our choice of
performing the data analysis on a spectrum measured at a pump-probe delay
τ=400 fs, when the effect related to the superconducting condensate quench is
expected to be maximum. It has to be pointed out that the gap suppression
and the density of broken CP are not in a linear relation. The evolution of
the measured total interband spectral weight variation ∆SWtot shows a clear
proportionality with the gap closing calculated within this model, i.e., with the
quenching strenght of the superconducting consensate induced by the pump
pulse. ∆SWtot and 2∆SC(τ)/2∆SC(τ < 0) are compared in Fig. 8.6.

Concluding remarks
The results of the analysis I described in this paragraph shed light on one
of the unsolved problems of high-temperature superconductivity, and namely,
whether and how the electronic many-body excitations at high-energy scales
are involved in the condensate formation in the under- and over-doped regions
of the superconducting dome. I remember that within the BCS theory for con-
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Figure 8.6: The pump-induced spectral weight change ∆SWtot as a function of
pump-probe delay τ , for the three samples, follows the temporal evolution of
the superconducting gap, calculated within a time-dependent Rothwarf-Taylor
model [42].

ventional superconductors, the opening of the superconducting gap induces a
significant rearrangement of the quasiparticle excitation spectrum only over
an energy range of ∼10∆. Here I demonstrated that on HTSC, the picture is
considerably different: an interplay between many-body electronic excitations
at 1.5 and 2 eV and the onset of superconductivity, both below and above
the optimal hole concentration required to attain the maximum Tc, has been
addressed, for all doping levels.

Recently, equilibrium techniques revealed a superconductivity-induced mod-
ification of the CuO2 plane optical properties involving energy scales in ex-
cess of 1 eV [88, 157, 131, 22, 160, 112]. These results suggested a possi-
ble superconductivity-induced gain in the in-plane kinetic-energy on the un-
derdoped side of the phase diagram [123, 71, 26]. However, the identifica-
tion of the high-energy electronic excitations involved in the onset of high-
temperature superconductivity (HTSC) remained elusive, since they overlap
in energy with the temperature-dependent narrowing of the Drude-like peak.
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The temporal-resolution provided by our non-equilibrium spectroscopy allowed
to disentangle the ultrafast modifications of the high-energy spectral weight
(∆SWtot ≡ ∆ω2

p,1/8 + ∆ω2
p,2/8) from the slower broadening of the Drude-like

peak induced by the complete electron-boson thermalization. Time-resolved
optical spectroscopy is thus one the most promising experimental techniques
to be used as a benchmark for unconventional models of HTSC.

Finally, these results shed light on the long-standing question [77, 52] about
the origin of the doping- and temperature-dependent ∆R/R(~ω = 1.55eV, τ)
measured in one-colour time-resolved reflectivity experiments at high probe-
energies [78, 117]. The measured signal is not originated by an excited state
absorption, related to the variation of the electronic distribution within the un-
varied electronic bands, but to a real modification of the underlying electronic
structure, and in particular, of the interband transitions at 1.5-2 eV. Nonethe-
less, the measured ∆R/R(ω, τ) is proportional to the density of photo-injected
quasiparticles, as commonly assumed [111]. The dynamics of 2∆SC(τ) can thus
be reconstructed exploiting the ∆R/R(ω, τ) signal measured in the visible /
near-IR spectral range.

8.4 Discontinuity of the dynamics at optimal

doping

In this paragraph, the change in the high-energy spectral weight determined
by the fitting procedure described in the previous section, will be related to the
superconductivity-induced change in the carriers kinetic energy, in a few simple
steps I will sketch below. Fundamental information about the mechanisms
leading to superconductivity will be argued. This will provide us fundamental
information in the attempt to formulate a ’non-equilibrium’ phase diagram.
The conservation of the total spectral weight, imposed by the global oscillator
strength sum rule (see section 3.6), implies that: SWN

D + SWN
L = SW SC

D +
SW SC

L , where the subscripts D and L indicate respectively the spectral weight
of the intraband and interband regions, and the superscripts N , SC indicate
respectively the spectral weigth in the normal and superconducting phases.
Here SW SC

