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LECTURE NOTES 23 
 

Eddy Currents in Conductors 
 

     Conductors, by definition, contain “free” electrons – i.e. the electrons are free to move around 
inside the metal, but in fact are (weakly) bound to the metal by the work function ϕW of the metal 
(SI units = eV (i.e. Joules)). Due to internal thermal energy associated with the metal being at 
finite temperature, the “free” electrons can “evaporate” from the metal via thermionic emission 
(from the high-side tail of the thermal energy distribution of the free electrons in a metal). Thus 
thermionic emission of electrons is intimately related to black body /thermal radiation.   
 
     Thermal energy distribution of “free” electrons in a metal:  
        
                        
                       
 
                                                                             
                                             
 
The free electrons in the metal have mean/average thermal kinetic energies of 
 

thermal 21 3
2 2e e e BU m v k T= =  

 

     In the presence of a uniform applied external magnetic field ˆext oB B z=
G

 the free electrons in 

metal move in circular orbits in a plane ˆext oB B z⊥ =
G

 (ignoring/neglecting scattering effects in the 

metal). The (mean/average) momentum of each electron is e e e op m v qB R= =  where R = 
(mean/average) radius of curvature of the circular orbit:  
 

 
3 1 3

  
e e e B

e B
o o e o

m v m k TR m k T
q B q B m qB

= = =    and  
3 B

e
e

k Tv
m

= .  

 

Note that  53 1.2 10B
e

e

k Tv m s
m

= ×�  for T = 300K (see P435 Lect. Notes 21, page 9), using:  

  319.1 10em kg−= ×  
   191.6 10q −  = × Coulombs = |e| 
  Bo = 1 Tesla 
  231.38 10Bk J K−= ×  
  T   = 300K 
 
This corresponds to a radius of curvature of  76.65 10 0.665 0.7R m m mμ μ−= × = �  for 
a 1oB = Tesla magnetic field! 
 

ne, number  
density of 
electrons 

0

ϕW 
Thermionic emission of electrons from a 
metal occurs when 

thermal
e WU ϕ>  

thermal ( or )eU Joules eV   
thermal 3

2e BU k T=  
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This result (of course) assumes no scattering of the free electrons in the conducting metal while it 
is making one orbit of cyclotron motion: 
 
 
                                                                  

  ( )e eF e v B eE′= − × =
G G GG                                     2

e e

C R
v v

πτΔ = = =  mean cyclotron orbit time 

       ˆe oe v B ρ= −                                                               
   {radially inward}                                                 
     ( ). . 0zn b v here  =                                 
  
 
In general 0zv ≠ , thus free electrons will additionally move up/down || to ẑ -axis in a helical/spiraling 
motion as shown in the figure below, since the electron’s motion in z is unaffected by the presence of 
the externally-applied magnetic field: 

 
The magnetic dipole moment emG associated with a free electron in a cyclotron orbit is:  

    
P

( ) ( )2 2ˆ ˆ
2

A

e
e

e vem IA I R z R zπ π
τ π

⊥=

⊥

⎛ ⎞
= = − = − =⎜ ⎟⎜ ⎟Δ⎝ ⎠

GG
R

π 2R ( ) ( )1 1ˆ ˆ ˆ
2 2e ez e v R z e v Rz− = − = −  

Note that induced/resulting magnetic dipole moment, 1ˆ ˆ
2e em IA z e v Rz⊥= − = −

G  points opposite 

direction of applied magnetic field. 
 
⇒  Free electrons in metal/conductor in the presence of Bext have diamagnetic properties. 
 
     In reality the mean free path of a free electron in a metal, mf ρλ  (= average/mean distance 
between scatterings/collision) in most metals is much smaller than 2 4.2C R mπ μ= �  (for  
T = 300K and 1oB = Tesla).  
 
In copper metal for example: 

83.9 10 0.04 40 / 400Cu
mfp m m nmλ μ−= × = =� Þ (!!)  Thus 0.04 2 4.2Cu

mfp m C R mλ μ π μ=� � � ,  

i.e. 1
100

Cu
mfp Cλ � in copper (for T = 300K and 1oB = Tesla). 

                                                    

ϑ  

R

ev  

x̂  

ŷ  

ˆ ˆ,  oz B B z=
G

 2C Rπ=  

emG  

e−
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Where 2
c e e

mfp
e

m v
n e

σ
λ = .  For copper 75.95 10cu

cσ ×�  Siemens and 28 38.5 10cu
en m×�  

                                           with 53 1.2 10B
e

e

k Tv m s
m

= ×�  for T = 300K  

 
In this regime the path of free electrons is more complex due to the intrinsic scattering processes 
extant in the metal, but the free electrons still travel (on average) in circular and/or helical paths. 
 
Again, it is important to point out that static magnetic fields perform/carryout/ do NO work on 
charged particles.  Thus, for a constant (i.e. time-independent) magnetic-field, e.g. ˆoB B z=

G
, no 

net energy is deposited and/or removed from the metal conductor by the constant magnetic field. 
 
All a constant magnetic field ˆoB B z=

G
does is change/rearrange the nature of the six-dimensional 

phase space associated with the free electrons ( ) ( ), , , , , ,e e x y zr p x y z p p p=
G G by introducing 

correlations in (x & y), and (px & py) due to the induced cyclotron-type motion of the free 
electrons.  The block of metal remains in thermal equilibrium. 
 
