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LECTURE NOTES 1 
 

CONSERVATION LAWS 
 
     Conservation of energy E, linear momentum pG , angular momentum L

G
and electric charge q 

are (all) of fundamental importance in electrodynamics (n.b. this is also true for all of the 
fundamental forces of nature, and thus is true for weak, strong, EM and gravitational charges  
{= mass, m for gravity}) – these are all absolutely conserved quantities (and separately so), both 
microscopically and hence macroscopically, as well as locally and globally (i.e. the entire universe)! 
 

Electric Charge Conservation 
 
Previously (i.e. last semester in P435), we discussed electric charge conservation: 

 
 

Electric charge contained in volume v  at time t: ( ) ( ),free freev
Q t r t dρ τ= ∫

G
 

Electric current flowing out of volume v   
through closed bounding surface S at time t:   ( ) ( ),free freeS

I t J r t da= ∫
G G Giv  

{Global} Conservation of electric charge:   ( ) ( ) ( ),free
free freeS

dQ t
I t J r t da

dt
= = − ∫

G G Giv  
 

However: 
( ) ( ),free free

v

dQ t r t
d

dt t
ρ

τ
∂

=
∂∫
G

.  Using the divergence theorem on RHS of above eqn. 
 

we obtain:  
( ) ( )

,
,free

freev v

r t
d J r t d

t
ρ

τ τ
∂

= − ∇
∂∫ ∫
G G G Gi  ⇐ Integral form of the Continuity Equation. 

 

     This relation must hold for any arbitrary volume v  associated with the enclosing surface S; 
hence the integrands in the above equation must be equal – and thus we obtain the Continuity 
Equation (in differential form) expressing {local} electric charge conservation : 
 

  
( ) ( )

,
,free

free

r t
J r t

t
ρ∂

= −∇
∂

G JG G Gi  ⇐ Differential form of the Continuity Equation. 
 
n.b. The continuity equation doesn’t explain / shed any light on why electric charge is conserved   
       – it just explains how electric charge is conserved!! 
 
 
 

Volume, v 
Enclosing 
surface, S 

ρfree 
freeJ
G

 
Surface area element, daG  
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Poynting’s Theorem and Poynting’s Vector S
JG

 
 
We know that the work required to assemble a static charge distribution is: 
 

( ) ( ) ( ) ( )( ) ( ) ( )( )2 1, , , , ,
2 2 2
o o

E v v v
W t E r t d E r t E r t d D r t E r t dε ετ τ τ= = =∫ ∫ ∫

G G G GG G G G Gi i   

 
Likewise, the work required to get electric currents flowing, e.g. against a back EMF is: 
 

( ) ( ) ( ) ( )( ) ( ) ( )( )21 1 1, , , , ,
2 2 2M v v v

o o

W t B r t d B r t B r t d H r t B r t dτ τ τ
μ μ

= = =∫ ∫ ∫
G G G GG G G G Gi i    

 
Thus the total energy, UEM stored in EM field(s) is (by energy conservation) = total work done:   
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 1, , ,
2EM tot EM E M o EMv v

o

U t W t W t W t W t E r t B r t d u r t dε τ τ
μ

⎛ ⎞
= = = + = + =⎜ ⎟

⎝ ⎠
∫ ∫

G G G
 

 

( ) ( ) ( ) ( )2 21 1, , ,
2EM EM ov v

o

U t u r t d E r t B r t dτ ε τ
μ

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
∫ ∫

G G G
 

 

Where EMu = total energy density:  ( ) ( ) ( )2 21 1, , ,
2EM o

o

u r t E r t B r tε
μ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

G G G
  (SI units: Joules/m3) 

 
     Suppose we have some charge density ( ),r tρ G  and current density ( ),J r t

G G  configuration(s) 

that at time t produce EM fields ( ),E r t
G G  and ( ),B r t

G G .  In the next instant dt, i.e. at time t + dt, the 
charge moves around.  What is the amount of infinitesimal work dW  done by EM forces acting 
on these charges / currents, in the time interval dt ? 
 
The Lorentz Force Law is: ( ) ( ) ( ) ( )( ), , , ,F r t q E r t v r t B r t= + ×

G G GG G G G G
 

 
The infinitesimal amount of work dW done on an electric charge q moving an infinitesimal 
distance d vdt=

G GA  in an infinitesimal time interval dt is:   
 

( ) ( )
. . to  !!!