D includes the contribution of the zero-frequency delta describing
the condensate contribution to the spectral weight.
The total interband spectral weigth is given by (for either j = N or j = SC,
and being (σL,i(ω))

j the optical conductivity of the i-th Lorentz oscillator in
the phase j):

SW j
L ≡

∑

i

∫ ∞

0

(σL,i(ω))
jdω

Similarly, for the intraband part, it holds:

SW j
D ≡ (1/4πi)

∫ ∞

0

ω(ǫD(ω))
jdω
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For the conservation of the total spectral weight, the spectral weight change of
the intraband region must be compensated by an equal but opposite change of
the spectral weight of the interband transitions. Moreover, since I did not ob-
serve a superconductivity-induced modification of the high-energy oscillators,
except the 1.5 and 2 eV ones, the following equalities hold (see also formula
3.26):

∆SWD = −∆SWL = −∆ω2
p,1/8−∆ω2

p,2/8

Where the ’∆’s I defined in this chapter follow in a natural way by considering
the effect of the laser excitation on the system held in the superconducting
phase, i.e., the partial suppression of the superconducting condensate. Since

∆R/R(ω, τ) ≡ Rpumped(ω,τ)−Runpumped(ω)

Runpumped(ω)
, it results: ∆ω2

p ≡ ω2
p,pumped−ω2

p,unpumped

and ∆SWL = SWN
L −SW SC

L . Since I want to estimate the superconductivity-
induced spectral weigth change instead (N → SC), the correct quantity to
consider is −∆SWD = +∆SWL.
In the special case of a single conduction band within the nearest-neighbour
tight-binding model [86, 139], the total intraband spectral weight SWD can be
related to the kinetic energy Tδ of the charge carriers (holes) associated to an
hopping process in the δ direction, through the relation [86]:

1

4πi

∫ ∞

0

ωǫD(ω)dω =
π2a2δe

2

2~2VCu

〈−Tδ〉

where aδ is the lattice spacing in the Cu-O plane, projected along the direction
determined by the in-plane polarization of the incident light, and VCu is the
volume per Cu atom. I obtain 〈K〉 = 2 〈Tδ〉 from the spectral weight variation
of the interband oscillators, through the relation:

〈K〉 = 2 〈Tδ〉 =
4~2VCu

π2a2δe
2
∆SWL

A finite value of ∆SWL thus implies a superconductivity-induced variation of
the kinetic energy.
To extract quantitative information about the actual superconductivity-induced
kinetic energy change, the values obtained for the kinetic energy change related
to a pump fluence of 10 µJ/cm2, must be extrapolated to the case of a com-
plete thermal collapse of the superconductive state (100% gap closing). In
non-equilibrium conditions, the collapse of the superconducting state happens
for a finite value of the superconductive gap 2∆, since the photoinduced phase
transition has a first order character, as predicted by the µeff model [143, 136],
and clearly demonstrated in [42, 81]. The intuitive reason for this being the in-
trinsic non-equilibrium character of the photoinduced phase transition, which
cannot be interpreted within equilibrium models, according to which the phase
transition happens only for a complete collapse of the superconducting gap 2∆.
I thus estimated the actual density of broken CP (related to an incident fluence
of 10 µJ/cm2) starting from the knowledge of the critical CP density at which
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8. The Phase Diagram from Non-Equilibrium Spectroscopy

the superconductive state collapses. This happens, accordingly to our measure-
ments, for a pump fluence of 60 µJ/cm2 [42, 81]. The measured kinetic energy
change can then be extrapolated to the superconductivity induced change for
100% CP breaking. The critical broken CP density (in non-equilibrium con-
ditions) making the superconductive state collapse, accordingly to [136], is in
the range 15-20%. At our typical pump fluence of 10 µJ/cm2, the density of
broken CP is thus ∼ 3%. The total, superconductivity induced kinetic energy
change will be ∼33.3 times the one I estimated from the measured change of
spectral weight.
Considering VCu=Vunit−cell/8 ∼1.1·10−22 cm3 and aδ = aunit−cell/

√
2 ∼3.9 Å,

I obtain that the kinetic energy can be calculated as 〈K〉 = 8~2∆SWL·(83.3
meV/eV2), where 8~2∆SWL is the total interband spectral weight variation
expressed in eV2. To obtain the total kinetic energy variation related to the
condensate formation, the measured ∆SWL = ∆SWtot value has been extrap-
olated to the value corresponding to the breaking of 100% of the Cooper Pairs,
being ∼3% the actual estimated photo-induced breaking of CPs.