In e.g. a sheet of copper metal, the free electron number density 28 38.5 10cu

en m×� .  If the 

copper metal sheet lies in the x–y plane, with ˆext oB B z=
G

, then the net magnetic dipole moment is 

( )
1

ˆ
eN

net e net
i

m m m z
=

= = −∑G G with macroscopic magnetization ( )ˆnet netm volume m z volumeΜ = = −
G G  

due to the free electrons only. 
 
An effective surface eK

G
 current flows (only) on the periphery of the metal sheet – due to 

cancellation of the nearest neighbor induced dipole currents, as shown in the figure below: 
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Again, there are NO power losses here with a static magnetic field because B
G

 does NO work if 
B
G

= constant. 

However for time-varying magnetic fields, because of Faraday’s Law: ( ) ( ),
,

B r t
E r t

t
∂

∇× = −
∂

G GG G G   

or:  ( ) ( ) ( ) ( ) ( ),
, ,  m

S C S

B r t t
E r t da E r t d da mf t

t t
ε ε

⊥ ⊥
⊥ ⊥

∂ ∂Φ
∇× = = − = − =

∂ ∂∫ ∫ ∫
GGG G GG G G Gi i A iv  

a time-varying magnetic field ( ),B r t
t

∂
∂

G G
 induces an electric field ( ),E r t

G G  which (depending on 

the sign of ( ),B r t
t

∂
∂

G G
 (increasing/decreasing) either accelerates/decelerates the free electrons in 

the conducting metal. 
 

⇒  If ( ) ( ) ( ) ( )ˆ ˆ  and  o
o

B t B t
B t B t z z

t t
∂ ∂

= =
∂ ∂

G G
G

 and for simplicity, if ev  is in the x–y plane,  

i.e. 0
zev =  then the free electron’s cyclotron orbit radius, R remains constant: 

 

( )( )

( ) constant 

e
e

e e

d v t
mm v dtR

dB teB e
dt

= =   or:  
( ) ( )e

e

d v t dB t
m e

dt dt
=  

 
The (average) kinetic energy gain (or loss) per cyclotron orbit is: 
 

 ( ) ( )( ) ( )( ) ( ) ( )* * m
e e e

t B t
KE t q mf t e mf t e e A

t t
ε ε ε ε ⊥

∂Φ ∂
Δ = = − = + =

∂ ∂
  where 2A Rπ⊥ =  

 
The (average) rate of a free electron’s kinetic energy gain (or loss) per cyclotron orbit is thus: 
 

The power gain/loss per cyclotron orbit: ( ) ( )
( ) ( )2*

e
e

rev rev

B t
e RKE t tP t

π

τ τ

∂
Δ ∂= =   

but:     
2

rev
e e

C R
v v

πτ =�  

Thus:  ( )
( ) *

e

B t
e

tP t
π

∂
∂=

2R( )
2π R

( )1
2e e

B t
v e v R

t
∂

=
∂

   But:  
1 ˆ
2e em e v Rz= −

G
 (from above) 

 

Therefore: ( ) ( ) ( ) ( ) ( )1
2

mag
e e

e e e

m B tB t B t U t
P t e v R m

t t t t

⎡ ⎤∂ −∂ ∂ ∂⎣ ⎦= = − = =
∂ ∂ ∂ ∂

GG G iG i  
 

Note:  By Lenz’s Law, eP  is always positive for diamagnetic conducting materials.  Then the 
macroscopic power: ( ) ( ) ( )* *macro e e e eP t N P t n volume P t= =  corresponds to the macroscopic 
induced EMF macroε and (net) macroscopic current, Imacro flowing in the conducting material!!! 
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Then we see that ( ) ( ) ( ) ( ) ( )2 2
macro macro macro macro material macro material

P t t I t I t R t Rε ε= = =   
                  = Joule heating / power losses in the metal.  

 

     The (net) macroscopic current ( )macroI t
G

 flows around periphery of material, as a surface 

current ( )macroK t
G

, then ( ) ( ) ,macro macroI t K t t⊥=
G G

 where t⊥  = perpendicular thickness of the 
conducting material (see above figure). 
 

     Note that this surface current ( )macroK t
G

, which is created by an externally-created ( )B t t∂ ∂  
in the metal is associated with real power losses/real power dissipation because of the 
acceleration/deceleration of free electrons in the metal (which is a time-irreversible process).   
 
Such induced macroscopic currents in conductors/metals, caused by an induced macroscopic 

EMF  ( ) ( ) ( ) m macro
macro

d t B t
t A

t t
ε ⊥

Φ ∂
= − = −

∂ ∂
 are known as Eddy currents. 

 
     Eddy currents e.g. in transformers are harmful because they sap power from the transformer:  
 

power input   = (power output + Eddy current power) 
thus:    power output = (power input    – Eddy current power)   
 
     Since Eddy current power winds up as heat, the transformer will (eventually) get hot – 
possibly so hot it could be destroyed, if it has not been designed properly! 
 
     Eddy currents in metals can also be used beneficially e.g. to cook food by induction heating!! 
⇒ Place food in metal container in proximity to intense alternating B

G
-field.    Eddy current 

power losses (e.g. in transformers) can be dramatically reduced by laminating the transformer 
core. 
 