 0

n b v

dW F d q E v B d qE vdt q v B vdt
⊥

=

= = + × = + ×

G
��G GG G G G GG G G Gi A i A i i
��	�


qE vdt=
G Gi    

 
But: ( ) ( ), ,free freeq r t r t dρ τ=

G G
 and: ( ) ( ) ( ), , ,free freer t v r t J r tρ =

GG G G G
 

 
 
 

(n.b. magnetic forces do no work!!) 

SI units: 
Joules 

SI units: 
Joules 

SI units: 
Joules 

SI units: 
Joules 

Linear Dielectric Media 

Linear Magnetic Media 
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The (instantaneous) rate at which (total) work is done on all of the electric charges within the 
volume v  is: 

         

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

, , , , , , ,

             , , ,      using :    , ,

             , , ,     but :    

freev v v

free free freev

free freev

dW t
F r t d r t dt F r t v r t q r t E r t v r t

dt
r t d E r t v r t q r t r t d

E r t r t v r t d J r

ρ τ ρ τ

ρ τ

= = =

= =

=

∫ ∫ ∫
∫
∫

GG G GG G G G G G G G Gi A i i
GG G G G G Gi

G G G G G Gi ( ) ( ) ( ), , ,freet r t v r tρ= G G G
 

 

∴     
( ) ( ) ( )( ) ( ), ,freev

dW t
E r t J r t d P t

dt
τ= =∫

G GG Gi  = instantaneous power (SI units: Watts) 
 

The quantity ( ) ( ), ,freeE r t J r t
G GG Gi  is the (instantaneous) work done per unit time, per unit volume – 

i.e. the instantaneous power delivered per unit volume (aka the power density).  
 

Thus:    ( ) ( ) ( ) ( )( ), ,freev

dW t
P t E r t J r t d

dt
τ= = ∫

G GG Gi   (SI units: Watts = Joules
sec

) 
 

We can express the quantity ( )freeE J
G G
i  in terms of the EM fields (alone) using the Ampere-

Maxwell law (in differential form) to eliminate freeJ
G

. 
 
Ampere’s Law with Maxwell’s Displacement Current correction term (in differential form):  
 

( ) ( ) ( ){ } ( ) ( ),
, , , ,o free D o free o o

E r t
B r t J r t J r t J r t

t
μ μ μ ε

∂
∇× = + = +

∂

G GJG G G G GG G G G
  

Thus:   ( ) ( )( ) ( ),1, ,free o
o

E r t
J r t B r t

t
ε

μ
∂

= ∇× −
∂

G GJGG GG G
 

Then:  
( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )

,1, , , ,

,1                         , , ,

free o
o

o
o

E r t
E r t J r t E r t B r t

t

E r t
E r t B r t E r t

t

ε
μ

ε
μ

⎧ ⎫∂⎪ ⎪= ∇× −⎨ ⎬∂⎪ ⎪⎩ ⎭
∂

= ∇× −
∂

G GJGG G G GG G G Gi i

G GJGG G GG G Gi i

 

 
Now: ( ) ( ) ( )E B B E E B∇ × = ∇× − ∇×

JG JG JGG G G G G G
i i i   Griffiths Product Rule #6 (see inside front cover) 

Thus: ( ) ( ) ( )E B B E E B∇× = ∇× −∇ ×
JG JG JGG G G G G G
i i i  

But Faraday’s Law (in differential form) is: ( ) ( ),
,

B r t
E r t

t
∂

∇× = −
∂

G GJG G G
 

∴        ( ) ( )BE B B E B
t

∂
∇× = − −∇ ×

∂

GJG JGG G G G G
i i i  

However: ( ) ( )21 1
2 2

BB B B B
t t t

∂ ∂ ∂
= =

∂ ∂ ∂

GG G G
i i   and similarly: ( ) ( )21 1

2 2
EE E E E
t t t

∂ ∂ ∂
= =

∂ ∂ ∂

GG G G
i i  
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Therefore: 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( )