Figure 8.7: The maximum change in the spectral weight (measured for a pump-
probe delay equal to τ=400 fs) is reported for the three samples. A clear evo-
lution with the doping level is observed: a scenario in which superconductivity
is driven by a direct kinetic energy gain for the charge carriers evolves toward
a BCS-like scenario in which superconductivity is accompained by a kinetic
energy loss for charge carriers. Error bars take into account the stability of
the differential fit over a diffrent choice of the equiibrium dielectric function.

For the UD sample, I estimated a superconductivity-induced kinetic energy de-
crease of∼1-2 meV per Cu atom. This value is very close to the superconductivity-
induced kinetic energy gain predicted by several unconventional models [86,
139].
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Concluding remarks
Exploiting the temporal resolution of the novel pump supercontinuum-probe
optical spectroscopy, I unambiguously demonstrated that in Y-Bi2212, the su-
perconductive transition is strongly unconventional both in the under- and in
the over-doped side of the superconducting dome, since it involves the modi-
fication of high-energy states at 1.5 and 2 eV. This has profound implications
for the comprehension of the actual phase diagram of copper-oxyde based
high-temperature superconductors. Indeed, the sign change of ∆SWL upon
crossing the optimal doping concentration popt affects the superconductivity-
induced change in the carriers kinetic-energy. In particular, when moving
from below to above the optimal hole doping popt, the spectral weight vari-
ation ∆SWL of the high-energy oscillators entirely accounts for a crossover
from a superconductivity-induced gain (reduction) to a BCS-like loss (increase,
which must be overcompensated by a gain in potential energy of the carriers
for the superconductivity to occur) of the carrier kinetic energy, estimated by
equilibrium optical spectroscopies directly measuring the low-energy optical
properties [175, 131, 123, 71, 26], or by one-color time-resolved reflectivity mea-
surements [78]. This opposite behavior has implications on the mechanisms
leading to superconductivity in copper oxide based superconductors, which
could be different in different regions of the superconductive dome. While
on the overdoped side, BCS-like mechanisms are likely to occur, on the un-
derdoped side other mechanisms must be invoked. In the 1990s, Hirsch and
Marsiglio [85, 86, 124] proposed a model, called ’hole superconductivity’, which
predicts the charge carriers (holes) can directly lower their kinetic energy when
paired. In this model the pairing is expected between oxygen holes, with an
asymmetric behavior for electrons and holes near the Fermi Energy. Below
a critical temperature related to a critical hole density, the model predicts
the development of an attractive interaction between nearest neighbor holes
with antiparallel spin. Two coupled holes reduce their effective mass and can
delocalize more efficiently, thus reducing their kinetic energy.

8.5 Onset of the signal from the temperature

dependent glue function

In the previous chapter (see section 7.4) it has been demonstrated that the
negative ∆R/R(ω, τ) component measured at T=100 K in the visible spec-
tral range is the fingerprint of an excitation dependence of the bosonic glue,
characterizing the pseudogap phase. In particular, I demonstrated this signal
being successfully reproduced invoking a temperature induced modification of
the intensity of the lowest energy peak of the Bosonic Glue Π(Ω), I1. To
address the evolution of the pseudogap phase as a function of the tempera-
ture, high-resolution single-color time-resolved reflectivity measurements have
been performed on under-doped, optimally doped and over-doped samples, at

169



8. The Phase Diagram from Non-Equilibrium Spectroscopy

a probe energy of 1.55 eV (λ=800 nm).
In Fig. 7.8 I present a temperature scan (the temperature range 100-300 K is
explored with more than 25 measurements) performed at very low pump flu-
ence (∼4 µJ/cm2), on the UD, OP and OD samples. The transient reflectivity
measurements are offsetted to make the picture more clear.

Figure 8.8: The temperature scans in a wide range of temperatures, performed
at a fixed probe wavelenght of 1.55 eV, 800 nm, on an underdoped (p=0.128),
an optimally doped (p=0.16) and an overdoped sample (p=0.2) are reported.
The fit to the time resolved reflectivity traces are superimposed to the experi-
mental data.