 

 
 

( ) ( ) ˆ  oB t B t
z

t t
∂ ∂

↑ =
∂ ∂

  

   increasing (here) 
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For a Solid-Core Transformer: 

The induced macroscopic ( ) ( ) ( ) 
solid solid

mcore core
macro
Eddy

t B t
mf t A

t t
ε ε ⊥

∂Φ ∂
= − = −

∂ ∂

G
  where  ( )*

solid
coreA L W⊥ =  

 
The power dissipation in the solid core of this transformer is:  
 

       ( ) ( ) ( ) ( )
( )

( ) 2
2 2

2

solid
corecore

macrosolid solid solid solid
Eddycore core core core

macro macro macro macro solid
Eddy Eddy Eddy Eddy core solid solid

core core

B t
At t

P t t I t I t R
R R

ε
ε

⊥

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠= = = =  

      ( )

( ) ( )2 2
2 4core

solid
core

macro
Eddy solid solid

core core

B t B t
A L

t t
P t

R R

⊥

∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠= =  if 2

solid
coreA L⊥ =  (i.e. L = W for a square core) 

 
For a Laminated Core Transformer: 
 

Divide the solid core into lamN  individual laminations, each of width WΔ . Coat each lamination 
with a very thin layer of electrically-insulating material (e.g. varnish or epoxy). Then the total 
with of all laminations stacked back together is lamW N W= Δ . 
 

 
Each (now insulated) lamination has a cross-sectional area 1Lam core

Lam

A L W A
N⊥ ⊥= Δ =  

The resistance of each lamination is now increased relative to the resistance of the whole core: 
Lam Lam coreR N R=  (i.e. core Lam LamR R N=  - for LamN laminations electrically connected in parallel). 

 

( ) ( ) ˆ  oB t B t
z

t t
∂ ∂

↑ =
∂ ∂

 

   increasing (here) 
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The induced macroscopic EMF associated with each lamination is:  
 

  ( ) ( ) ( ) mLam Lam
macro
Eddy

t B t
mf t A

t t
ε ε ⊥

∂Φ ∂
= − = −

∂ ∂

G
  where  ( )* * /

solid
Lam core

Lam LamA L W L W N A N⊥ ⊥= Δ = =  

 
The corresponding Eddy current power loss associated with each lamination is: 
 

( )
( )

( ) ( ) ( )

( )

2 2 2  
2 2 2 2  2

3 3

1 1

solid solid
Lam core coreLam

Lammacro
Eddy

Lam solid
coreLam Lam Lam solid Lam solid Lam

core core

B t B t B t
A A N At t t t

P t P t
R R N R N R N

ε ⊥ ⊥ ⊥

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠= = = = =

 

Since there are lamN  laminations (now) making up the transformer core, then the total Eddy 
current power loss of the laminated transformer core is lamN times the power loss for one 
lamination, i.e.: 
 

( ) ( )

( ) 2  
2 

2 2

1 1

solid
core

Tot
Lam Lam Lam solid
core coreLam solid Lam

core

B t
A

t
P t N P t P

N R N

⊥

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠= = =   

         
Thus, we see that the Eddy current power loss in a transformer decreases as the square of the 
number of laminations (compared to no laminations) (i.e. the Eddy current power loss decreases 
as the square of LamA⊥ ) 
 
n.b.  Ferrite cores used in transformers have high resistance (e.g. compared to iron cores) and 
also have good magnetic permeability ⇒  the use of ferrite materials in transformer cores can 
reduce Eddy current losses even further, by a factor of 1iron ferriteR R � !!! The use of ferrite 
materials for transformer cores is most common/most useful for low-power/small-signal 
applications. 
 
     Today, there exist various kinds of magnetic field sensors – e.g. which utilize magneto-
resistive effects (B-field dependent resistance!) such as Giant Magneto-Resistance (GMR) 
sensors, and/or electron Spin-Dependent Tunnelling (SDT) devices as well as Superconducting 
Quantum Interference Devices (SQUIDs) which are also very sensitive to magnetic fields. These 
devices are used in all kind of applications to detect small variations in magnetic fields.  
 
     One important application is Eddy current sensing – used for detecting structural flaws in 
critical conducting materials. The state-of-the-art of Eddy current sensing is now such that 
imaging capability with ~ 100 micron resolution has been achieved. Please see/read handout on 
Eddy current sensing for more information. 
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 Energy Stored in Magnetic Fields 
 
     In electrical circuits containing (one or more) inductors, work must be done against the back 

mfε  ( ) ( ) ( )freem
L

I tt
t L

t t
ε

∂∂Φ
= − = −

∂ ∂
 in order to get a free current, Ifree to flow in the circuit. 

 
     Suppose we have a simple electrical circuit consisting of a battery (which supplies a constant 

mfε , oε ), an on/off switch, an inductor, (with inductance, L) and a resistor (of resistance, R) as 
show in the figure below: 

Then:  0Tot C
V E dΔ = =∫

G
i Av  ⇐  Kirchoff’s Voltage Law:  The sum of potential differences 

around a closed circuit (mesh) = 0,  i.e.  
1

0
N

i
i

V
=

Δ =∑ .   