2 2

2 2

1 1 1, , , , , ,
2 2

1 1 1                              , , , ,
2

free o
o

o
o o

E r t J r t B r t E r t B r t E r t
t t

E r t B r t E r t B r t
t

ε
μ

ε
μ μ

∂ ∂⎧ ⎫ ⎧ ⎫= − − −∇ × −⎨ ⎬ ⎨ ⎬∂ ∂⎩ ⎭ ⎩ ⎭

⎛ ⎞∂
= − + − ∇ ×⎜ ⎟∂ ⎝ ⎠

JGG G G GG G G G G Gi i

JG G GG G G Gi
 

Then: 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )2 2

, ,

1 1 1          , , , ,
2

freev

ov v
o o

dW t
P t E r t J r t d

dt
d E r t B r t d E r t B r t d
dt

τ

ε τ τ
μ μ

= =

⎛ ⎞
= − + − ∇ ×⎜ ⎟

⎝ ⎠

∫

∫ ∫

G GG Gi

JG G GG G G Gi
�����	����


 

 
        Apply the divergence theorem to this term, get: 

 
Poynting’s Theorem = “Work-Energy” Theorem of Electrodynamics: 
 

( ) ( ) ( ) ( ) ( ) ( )( )2 21 1 1, , , ,
2 ov S

o o

dW t dP t E r t B r t d E r t B r t da
dt dt

ε τ
μ μ

⎧ ⎫⎛ ⎞⎪ ⎪= = − + − ×⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∫ ∫

G GG G G G Giv  

 

Physically, ( ) ( )2 21 1, ,
2 ov

o

E r t B r t dε τ
μ

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∫

G G  = instantaneous energy stored in the EM fields 

( ) ( )( ),  and ,E r t B r t
G GG G  within the volume v  (SI units: Joules) 

Physically, the term ( ) ( )( )1 , ,
S

o

E r t B r t da
μ

− ×∫
G GG G Giv  = instantaneous rate at which EM energy is 

carried / flows out of the volume v  (carried microscopically by virtual (and/or real!) photons 
across the bounding/enclosing surface S  by the EM fields and E B

G G
 − i.e. this term represents/is 

the instantaneous EM power flowing across/through the bounding/enclosing surface S   
(SI units: Watts = Joules sec ). 
 

Poynting’s Theorem says that:   
The instantaneous work done on the electric charges in the volume v  by the EM force is equal to 
the decrease in the instantaneous energy stored in EM fields ( and E B

G G
), minus the energy that is 

instantaneously flowing out of/through the bounding surface S . 
 

We define Poynting’s vector: ( ) ( ) ( )( )1, , ,
o

S r t E r t B r t
μ

≡ ×
G G GG G G

 = energy / unit time / unit area, 

transported by the EM fields (  and E B
G G

) across/through the bounding surface S   
 

n.b. Poynting’s vector S
G

 has SI units of  Watts / m2 – i.e. an energy flux density. 
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Thus, we see that:   ( ) ( ) ( ) ( ),EM

S

dW t dU t
P t S r t da

dt dt
= = − − ∫

G Giv  
 

where ( ),S r t da
G G Gi  = instantaneous power (energy per unit time) crossing/passing through an 

infinitesimal surface area element ˆda nda=
G , as shown in the figure below: 

 
   n̂     n̂  = outward pointing unit normal  

vector (everywhere ⊥  to surface S ) 
 
 

           da     EM energy flowing out of volume v  
through enclosing surface S  

  ẑ  
 

ŷ  
ϑ  

x̂  
 Volume v  
 
 
 

 
Enclosing surface S  
 

Poynting’s vector: 1
o

S E Bμ≡ ×
G G G

 = Energy Flux Density (SI units: Watts / m2) 
 

     The work W done on the electrical charges contained within the volume v  will increase their 
mechanical energy – kinetic and/or potential energy. Define the (instantaneous) mechanical 
energy density ( ),mechu r tG  such that:  
 

( ) ( ) ( ),
, ,mech

free

du r t
E r t J r t

dt
=

G G GG Gi   Hence: ( ) ( )( ), ,mech
freev

dU E r t J r t d
dt

τ= ∫
G GG Gi  

 

Then: ( ) ( ) ( ) ( ) ( )( ), , ,mech
mech freev v

dW t dU dP t u r t d E r t J r t d
dt dt dt

τ τ= = = =∫ ∫
G GG G Gi  

 
However, the (instantaneous) EM field energy density is: 
 

( ) ( ) ( )2 21 1, , ,
2EM o

o

u r t E r t B r tε
μ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

G G G
  (Joules/m3) 

 
Then the (instantaneous) EM field energy contained within the volume v  is: 
  