To extract quantitatively the temperature onset of the negative signal, I per-
form a multicomponent fit to the time resolved traces. The fitting function
f(τ) (equation 8.1) is given by the sum of three exponentially-decaying func-
tions, and it is convoluted with a Gaussian profile representing the experimen-
tal pump-probe temporal cross-correlation (equal to 180 fs).

f(τ) = I1 · e−τ/τ1 + I2 · e−τ/τ2 + I3 · e−τ/τ3 (8.1)

The three exponential decays represent respectively the fast and positive dy-
namics of the normal state phase, the fast and negative dynamics of the pseu-
dogap phase, and a slow, positive or negative dynamics to catch the signal
evolution at longer decay times. The fits are superimposed to the experimen-
tal data of Fig. 7.8. The intensity of the negative and fast component (I2) is
represented in Fig. 7.9 for the three samples. Error bars take into account the
uncertainties in the fitting procedure.
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Figure 8.9: The intensity of the negative component I2, extracted from the
fit, is reported. The onset of the negative signal associated to an impulsive
quench of the lowest-energy peak of the bosonic glue has been inferred from
these data. Error bars take into account the fit uncertainty.

It is evident how the onset of this effect is rather narrow in temperature: 150
to 165 K for the OP sample, 230 to 240 K for the UD sample. Moreover,
this onset temperature scales with doping. No negative component has been
detected on the OD sample.

Summarizing, our findings clearly show that for UD and OP samples a negative
component in the ∆R/R(ω, τ) appears at a temperature which is compatible
with the material T ∗. The onset of this effect is doping-dependent, and scales as
T ∗ does. This negative component is absent in the OD sample. This negative
component in the ∆R/R(ω, τ) has been successfully reproduced (see section
7.4) assuming that one peak in the material Bosonic Glue Π(Ω) depends on
the excitation, that is, it is temperature dependent. Electron-Boson coupling
is thus no-more temperature-independent in the pseudogap.
As I carefully stated in section 7.4, Li et al. [116] revealed, on the HgBa2CuO4+δ

copper-oxyde based high-temperature superconductor, a collective magnetic
mode of excitation (with energy in the range ∼55 meV), which onset tem-
perature shows a temperature evolution similar to that observed in our time-
resolved optical data.
Our analysis indicates that the scenario of a temperature independent Glue
Function must be overcame to correctly reproduce the experimentl results ob-
tained in the pseudogap phase. Provided that the feature we observed in the
bosonic glue is in a relation with the magnetic mode observed by Li et al. (as
it is reasonable to assume), we can say that not only a new magnetic exci-
tation mode appears at T ∗, but it turns out that this peculiar mode is also
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actively coupled to the electrons. This picture is compatible with a phase
diagram governed by a quantum critical point. However, the crossing of the
line of finite temperature phase transition (the critical line) should produce
divergences in many physical quantities, which have not been yet observed. In
conclusion, this magnetic excitation mode with energy of ∼55 meV constitutes
an important point to be clearified for the comprehension of high temperature
superconductivity in copper oxide based superconductors.

8.6 Overdoped side of the phase diagram

With this section I want to briefly discuss which is the scenario in the over-
doped side of the phase diagram. To this aim, I collected in Fig. 8.10 the τ=0
spectra measured on several samples, at T=100 K. It is evident how, upon

Figure 8.10: The spectrally resolved reflectivity traces in the pseudogap phase
(T=100 K) of Bi2Sr2Y0.08Ca0.92Cu2O8+δ are collected here for five doping levels:
p=0.128 (UD sample), p=0.16 (OP sample), p=0.176 (OD sample), p=0.197
(OD sample), p=0.2 (OD sample).

crossing the optimal doping level, the negative signal associated to an impul-
sive modification of the bosonic glue disappears. Further work is required to
correctly interpret the origin of the ∆R/R(ω, τ) signal observed in the over-
doped region of the phase diagram. Qualitatively, I can anticipate that the
∆R/R(ω, τ) arising from a thermal heating of the system, alone, is not suffi-
cient to interpret the observed time-resolved signals. A spectral contribution
arising from the gap closing (as described in section 7.4) must be invoked.

