

Broadband Ultrafast Time-Resolved Spectroscopy: a new technique to investigate the electron dynamics in strongly-correlated systems

Federico Cilento^{1,2,*}, Claudio Giannetti³, Gabriele Ferrini³, Stefano Dal Conte⁴, Tommaso Sala³, Giacomo Coslovich^{1,2}, Matteo Rini⁵, Andrea Cavalleri^{6,7} and Fulvio Parmigiani^{1,8}

1. Department of Physics, Università degli Studi di Trieste I-34012, Italy; 3. Department of Physics, Università Cattolica del Sacro Cuore, Brescia I-25121, Italy 4. Department of Physics A. Volta, Università degli Studi di Pavia, Pavia I-27100, Italy; 5. Materials Sciences Division, Max Planck Research Department for Structural between the second structural structur Dynamics, University of Hamburg, 22607 Hamburg, Germany; 7. Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom; 8. Sincrotrone Trieste S.C.p.A., Basovizza, Trieste I-34012, Italy *. for correspondence and requests: <u>federico.cilento@elettra.trieste.it</u>

INTRODUCTION

We have developed a novel technique to overcome the main limit of the conventional pump-probe technique, which allow only to study the non-equilibrium optical properties of a system at a fixed probe energy (typically 1.5 eV). Introducing a supercontinuum (broadband) probe pulse this limitation is overcome: a true nonequilibrium spectroscopy with high spectral resolution (5 nm) can be achieved. An experimental apparatus which combines the peculiarities of the ultrafast time-resolved approach (high temporal resolution: 120 fs in our setup, high signal to noise ratio, sensitivity to the electronic dynamics) with the ones of the spectroscopic approach (energy resolution) allowed us to study – through the nonequilibrium dielectric function – the transient electronic dynamics in several strongly correlated materials. The use of a cavity-dumped oscillator as a laser source allow us to explore different excitation regimes, opting for a high statistic or a low average heating.

THE CHARACTERIZATION OF A COLOURED LIGHT PULSE

The generation of a white-light continuum with a few nJ/pulse is only achievable with photonic crystal fibers. The wavelengths of these pulses are distributed in time following the PCF dispersion characteristic: the use of this pulse as a probe in time-resolved experiment thus requires a careful characterization.

We adopt three techniques to obtain a *spectrogram* (time-energy map) of the pulse:

- * Optical switching, exploiting the photoinduced phase transition of VO_2
- * SFG (sum-frequency-generation) in an angle-dithered NL BBO crystal
- * Two-photon-absorption in a ZnSe window

TIME-RESOLVED BROADBAND SPECTROSCOPY

Time-resolved reflectivity in the spectral region between 1 eV has been measured on cuprate 2 and superconductors (Y-Bi2212 and Hg1201) and on HOPG, with respect to the delay τ between excitation (pump pulse) and probing (probe pulse).

THE DRUDE-LORENTZ MODEL

Transient reflectivity is interpreted with a differential Drude-Lorentz model: a static model is constructed for the static optical properties; considering the difference with a slightly-modified model allow to take into account the effect of excitation.

$\varepsilon(\omega) = 1 + i \frac{4\pi}{\omega} \sigma(\omega) = \varepsilon_{\inf} + \sum_{j} \frac{\omega_{p_{j}}^{2}}{\omega_{0_{j}}^{2} - \omega^{2} - i\omega\gamma_{j}} \omega_{p_{j}}^{2} = \omega_{p_{j}}^{2}$	$=\frac{4\pi n_j e^2}{m^*}$
--	-----------------------------

where: ω_{pi} : plasma frequency – oscillator strength of each oscillator

 ω_{0i} : central frequency of each oscillator (zero for Drude term(s))

 γ_i : damping term: oscillator width

Time-resolved traces on VO₂ evidence the switching behavior of the material, due to the photo-induced structural and electronic phase transition, which manifests in an abrupt change of the optical properties

Y-Bi2212

Optimally Doped Y-Bi2212 (Bi₂Sr₂Ca_{0.92}Y_{0.08}Cu₂O_{8+δ}, δ=0.16), T_c=96 K T=100 K (pseudogap state), *3*=10 μJ/cm², rep. rate 540 kHz

Hg1201

Optimally Doped Hg1201 (HgBa₂CuO_{4+ δ}), T_c=94.5 K T=15 K (superconducting state), *s*=20 μJ/cm², rep. rate 540 kHz

HOPG

1.8 -1.2 -

temporal resolution, because of the VO₂ finite switching time (~80 fs) [1]. XFROG and two-photon absorption, being gating tecnhiques (based on extremely fast electronic processes), offer higher temporal resolution, which allow to distinguish the solitons present in the pulse.

These techniques are complementary and provide equivalent results about the temporal duration of the pulse: 120 fs in the UV-visible region, and up to 200 fs in the IR region.

CONCLUDING

* A pump-probe apparatus with the peculiarity of exploiting a broadband supercontinuum pulse as a probe, has been developed and fully characterized.

* The use of a cavity-dumped oscillator as laser system allowed us to explore different excitation regimes, while maintaining a high statistic. This system allowed us to study the low energy electronic dynamics (in the energy range 1 .. 2 eV) in strongly correlated systems.

FUTURE

* Extension of the probed spectral region toward the mid-IR (1000-1600 nm), with InGaAs linear sensors.

* The possibility to generate far-IR radiation (3-10 μ m) to be used as a probe, exploiting a NL DFG (differencefrequency generation) process, is being explored.

[1] A. Cavalleri et al., Phys. Rev. B **80**, 161102 (2004) [2] F. Carbone et al., Phys. Rev. Lett. **100**, 035501 (2008)

Further details on: Appl. Phys. Lett. **96**, 021102 (2010)