( ) ( ),EM EMv
U t u r t dτ= ∫

G
 (Joules) 
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Thus, we see that:   ( ) ( )( ) ( ) ( )( ), , , ,mech EMv S v

d u r t u r t d S r t da S r t d
dt

τ τ+ = − = − ∇∫ ∫ ∫
G GGG G G G Gi iv  

 
The integrands of LHS vs. {far} RHS of the above equation must be equal for each/every space-
time point ( ),r tG  within the source volume v  associated with bounding surface S. Thus, we obtain: 

The Differential Form of Poynting’s Theorem:  ( ) ( ) ( ), , ,mech EMu r t u r t S r t
t
∂

+ = −∇⎡ ⎤⎣ ⎦∂

JG GG G Gi  
 
Poynting’s theorem  = Energy Conservation “book-keeping” equation,  c.f. with the  
Continuity equation = Charge Conservation “book-keeping” equation: 
 

The Differential Form of the Continuity Equation:  ( ) ( ), ,r t J r t
t
ρ∂

= −∇
∂

JG GG Gi  

Since ( ) ( ) ( ),
, ,mech

free

u r t
E r t J r t

t
∂

=
∂

G G GG Gi , we can write the differential form of Poynting’s theorem as: 

 ( ) ( ) ( ) ( ),
, , ,EM

free

u r t
E r t J r t S r t

t
∂

+ = −∇
∂

G JG GG GG G Gi i  

Or:        ( ) ( ) ( ) ( ),
, , , 0EM

free

u r t
E r t J r t S r t

t
∂

+ +∇ =
∂

G JG GG GG G Gi i  
 

     Poynting’s Theorem / Poynting’s vector ( ),S r t
G G  represents the (instantaneous) flow of EM 

energy in exactly the same/analogous way that the free current density ( ),freeJ r t
G G  represents the 

(instantaneous) flow of electric charge. 
 
In the presence of linear dielectric / linear magnetic media, if one is ONLY interested in FREE 
charges and FREE currents, then: 
 

      ( ) ( ) ( ) ( ) ( )( )1, , , , ,
2

free
EMu r t E r t D r t B r t H r t= +

G G G GG G G G Gi i        ( ) ( ), ,D r t E r tε=
G GG G

     ( )1o eε ε χ= +  

         ( ) ( ) ( ) ( ) ( )1, , , , ,S r t E r t B r t E r t H r tμ= × = ×
G G G G GG G G G G

      ( ) ( ), ,B r t H r tμ=
G GG G

     ( )1o mμ μ χ= +  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Using the 
Divergence 

theorem 
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Griffiths Example 8.1: 
Poynting’s vector S

JG
, power dissipation and Joule heating of a long, current-carrying wire. 

 
     When a steady, free electrical current I (≠ function of time, t) flows down a long wire of 
length L a�  (a = radius of wire) and resistance ( )2  CR L aπ σ= , the electrical energy is 
dissipated as heat (i.e. thermal energy) in the wire. 
 

Electrical power dissipation: 2P V I I R= Δ ⋅ =  
 I 

        
Long wire of 

    resistance R 
           
             
  I 
        Battery                 L a�  
(or power supply)          V1   VΔ    V2 
 

Free Current Density:       ( ) ( )2 2ˆ   Amps mfree CJ E I a zσ π= =
G G

   

Longitudinal Electric Field:   ( )ˆ   Volts/mfree

C

J VE z
Lσ
Δ

= =

G
G

 

Potential Difference:  ( ) ( )1 2  0   VoltsV V VΔ = − >  
 
n.b. The {steady} free current density freeJ

G
( 2

C E I aσ π= =
G

) and the longitudinal electric field 

( ) ˆE V L z= Δ
G

 are uniform across (and along) the long wire, everywhere within the volume of 

the wire ( )aρ < . ⇒Thus, this particular problem has no time-dependence… 

From Ampere’s Law:       ( ) 2
ˆ

2
inside o IB a

a
μ ρρ ϕ
π

< =
G

   2 2x yρ = +  in cylindrical coordinates 

( ){ }o enclC
B r d Iμ=∫

GG G i Av      ( ) ˆ
2

outside o IB a μρ ϕ
πρ

≥ =
G

 (Tesla) 

 
n.b. for simplicity’s sake, we have approximated the finite length wire by an ∞-length wire.   
This will have unphysical, but understandable consequences later on…. 
 