8.7 The Non-Equilibrium phase diagram

The experimental evidences I collected by probing with the time-resolved op-
tical spectroscopy technique the normal state, the pseudogap and the super-
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conducting state of underdoped, optimally-doped and overdoped samples, al-
lowed me to formulate a phase diagram for the Y-Bi2212 copper-oxide based
high-temperature supercondutor, based enterely on non-equilibrium evidences.
That is, the phase diagram I propose is deducted by only analyzing how the
time-resolved optical signal (with both energy (ω) and time (τ) resolutions)
∆R/R(ω, τ), induced by a non-perturbing, low-fluence excitation done by a
pump-pulse, evolves in the p-T space.
The most important experimental evidence, coming from the analysis of the
time-resolved optical signal in the pseudogap phase, is that it exists a line, at
temperatures T ∗(p), which enters the superconducting dome, and which delim-
its a region of p-T space in the underdoped region in which the electron-boson
coupling is temperature-dependent, in contrast to what happens in the normal
state. The superconducting state is characterized by a non-conventional inter-
play between high-energy states (precisely at 1.5 and 2 eV) and the formation
of the superconducting condensate. The behavior inside the superconducting
dome is delimited by the T ∗ line in two regions, showing a different sign of the
induced spectral weight transfer from low to high energy scales. In particular,
while in the underdoped side of the superconducting dome, superconductivity
is accompained by a direct kinetic energy gain of the carriers, in the overdoped
side of the superconducting dome superconductivity is accompained by a BCS-
like loss of kinetic energy. This crossover happens close to the optimal hole
concentration p required to attain the maximum critical temperature Tc (0.16
for Y-Bi2212).
The rise of a collective magnetic excitation mode related to the onset tem-
perature of the pseudogap, T ∗, as recently demonstrated by Li et al. [116],
suggests that the pseudogap is indeed a true phase of matter, characterized
by a long-range order. Varma [180] proposed this mode to be associated to a
current-loop order, being the ground state of the pseudogap phase.
I observed that below the T ∗ temperature, the Glue Function Π(Ω) acquires
a fluence-dependence, affecting a low-energy peak intensity. This fluence-
dependence is responsible for the negative ∆R/R(ω, τ) signal in the visible
spectral region, which is commonly associated to the pseudogap. Not only this
finding confirms that a new mode rises at the temperature corresponding to
the onset of the pseudogap phase, but it adds a fundamental ingredient, that
is, this mode is coupled to the electrons.
This latter observation opens fundamental questions about the possible inter-
play between the superconductivity and the pseudogap in copper-oxyde based
high-temperature superconductors.
The T ∗ line entering the superconducting dome suggests the phase diagram
in governed by a quantum critical point within the superconducting dome, at
T=0, as it is predicted by the theories predicting a circulating-current mag-
netic order [95].
The phase diagram I propose is sketched in Fig. 8.11.
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Figure 8.11: The phase diagram I propose, based enterely on the non-
equilibrium evidences from the time-resolved optical spectroscopy, is sketched.
Red line delimits the superconducting dome. Blue line is the T ∗ line, related to
the onset of the pseudogap. This line delimits a region in which the electron-
boson coupling is fluence-dependent. The yellow square and the green dot
represent respectively the onset temperature of the fluence-dependence of the
electron-boson coupling, for the p=0.128 (UD) and the p=0.16 (OP) samples.
Entering the superconducting dome, superconductivity is accompained by a
doping-dependent change of the carriers kinetic energy, that changes sign close
to the optimal doping concentration.
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Chapter 9
Conclusions