⇒ E
G

 is a conservative field associated with a conservative force F qE=
G G

                              
                                                    
Then:     ( ) ( )battery inductor resistor 0V V t V tΔ + Δ + Δ =   
 

Where:  ( )battery         0oV εΔ = − = constant, ( )fcn t≠  

  ( ) ( )( )inductor R oV t V t εΔ = −  

  ( ) ( )( )resistor   0 RV t V tΔ = −  
 

Then:  
( ) ( )

( ) ( )( ) ( )( )
battery inductor resistor         0

0 0 0o R o R

V V t V t

V t V tε ε

Δ + Δ +Δ =

= − + − + − =
 

 
or:      ( )( )

( )
( ) ( )

( )
( )

( )

N
resistorinductor

0

     
        

  (by Ohm's Law) 
free

L

o R R

V tV t
I t RBackt mf

V t V t

ε ε

ε ε
=Δ=Δ
=

=−

= − − +
��	�
  



UIUC Physics 435 EM Fields & Sources I        Fall Semester, 2007       Lecture Notes  23        Prof. Steven Errede 

© Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005-2008.  All Rights Reserved. 

9

∴ ( ) ( )0 L freet I t Rε ε= − +  = constant,  but  ( ) ( )free
L

I t
t L

t
ε

∂
= −

∂
 

∴ 
( ) ( )0

free
free

I t
L I t R

t
ε

∂
= + +

∂
 

 

or:  
( ) ( )free

free o

I t
L RI t

t
ε

∂
+ =

∂
 ⇐  1st order linear inhomogeneous differential equation (solution 

is = general solution of homogeneous differential equation + 
particular solution for inhomogeneous equation (imposed by 
initial conditions and/or final conditions) 

 
First, solve the homogeneous differential equation: 
 

      
( ) ( ) 0free

free

I t
L RI t

t
∂

+ =
∂

   ⇒   
( ) ( ) 0free

free

dI tL I t
r dt

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

 or: 
( ) ( )free

free

dI t R I t
dt t

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

 
The general solution to this homogeneous differential equation is of the form: 
 

     ( )
tfree

free oI t I e Cτ−= +   where C = constant of integration. 
 

Then: 
( ) 1 tfree free

o

dI t
I e

dt
τ

τ
−

= −    ⇒  
L
R

τ ⎛ ⎞≡ ⎜ ⎟
⎝ ⎠

 = characteristic time constant (SI units = seconds) 

 
Now solve the inhomogeneous differential equation: 
 

     
( ) ( )free

free o

I t
L RI t

t
ε

∂
+ =

∂
   but   ( )

tfree
free oI t I e Cτ−= +  

 

Thus:  L
R

−
R
L

⎛ ⎞
⎜ ⎟
⎝ ⎠

0 0

t t
oI e I e C

R
τ τ ε− −⎛ ⎞

+ + =⎜ ⎟
⎝ ⎠

  ⇒  integration constant oC
R
ε

=  

∴ The solution of this inhomogeneous differential equation is:  ( )
tfree o

free oI t I e
R

τ ε−
= +  

However we don’t (yet) know explicitly what free
oI is…  

 

∴ Impose the initial condition at time t = 0:  ( )0 0freeI t = = .  
 
 i.e. initially no current flows through the circuit when the switch is closed at t = 0  
      (this is due to the back EMF in the inductor – i.e. Lenz’s law!!!) 
 

Thus at t = 0, we see that ( ) N
0

1

0 0free freeo o
free o oI t I e I

R R
ε ε−

=

= = + = + =   ⇒   free o
oI

R
ε

= −  

 
∴ The specific solution to the inhomogeneous differential equation (here) is: 

         ( ) ( )1
t to o o

freeI t e e
R R R

τ τε ε ε− −
= − + = −  
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Thus, for this circuit, the free current flowing in this circuit as a function of time is: 
 

    ( ) ( )1
to

freeI t e
R

τε −⎛ ⎞= −⎜ ⎟
⎝ ⎠

  where ( )L
Rτ ≡   

 

The free current ( )freeI t flowing in circuit vs. time, t  is shown in the figure below: 
    
             ⇐     n.b. this electrical current flows 
                         through all components 
             ⇐        (i.e. battery, inductor, 
               resistor, switch, wires…) 
 
 
                           0            1τ            2τ           3τ  
The voltage (aka potential difference) across the resistor, R vs. time, t: 

  ( ) ( )*  (by Ohm's Law) o
RV t I t R

R
ε

Δ = = * R ( )1
t

e τ
−

−  

  ( ) ( )0 1
t

RV t e τε
−

Δ = −   where ( )L
Rτ ≡  

 

 
 
The voltage (aka potential difference) across the inductor, L vs. time, t:   
 

Since: ( ) ( )1
t

o
freeI t e

R
τε −⎛ ⎞= −⎜ ⎟

⎝ ⎠
 where  ( )L

Rτ ≡   Thus: 

( ) ( ) ( )
inductor

free
L

I t
V t t L L

t
ε

∂
Δ = − = + =

∂
o R

R L
ε⎛ ⎞− ⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

t t

oe eτ τε
− −⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

  i.e.  ( )inductor

t

oV t e τε −Δ = −   

 
           1τ            2τ    3τ                  t 

             0                       
                                                                    -5.0% oε  
                                -13.5% oε  

                               -36.8% oε                            

( )inductorV tΔ       0   back mfε ε← = − = !!  ⇒   
         

At 0t =  the back mfε across the inductor 
(= oε− ) exactly cancels Vbattery = 0ε , but 
inductor can’t sustain opposing it forever! 
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 Kirchoff’s Voltage Law:  ( ) ( ) ( )battery inductor resistorV t V t V tΔ = −Δ − Δ   (Volts) 

               oε          ( )1
t t

o o oe eτ τε ε ε
−−= + + − =   (Volts) 

The voltage (potential difference) across the battery = voltage (potential difference) across 
[inductor & resistor] = constant, independent of time. 
 