Poynting’s Vector:  ( ) ( ) ( )1

o

S r E r B r
μ

= ×
G G GG G G

    ( )B ρ
G

 

( ) ( ) ( )
ˆ

2 2
ˆ ˆˆ

2 2
inside V I V IS a z

a L a L

ρ
ρ ρρ ϕ ρ

π π

=−

Δ ⋅ Δ ⋅
< = × = −


��G
 

 

Poynting’s vector S
G

 oriented radially inward for aρ < .    0            aρ =         ρ  
 

( ) 0outsideS aρ > =
G

 {because ( ) 0E aρ > =
G

!!!} 

I

( )E ρ
G

 

ρ

V
L
Δ  

aρ =0  

( )inB aρ <
G

varies 
linearly with ρ  

( )outB aρ ≥
G

 
varies as 1 ρ  

2
oI
a

μ
π

 

ˆE z+
G
&

ˆB ϕ+
G
&

ˆS ρ−
G
&

1
o

S E Bμ≡ ×
G G G

a
ẑ

VΔ
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Note the following result for Poynting’s vector evaluated at the surface of the long wire, i.e. @ aρ = : 
 

    ( ) ( )ˆ
2

inside V IS a
aL

ρ ρ
π
Δ ⋅

= = −
G

 (SI units: Watts / m2)               
 

Since ( ) 0outsideE aρ ≥ =
G

: ( ) 0outsideS aρ = =
G

  ⇒ ∃  a discontinuity in S
G

 at aρ = !!! 
 

( )S ρ
JG

             
2

V I
aLπ

Δ ⋅         ( ) ( )2 2
ˆ ˆ

2 2long
wire

V I V IS a
a L a L
ρ ρρ ρ ρ

π π
Δ ⋅ Δ ⋅

≤ = − = −
G

 

 
 

 
    0     aρ =     ρ  
 
Now let us use the integral version of Poynting’s theorem to determine the EM energy flowing 
through an imaginary Gaussian cylindrical surface S of radius aρ <  and length H L� : 
 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

, , ,

        , , ,

mech
mech freev v

EM
EMS v v

dW t dU dP t u r t d E r t J r t d
dt dt dt

dU t dS r t da u r t d S r t d
dt dt

τ τ

τ τ

= = = =

= − − = − − ∇

∫ ∫

∫ ∫ ∫

G GG G Gi

G GGG G G Gi iv
 

 

Since this is a static/steady-state problem, we assume that ( ) 0EMdU t dt = . 

2da  
 

             
                          x̂  
        3 3ˆˆ, ,z n da+

G  
        Gaussian Surface S       ẑ   
              ϑ  

1da                H     3da       ŷ  
 V1         VΔ    V2 
 
Then for an imaginary Gaussian surface taken inside the long wire ( aρ < ): 

   0

1wire wire LHSS endcap
P S da S da

=

= − = −∫ ∫
G GG Gi iv

( ) 2 21 1

   0

2 3

ˆˆ

cyl RHS
surface endcap

da dada da z

S da S da

ρ

=

== −

− −∫ ∫
GG

G GG Gi i
��	�
���	��


( )3 3 ˆda da z= +
G

��	�

 

( )ˆS ρ−
G
&  is ⊥  to ( )1 ˆda z−G & ;   ( )ˆS ρ−

G
&  is anti-&  to ( )2 ˆda ρ+G & ; ( )ˆS ρ−

G
&  is ⊥  to ( )3 ˆda z+G &  

 
Only surviving term is: 
 

( ) ( ) ( )
222

2 2 2 202
ˆ ˆ 2

2 2

Hz

wire cyl Hzsurface

V I V IP S da d dz H V I
a H a H a

ϕ π

ϕ

ρ ρρ ρ ρ ρ ϕ ρ ρ πρ
π π

=+ =

=− =

⎛ ⎞Δ ⋅ Δ ⋅⎛ ⎞ ⎛ ⎞= − = − − = = Δ ⋅ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫ ∫
G Gi  

ρa 

1 1ˆˆ, ,z n da−
G

 

2 2ˆ ˆ, ,n daρ+ G
 

ˆS ρ−
G
&  
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Thus: ( )
2

wireP V I
a
ρρ ⎛ ⎞= Δ ⋅ ⎜ ⎟

⎝ ⎠
  (Watts)           ( )wireP ρ           

2

V I
a
ρ⎛ ⎞Δ ⋅ ⎜ ⎟

⎝ ⎠
 

 

And: ( )wireP a V Iρ = = Δ ⋅      (Watts) 
 
          0      aρ =        ρ  
 
     This EM energy is dissipated as heat (thermal energy) in the wire – also known as Joule 
heating of the wire. Since ( ) 2 ,wireP ρ ρ∝ note also that the Joule heating of the wire occurs 
primarily at/on the outermost portions of the wire. 
 