My PhD work started with the task of developing and setting up novel time-
resolved spectroscopies, with the idea that only the knowledge of the non-
equilibrium optical response of complex materials, in a wide range of energies,
could lead to a true comprehension of the physics at the microscopic level,
originating the non-equilibrium optical signal. We brought a fundamental con-
tribution to this nascent field, actively developing the basis for this approach,
which is nowadays achieving great success and is quickly spreading around
the time resolved scientific community. Many difficulties had to be overcome,
mainly related to the need to obtain a very high sensitivity for the measure-
ments, related to the fact that phases of matter which ’vaporizes’ at very low
fluence levels had to be investigated. This is the peculiarity of our approach:
the systems under study are only gently brought out-of-equilibrium by laser
excitation. In this respect we call our technique time-resolved spectroscopy,
since a true spectroscopic analysis of the phase can be achieved only when
the phase itself is not ’vaporized’. Temporal resolution allowed to reveal the
characteristic non-equilibrium optical response to a small perturbation of the
phase, which strongly depends on the ground state of the system.
In the specific, I developed two complementary experimental set-ups. The first
exploits a broadband, supercontinuum white light pulse as probe pulse. The
spectral range that can be probed by this setup is 1.2-2.5 eV (i.e., 500-1000
nm). The supercontinuum pulse employed in this set-up is generated by a
photonic crystal fiber, which is seeded by a cavity-dumped Ti:Sapphire oscil-
lator. This allowed to obtain very high signal-to-noise ratios, thanks to the
high statistic due to the high repetition rate of the source. The drawback has
been that the temporal structure of pulses produced in this way presents a pro-
nounced chirp, and this lead us to the development of several characterization
techniques to measure the spectro-temporal structure of this pulse, and correct
measurements accordingly. The second setup is developed around an optical
parametric amplifier, seeded by a regenerative amplified laser system. The
probe pulse of this setup is a quasi-monochromatic but widely tunable infrared
pulse, obtained as the signal and idler output of the parametric amplifier. This
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technique allowed us to extend the probed spectral range toward the infrared,
covering the spectral region 0.5-1 eV (i.e., 1200-2400 nm). The two set-ups
developed, together with a brief review of the characterization techniques, are
presented in chapter 5. After some years these systems have been working, it is
possible to say that time and spectral resolved measurements constitute a fun-
damental improvement over the conventional one color, monochromatic optical
pump-probe techniques. Up to now, the lack of spectral resolution prevented
to achieve a true comprehension of the physical origin of the observed optical
signals. Other improvements can be done to the technique, mainly related to
the extension of the probed spectral range. For the systems studied in this
work, the infrared part of the spectrum revealed of greater relevance as com-
pared to the ultraviolet one. Extending the probed spectral range toward the
infrared is however not simple, because of the actual lack of broadband sources,
except for the THz range. Also the achievement of even better signal-to-noise
ratios is important, to perform measurements more quickly, thus opening the
way to follow the signal evolution in time. This would be extremely useful to
map for example the evolution of chemical reactions from the non-equilibrium
point of view. In the field of strongly correlated electron systems (transition
metal oxides, copper and iron based superconductors) or other complex mate-
rials (manganites, ruthenates), time-resolved spectroscopy is one of the most
promising techniques to provide new insights on the microscopic mechanisms
underlying the phases of these materials and new benchmarks for the non-
equilibrium theories which are being developed.

With regard to my research, this novel powerful technique allowed to clarify
some open questions about the physics of copper oxide based high temper-
ature superconductors. The sample chosen is the two-layer member of the
Yttrium substituted BSCCO family, that is, Bi2Sr2Ca0.92Y0.08Cu2O8+δ, where
δ controls the doping level. We have samples with different doping, in such
a way we could explore the evolution of the non-equilibrium optical signal
in the δ-T phase diagram. The analysis and characterization - by the non-
equilibrium spectroscopic point of view - of the phases composing the system
phase diagram, allowed us to obtain the first all-optical non equilibrium phase
diagram of a strongly-correlated electronic material. In particular, the normal
state, the pseudogap and the superconducting state exhibited sensibly differ-
ent time-resolved optical signals. These non-equilibrium spectrally resolved
signals have been interpreted within a differential dielectric function approach
(formulated and described in chapter 4), to assign a clear microscopic origin to
the signal itself. When excited by an ultrashort laser pulse, each physical phase
manifests a peculiar, intrinsic response, mainly due to the excitations produced
by the pulse, which are meaningful in understanding the ground state of the
phase. Each physical mechanism has its own spectral fingerprint, as it has been
demonstrated with several simulations. Moreover, the temporal resolution re-
vealed fundamental since it allows to disentangle the fast electronic processes
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from the slow, thermal (phonon related) ones. The thermal contribution often
overwhelms the signal of electronic origin. This is the reason why equilibrium
spectroscopy failed in evidencing the effects revealed by the non-equilibrium
approach.