The instantaneous electrical power stored in the inductor is: 
 

  ( ) ( ) ( ) ( ) ( )free
L L free free

dI t
P t t I t LI t

dt
ε= − = +    (Watts) 

 
The instantaneous electrical energy stored in the inductor is: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )2

0 0 0

1 
2

t t tfree
L free free free free

dI t
W t P t dt LI t dt L I t dI t LI t

dt
′

′ ′ ′ ′ ′= = = =
′∫ ∫ ∫  

  ( ) ( )21
2L freeW t LI t=    (Joules)  {n.b. analog of ( ) ( )21

2CW t C V t= Δ  for capacitors!} 
 
Thus, we see that the instantaneous electrical power stored in the inductor is: 
 

  ( ) ( ) ( ) ( ) ( ) ( )freeL
L L free free

dI tdW t
P t t I t LI t

dt dt
ε= = − = +   (Watts) 

 

Recall that the magnetic flux in an inductor is: ( ) ( )m freet LI tΦ =   (Webers or Tesla-m2) 
 

However:  ( ) ( ) ( )( ) ( ) ( ), , ,m freeS S C
t B r t da A r t da A r t d LI t

⊥ ⊥
⊥ ⊥Φ = = ∇× = =∫ ∫ ∫

G G GG GG G G G Gi i i Av  
 

Then: 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

21 1 1 ,
2 2 2
1 1 1           , , ,
2 2 2

L free free free freeC

free free freeC C C

W t LI t LI t I t A r t d I t

I t A r t d A r t I t d A r t I t d

⎡ ⎤⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

⎡ ⎤= = =⎣ ⎦

∫

∫ ∫ ∫

G GG i A

G G G G G GG G Gi A i A i A

v

v v v
  

 

Thus, more generally, for any magnetic vector potential, ( ),A r t
G G  with its corresponding 

filamentary/line free current ( )freeI t
G

, or surface free current density ( )freeK t
G

, or volume free 

current density ( )freeJ t
G

we see that the magnetic energy stored in such systems can be written as: 

   ( ) ( ) ( )( ) ( ) ( )1 1, , ,
2 2mag free freeC C

W t A r t I r t d I t A r t d= =∫ ∫
G G GGG G Gi A i Av v   (Joules) 

   ( ) ( ) ( )( )1 , ,
2mag freeS

W t A r t K r t da
⊥

⊥= ∫
G GG Gi   (Joules) 

   ( ) ( ) ( )( )1 , ,
2mag freev

W t A r t J r t dτ= ∫
G GG Gi   (Joules) 

 
Note from the last formula above that the energy density associated with an inductor is: 

   ( ) ( ) ( )1 , ,
2mag freeu t A r t J r t=
G GG Gi   (Joules/m3) 
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Using Ampere’s law (in differential form):  ( ) ( ), ,o TotB r t J r tμ∇× =
G G GG G

, then for non-magnetic 

media we see that ( ) ( ), ,Tot freeJ r t J r t=
G GG G

 (only) whereas for magnetic media, in general 

( ) ( ) ( ), , ,Tot free BoundJ r t J r t J r t= +
G G GG G G

.  
 

Then we can more generally write ( ) ( ) ( )( )1 , ,
2mag freev

W t A r t J r t dτ= ∫
G GG Gi  as  

  ( ) ( ) ( )( ) ( ) ( )( )1 1, , , ,
2 2mag Totv v

o

W t A r t J r t d A r t B r t dτ τ
μ

= = ∇×∫ ∫
G GG G GG G G Gi i  

 
Integrate the RHS term of the above relation by parts, and use the relation: 
  ( ) ( ) ( )A B B A A B∇ × = ∇× − ∇×

G G GG G G G G G
i i i    

i.e.  ( ) ( ) ( ) ( ) ( )2A B B A A B B B A B B A B∇× = ∇× − ∇ × = − ∇ × = − ∇ ×
G G G G GG G G G G G G G G G G G
i i i i i i  

∴     ( ) ( ) ( ) ( )( )21 , , ,
2mag v v

o

W t B r t d A r t B r t dτ τ
μ

⎡ ⎤= − ∇ ×⎣ ⎦∫ ∫
GG GG G Gi   

Using the divergence theorem on the 2nd term: 

        ( ) ( ) ( ) ( )( )21 , , ,
2mag v S

o

W t B r t d A r t B r t daτ
μ

⎡ ⎤= − ×⎣ ⎦∫ ∫
G GG G G Giv  (n.b. surface S encloses volume v) 

The volume of integration v = entire volume occupied by the current density ( ),TotJ r t
G G . Any 

integration volume larger than this is perfectly fine also, so integrating over all space for a 
localized/finite volume current distribution ( ),TotJ r t

G G is also fine. Then for an infinite integration 
volume v with accompanying infinite enclosing surface S, we see that the surface integral on the 
RHS of the above equation vanishes, i.e. ( ) ( )( ), , 0

S
A r t B r t da

∞

× =∫
G GG G Giv .  

