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THE CHARACTERIZATION OF A COLOURED LIGHT PULSE OPTICAL SWITCHING (GATING) WITH VO: FILM XFROG (BBO NL CRYSTAL) TWO PHOTON ABSORPTION IN ZnSe
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* Optical switching, exploiting the photoinduced phase transition of VO, o —— - 825 nm Schematic representation of the VO,-based gating technique.
" 1'5 110 0'5 0'0 ol5 695 nm G(t) is the smeared step function which mimics the VO,
*SFG (sum—frequency-generation) In an angle-dithered NL BBO crystal R R Iz)élay (ps)' | switching behavior, I(t) Is the temporal profile of the SC pulse. The plots represent the spectrograms of the SC pulse, as obtained with the different techniques. The VO,-based switching technique is the only working in reflectivity, and its spectral
response covers the entire spectral range. Due to the switching behavior, it can be used for pulse diagnostics. On the other hand, it requires a deconvolution procedure and has a lower
* Two-photon-absorption IN a ZnSe window Time-resolved traces on VO, evidence the switching behavior of temporal resolution, because of the VO, finite switching time (~80 fs) [1]. XFROG and two-photon absorption, being gating tecnhiques (based on extremely fast electronic processes), offer
the material, due to the photo-induced structural and electronic higher temporal resolution, which allow to distinguish the solitons present in the pulse.
phe_lse transitiqn, which manifests in an abrupt change of the
optical properties. These techniques are complementary and provide equivalent results about the temporal duration of the pulse: 120 fs in the UV-visible region, and up to 200 fs in the IR region.
TIME-RESOLVED BROADBAND SPECTROSCOPY Y-Bi12212 HOPG CONCLUDING
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Time-resolved reflectivity in the spectral region between 1 T=100 K (pseudogap state), §=10 plfcm?, rep. rate 540 kHz T=300 K, $2500 pd/cm?, rep. rate 1 MHz Traces at selected delays — and their fit — are reported. A _p_ump—probe apparatus with _the peculiarity of
and 2 eV has Dbeen measured on cuprate 20— — S 2.0~ 0.0 exploiting a broadband supercontinuum pulse as a
superconductors (Y-Bi2212 and Hg1201) and on HOPG, i gl e A : 02 probe, has been developed and fully characterized.
with respect to the delay t between excitation (pum R hal 0.4 . .
P . y (pump > : I B * The use of a cavity-dumped oscillator as laser system
pulse) and probing (probe pulse). - 2 6] « 0.6 . N . .
S 1.6 5 ] L, allowed us to explore different excitation regimes, while
0 2 i b . - . . - .
. 5 4] 10do S 6 e maintaining a high statistic. This system allowed us to
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with a S|Ight|y-m0d.lfled model allow to take into account T=15 K (superconducting state), §=20 pl/cm?, rep. rate 540 kHz Lorentz oscillators are indicated. moves toward higher energies is compatible with a laser-induced * Extension of the probed spectral region toward the
the effect of excitation. 2.0 - EEEEEEEE————— - contraction of the layers [2]. mid-IR (1000-1600 nm), with InGaAs linear sensors.
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