Briefly, what we found about the microscopic nature of the normal (Chap-
ter 6), pseudogap (Chapter 7) and superconducting (Chapter 8) phases can be
summarized as follows:

• The time-resolved optical signal measured by time-resolved spectroscopy
in the normal state of Y-Bi2212, unambiguously revealed that, after a
time shorter than the electron-phonon thermalization, the electrons are
already thermalized with some bosonic degrees of freedom, having a small
specific heat and a strong coupling with the electrons. This finding sug-
gests that these bosonic excitations are of electronic origin. The time-
resolved optical signal in the energy domain is only compatible with a
quasi-thermal scenario, in which electrons are never decoupled from a
boson subset. The simultaneous analysis of experimental data in both
the time and the energy domains revealed that the subset of bosonic
excitations of electronic origin can account, alone, for the high critical
temperature of the material. This finding suggests that pairing in HTSC
is mainly of electronic origin. Possible candidates for the bosons of elec-
tronic origin are antiferromagnetic spin flucutations or current loops. In
the normal state, the Bosonic Glue Π(Ω) expressing electron-boson cou-
pling is fluence-independent.

• In the pseudogap phase the transient reflectivity signal requires a more
complicated explanation. It is doping dependent, in contrast to the nor-
mal state signal. A quasi-thermal scenario, alone, is not enough for
explaining the observed signal. The further contributions which has to
be invoked to correctly reproduce the time-resolved optical signal are
the pump-induced impulsive quench of a gap in the electronic density of
states, and the impulsive decrease of the intensity of one low-energy peak
of the Bosonic Glue Π(Ω). The onset of this fluence-dependent contri-
bution, which is responsible for the negative signal commonly associated
to the presence of the pseudogap phase, is exactly at T ∗. These exper-
imental observations suggest that in the pseudogap phase one bosonic
mode, rising exactly at T ∗, is also coupled with the electron system.
The pseudogap phase is thus a complex phase, in which the fermionic
quasi-particles and the bosonic excitations are strongly intertwined. The
doping-dependent temperature onset of the effect related to the fluence-
dependence of the electron-boson coupling allowed to formulate the phase
diagram of the Y-Bi2212 compound.

• The superconducting state shows a very peculiar optical response with re-
spect to an external excitation by ultrashort laser pulses. The main effect
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of the excitation is to partially quench (working in a low fluence regime)
the superconducting gap. On the contrary to what happens in BCS, con-
ventional superconductors, in which the effect on the optical properties
of the superconducting gap is limited in a spectral range very close to
the gap itself, in strongly correlated copper oxide based superconductors,
an effect at energies much higher than the gap energy is observed in the
optical properties. It exists an interplay between high and low energy
physics. Some high energy states, and the relevant optical transitions,
are intimately related to the condensate formation. In contrast to what
observed in the normal state and in the pseudogap phases, here the time-
resolved optical signal, which shows a strong doping dependence, can be
interpreted only by invoking a pump-induced modification of two Lorentz
oscillators at 1.5 and 2 eV, which are present in the equilibrium dielectric
function and associated to transitions between many-body Cu-O states.
The superconducting signal exhibits a strong doping dependence, from
which useful information about the superconductivity driving mechanism
can be extracted. Close to the optimal doping level required to attain
the highest Tc, a crossover from a direct kinetic energy gain in the un-
derdoped side of the phase diagram to a BCS like kinetic energy loss in
the overdoped side of the phase diagram is observed.

All the reported findings can be matched to provide a phase diagram enterely
based on all-optical non-equilibrium evidences. The scenario proposed is that
of a phase diagram governed by a quantum critical point at T=0, located
inside the superconducting dome. A line entering the superconducting dome
delimits the pseudogap behavior associated to a fluence-dependent electron-
boson coupling. This evidence suggests the pseudogap is indeed a true phase
of matter. The T ∗ line delimits, within the superconducting dome, two regions
in which superconductivity is accompained by an opposite superconductivity-
induced change for the carriers kinetic energy.
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