 
Then the magnetic energy associated with any system is given by: 
 

  ( ) ( ) ( ) ( )( )    
1, , ,
2mag mag Totall all

space space
W t u r t d A r t J r t dτ τ= =∫ ∫

G GG G Gi   (Joules) or equivalently by: 

  
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

2
    

    

1, ,
2

1 1             , , , ,
2 2

mag magall all
space spaceo

all all
space spaceo

W t u r t d B r t d

B r t B r t d B r t H r t d

τ τ
μ

τ τ
μ

= =

= =

∫ ∫

∫ ∫

G G

G G G GG G G Gi i
  (Joules) 

 
The corresponding magnetic energy density is given by: 
 

  ( ) ( ) ( )1, , ,
2mag Totu r t A r t J r t=
G GG G Gi   (Joules/m3) or equivalently by: 

  ( ) ( ) ( ) ( ) ( ) ( )21 1 1, , , , , ,
2 2 2mag

o o

u r t B r t B r t B r t B r t H r t
μ μ

= = =
G G G GG G G G G Gi i   (Joules/m3) 
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We can see that these are directly analogous to the electric field case: 
The energy associated with the electric field in any system is given by: 
 

  ( ) ( ) ( ) ( )( )    
1, , ,
2elect elect Totall all

space space
W t u r t d r t V r t dτ ρ τ= =∫ ∫

G G G
  (Joules) or equivalently by: 

  
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

2
    

    

1, ,
2

1 1             , , , ,
2 2

elect elect oall all
space space

o all all
space space

W t u r t d E r t d

E r t E r t d E r t D r t d

τ ε τ

ε τ τ

= =

= =

∫ ∫

∫ ∫

G G

G G G GG G G Gi i
  (Joules) 

 
The corresponding electric energy density is given by: 
 

  ( ) ( ) ( )1, , ,
2elect Totu r t r t V r tρ=

G G G
  (Joules/m3) or equivalently by: 

  ( ) ( ) ( ) ( ) ( ) ( )21 1 1, , , , , ,
2 2 2elect o ou r t E r t E r t E r t E r t D r tε ε= = =

G G G GG G G G G Gi i   (Joules/m3) 

 
Electric and Magnetic Energies & Energy Densities in Macroscopic Matter – Linear Media: 

 

In linear dielectric materials, oε (free space) →  ε  (linear medium), with ( ) ( ), ,D r t E r tε=
G GG G  

In linear magnetic materials, oμ (free space) → μ  (linear medium), with ( ) ( ), ,H r t B r t μ=
G GG G  

 
The electric and magnetic energy densities in the volume v (only) of the linear media are:  
 

  ( ) ( ) ( ) ( ) ( ) ( )21 1 1,  ,   , ,   , ,
2 2 2

dielectric
electu r t E r t E r t E r t E r t D r tε ε= = =

G G G GG G G G G Gi i   (Joules/m3) 

  ( ) ( ) ( ) ( ) ( ) ( )21 1 1, , , , , ,
2 2 2

magnetic
magu r t B r t B r t B r t B r t H r t

μ μ
= = =

G G G GG G G G G Gi i   (Joules/m3) 

 
The corresponding electric and magnetic energies associated with the volume v (only) of the 
linear media are: 
 

  
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

2

 

1 , ,
2

1 1                   , , , ,
2 2

dielectric dielectric
elect electv v

v v

W t u r t d E r t d

E r t E r t d E r t D r t d

τ ε τ

ε τ τ

= =

= =

∫ ∫

∫ ∫

G G

G G G GG G G Gi i
  (Joules) 

  
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

21, ,
2

1 1                   , , , ,
2 2

magnetic magnetic
mag magv v

v v

W t u r t d B r t d

B r t B r t d B r t H r t d

τ τ
μ

τ τ
μ

= =

= =

∫ ∫

∫ ∫

G G

G G G GG G G Gi i
  (Joules) 

 
The total electric/magnetic energy densities and electric/magnetic energies (i.e. integrated over 
all space must (obviously) use oε and oμ  for these integrals in the region(s) outside of the 
volume v of the media. 
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Griffiths Example 7.13:   
 
     A long coaxial cable carries a steady free current Ifree down the surface of the inner cylinder 
(of radius a) and then returns along the surface of the outer cylinder (of radius b), as shown in the 
figure below: 

 
Determine the magnetic energy density stored in a section of this coaxial cable, e.g. associated 
with a length A of this cable. 
 
Use e.g. Ampere’s circuital law ( ) enclosed

o TotC
B r d Iμ=∫

GG G i Av  to determine B inside and outside the 

cable, take contour(s) as shown above.  
 

  For ,  0enclosed
Tota Iρ < =            therefore ( ) 0B aρ < =

G
. 

  For ,  enclosed
Tot freea b I Iρ≤ < =  therefore ( ) ˆ

2
o

freeB a b Iμρ ϕ
πρ

≤ ≤ =
G

. 

  For ,  ( ) 0enclosed
Totb I netρ > =    therefore ( ) 0B bρ > =

G
. 

 

Since the magnetic field ( ) ˆ
2

o
freeB a b Iμρ ϕ

πρ
≤ ≤ =

G
 is non-zero only in the region a bρ≤ < , then 

the magnetic energy density will also be non-zero only in this same region: 
 

  

( ) ( ) ( ) ( )2

2
2 2

2 2

1 1
2 2

1              
2 2 8

mag
o o

o o
free free

o

u B B B

I I

ρ ρ ρ ρ
μ μ

μ μ
μ πρ π ρ

= =

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

G G
i

  (Joules/m3) 

 
The magnetic energy associated with a finite length A  of the coaxial cable is: 
 

  
( ) ( )

22 2

0 0

1 1
2 2

         2

z b

mag v z a
o o

W B r d dz d B r d
ρ ϕ π

ρ ϕ
τ ρ ρ ϕ

μ μ
= = =

= = =
= =

=

∫ ∫ ∫ ∫
AG G

π 2

8
o

freeI μA
2π

ρ
2

d ρ
ρ

( )2 2 ln
4 4

b bo o
free freea a

d bI I a
ρ ρ

ρ ρ

μ μρ
π ρ π

= =

= =
= =∫ ∫A A

 

ẑfreeI  

freeI  

a  
b  

A

ρ
C  

( )B ρ
G

 

ρ
a  b  

( )magu ρ  

ρ
a  b  
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Thus:   ( )2 ln
4

o
mag free

bW I a
μ
π

= A    (Joules) 

 
The magnetic energy per unit length associated with this coaxial cable is:  
 

  ( )2 ln
4

o
mag mag free

bw W I a
μ
π

≡ =A   (Joules/meter) 

Note that the magnetic energy in this coaxial cable is also 21
2mag L freeW W LI= = , thus we see that 

the inductance L associated with a finite length A of this cable is: 
 

  ( )2 21 ln
2 4

o
mag L free free

bW W LI I a
μ
π

= = = A    ⇒   ( )ln
2

o bL a
μ
π

= A   (Henrys). 

 
The inductance per unit length of this coaxial cable is therefore: 
 

   ( )ln
2

oL b
a

μ
π

≡ =
A

L   (Henrys/meter). 

 
Note that the inductance per unit length L≡ AL  has the same SI units (Henrys/meter) as the 
magnetic permeability of free space oμ . 
 

Magnetic Forces: 
 
Example: The Force on a Linear Magnetic Core Exerted by a Long Solenoid 
 

Suppose we have a long solenoid of length A  and radius R (thus cross-sectional area 2A Rπ⊥ = ) 
with TotN  turns (thus Totn N= A turns per unit length) carrying a steady free current I. What 
happens when we insert a linear magnetic material (with constant magnetic permeability μ ) 
having the same length and radius into the bore of the long solenoid? Is there a force acting on it, 
e.g. analogous to that associated with inserting a linear dielectric between the plates of a parallel-
plate capacitor? 

Cross-Sectional View of Long Solenoid: 

zΔ  
Magnetic Core 

{partially inserted into  
bore of long solenoid} 

zΔ

0z =  z z=

ẑ

z
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The infinitesimal difference in the magnetic energy associated with moving the magnetic core 
inward into the bore of the long solenoid an infinitesimal distance zΔ (ignoring/neglecting any/all 
end effects) is given by: 
 
  ( ) ( ) ( ) ( ) ( )21

2
in

mag mag mag o solv
W z W z z W z H r dμ μ τΔ Δ = + Δ − − ∫

G�  
 

Where (using Ampere’s circuital law for the H
G

-field for the long solenoid): ( ) ˆin
sol freeH r nI z=
G G

 
 
The infinitesimal change in the volume due to the infinitesimal displacement zΔ is V A z⊥Δ = Δ . 
 

  ∴  ( ) ( ) 2 21
2mag o freeW z n I A zμ μ ⊥Δ Δ − Δ�  

 
Then the net force acting on the magnetic core is:  
 

  ( ) ( ) ( ) ( ) 2 21
2

constant constant

ˆ ˆ ˆ
free free

mag mag
mag o free

I I

W z dW z
F z z z n I A z

z dz
μ μ ⊥

= =

Δ Δ Δ
Δ = = −

Δ

G
�  

 

     Thus, as long as  ( ) 0oμ μ− > (i.e. paramagnetic materials) we see that the direction of the 

magnetic force acting on the magnetic core ( )ẑ+  is such that it wants to suck the magnetic core 
into the bore of the long solenoid, analogous to what we saw in the case of a linear dielectric 
partially inserted into the gap of a parallel-plate capacitor. Note however, for diamagnetic core, 
since ( ) 0dia oμ μ− < , a diamagnetic magnetic core is repelled from the bore of the long solenoid! 
 

Electric and Magnetic Pressure: 
 
We have seen for the electrostatics case, that the energy density ( )electu rG (SI units of Joule/m3) 

also has the same units as that for pressure, ( )P rG  (Newtons/m2), and in fact the presence of an 

energy density ( )u rG  can/will exert a pressure ( )P rG on material if present at the point rG . 
 
If there are no linear dielectrics and/or linear magnetic materials present, then: 
 

    ( ) ( ) ( ) ( ) ( ) ( ) ( )21 1 1,  ,  ,   , ,   , ,
2 2 2elect elect o ou r t P r t E r t E r t E r t E r t D r tε ε= = = =

G G G GG G G G G G Gi i    (J/m3 or N/m2) 

    ( ) ( ) ( ) ( ) ( ) ( ) ( )21 1 1, , , , , , ,
2 2 2mag mag

o o

u r t P r t B r t B r t B r t B r t H r t
μ μ

= = = =
G G G GG G G G G G Gi i   (J/m3 or N/m2) 

 
If there are linear dielectrics and/or linear magnetic materials present, then: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )21 1 1,  ,  ,   , ,   , ,
2 2 2

dielectric dielectric
elect electu r t P r t E r t E r t E r t E r t D r tε ε= = = =

G G G GG G G G G G Gi i  (J/m3 or N/m2) 

( ) ( ) ( ) ( ) ( ) ( ) ( )21 1 1, , , , , , ,
2 2 2

magnetic magnetic
mag magu r t P r t B r t B r t B r t B r t H r t

μ μ
= = = =

G G G GG G G G G G Gi i  (J/m3 or N/m2) 
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Example:  The Magnetic Pressure Inside a Long Air-Core Solenoid 
 

For simplicity, assume steady free current freeI  flowing in windings of long air-core solenoid. 

From Ampere’s circuital law: ( ) ˆin
sol o freeB r nI zμ=
G G

.  
Note that: 

       ( ) ( ) ( )2 2 21 1 constant 0
2 2

inside inside in
sol sol sol o free

o

u r P r B r n Iμ
μ

= = = = >
G G G

 (i.e. is a positive quantity). 

 
Cross-Sectional View of Long Air-Core Solenoid: 

The magnetic pressure/magnetic energy density inside the solenoid pushes/exerts a radial-
outward force on the solenoid! 
 
The net magnetic force acting on the long air-core solenoid of radius R  and lengthA is: 
 

  ( ) 2 2 2 21ˆ ˆ ˆ2
2

net inside
sol sol sol o free o freeF P r R A n I R n I Rρ μ π ρ μ π ρ= = = ⋅ =
G G A A  (radially outward) 

 
Example:  The Magnetic Pressure Inside an Air-Core Toroid 
 

Similar to the long, air-core solenoid, except ( ) ˆ
2

tot freeinside o
toroid

N I
B r μ ϕ

π ρ
=

G G
 for a bρ≤ ≤ . 

Then: ( ) ( ) ( )
2 2

2
2 2

1 constant 0
2 8

Tot freeinside inside in o
toroid toroid toroid

o

N I
u r P r B r μ

μ π ρ
= = = ≠ >

G G G
 

 

@ inner radius: ( ) ( ) ( )
2 2

2
2 2

1
2 8

Tot freeinside inside in o
toroid toroid toroid

o

N I
u a P a B a

a
μρ ρ ρ

μ π
= = = = = =  

@ outer radius: ( ) ( ) ( )
2 2

2
2 2

1
2 8

Tot freeinside inside in o
toroid toroid toroid

o

N I
u b P b B b

b
μρ ρ ρ

μ π
= = = = = =  

( ) ˆin
solB r z
G G & points out of page: 

( ) ( ) ( )2 2 21 1 constant 0
2 2

in in in
sol sol sol o free

o

u r P r B r n Iμ
μ

= = = = >
G G G  

points radially outward 

( ) ( ) 0outside outside
mag magu r P r= =

G G  

Force at inner 
radius is radially 

inward 

Force at outer 
radius is radially 

outward 
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Example:  The Magnetic Pressure Associated with a Thin Cylindrical Current-Carrying Tube 
 

     A steady free sheet current ( ) ˆfree oK r K z=
G G  (Amperes/meter) flows down the surface of a 

long, very thin cylindrical conducting metal tube of radius a as shown in the figure below: 
 

 
The (total) free current flowing down the surface of the conducting tube is:  
 

  ( )
2

0
ˆ ˆ ˆ 2

K K K
free free o o o o oC C C

I K r d K z d K z ad z K a d aK I
π

ϕ ϕ π⊥ ⊥= = = = = ≡∫ ∫ ∫ ∫
G GG G i A i A i  

   {Since ˆd ad zϕ⊥ =
G
A  using the arc length formula " "S Rθ= } 

 

Then using Ampere’s law for B
G

: ( )
B

enclosed
o TotC

B r d Iμ=∫
GG G i Av  we see that: 

 
  For :  0enclosed

Tota Iρ < =   ⇒  ( ) 0B aρ < =
G

   

  ⇒  ( ) ( ) ( )21 0
2

tube tube
mag mag tube

o

u a P a B aρ ρ ρ
μ

< = < = < =  

 

  For :  enclosed
Tot oa I Iρ ≥ =  ⇒  ( ) ˆ

2
o oIB a μρ ϕ
π ρ

≥ =
G

  

  ⇒  ( ) ( ) ( )
2

2
2 2

1
2 8

tube tube o o
mag mag tube

o

Iu a P a B a μρ ρ ρ
μ π ρ

≥ = ≥ = ≥ =  

 
Thus {here}, since the magnetic field/magnetic energy density is only non-zero outside the long, 
thin conducting tube, the magnetic pressure creates a force on the tube which is radially inward. 
 
The net force acting on the thin conducting tube is: 
 

  ( ) ( )
2 2

2 2 2
8 4

tube tube o o o o
mag mag tube

I IF a P a A a
a a

μ μρ ρ π
π π

= = = ⋅ = ⋅ =
G

A A  
 
The net force per unit length acting on the thin conducting tube is: 
 

  ( ) ( ) 2

4

tube
mag o oF a Ia

a
ρ μρ

π
=

= ≡ =

G

A
F  

( ) ˆfree oK r K z=
G G  

ẑ  

a
KC  

BC  

n.b. A = length of 
the tube ( )aA �  

a 
ρ

( )B ρ
G

 