From Ohm’s Law:   wireV I RΔ = ⋅  where wireR = resistance of wire = wire wire wire wire

C CL A L Aρ σ⊥ ⊥=  
 

   ( )
2

2
wire wireP I R

a
ρρ ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
  

   ( ) 2
wire wireP a I Rρ = = −    

      
 
 
     Now let us repeat the use of the integral version of Poynting’s theorem to determine the EM 
energy flowing through an imaginary Gaussian cylindrical surface S of radius aρ ≥  and 
length H L� .  
 

     We expect that we should get the same answer as that obtained above, for the aρ <  Gaussian 
cylindrical surface. However, for aρ ≥ , ( ) 0outsideS aρ > =

G
, because ( ) 0outsideE aρ > =

G
!!! 

 

Thus, for a Gaussian cylindrical surface S taken with aρ ≥  we obtain: 0wire wireS
P S da= − =∫

G Giv !!!   
 

What??? How can we get two different wireP  answers for aρ <  vs. aρ ≥ ??? This can’t be!!! 
 

⇒ We need to re-assess our assumptions here… 
 
It turns out that we have neglected an important, and somewhat subtle point...  
 

The longitudinal electric field ( ) ˆE V L z= Δ
G

 formally/mathematically has a discontinuity at aρ = : 
 
 
 
 
 
 
 
 

i.e. The tangential ( ẑ ) component of E
G

 is discontinuous at aρ = . 

Power losses in wire show up / result 
in Joule heating of wire. Electrical 
energy is converted into heat 
(thermal) energy – At the microscopic 
level, this is due to kinetic energy 
losses associated with the ensemble of 
individual drift/conduction/free 
electron scatterings inside the wire!

Joule Heating 
of current-

carrying wire 

( )E ρ
G

 
2

free

C C

J I a V
L

π
σ σ

Δ
= =

G

 

ρ
aρ =0  

0  
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Formally/mathematically, we need to write the longitudinal electric field for this situation as: 
 

( ) ( ) ( ) ˆ1 1freefree

C C

JJ
E a a zρ ρ ρ

σ σ
= −Θ − = −Θ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

GG
G

 

where the Heaviside step function is defined as: ( )
0  for  
1  for  

a
a

a
ρ

ρ
ρ
<⎧

Θ − ≡ ⎨ ≥⎩
 as shown below: 

 
 
 
 
 
 
 

Furthermore, note that: ( ) ( )
x

x t dtδ
−∞

Θ = ∫   and that: ( ) ( )d x x
dx

δΘ = ,  

where ( )xδ  is the Dirac delta function. 
 
Now, in the process of deriving Poynting’s theorem (above), we used Griffith’s Product Rule # 6  
to obtain ( ) ( ) ( )E B B E E B∇× = ∇× −∇ ×

JG JG JGG G G G G G
i i i , and then used Faraday’s law (in differential form) 

E B t∇× = −∂ ∂
JG G G

 and then used ( ) ( )21 1
2 2

BB B B B
t t t

∂ ∂ ∂
= =

∂ ∂ ∂

GG G G
i i  and ( ) ( )21 1

2 2
EE E E E
t t t

∂ ∂ ∂
= =

∂ ∂ ∂

GG G G
i i  

with ( )2 21 1
2 oEM ou E Bμε= +  to finally obtain: 

 

( ) ( )

( ) ( )        ,

mech
mech freev v

EM
EMS v v

dW t dU dP t u d E J d
dt dt dt

dU t dS da u d S r t d
dt dt

τ τ

τ τ

= = = =

= − − = − − ∇

∫ ∫

∫ ∫ ∫

G G
i

G GGG Gi iv
 

 

So here, in this specific problem, what is E∇×
JG G

???  
 
In cylindrical coordinates, the only non-vanishing term is:  
 

( ) ( ) ( )ˆ ˆ ˆ ˆ1free free free
z

C C C

J J Ja BE E a a
t

ρ
ϕ ρ ϕ ϕ δ ρ ϕ

ρ ρ σ σ ρ σ

⎧ ⎫ ∂Θ −∂ ∂ ∂⎪ ⎪∇× = − = − −Θ − = + = − = −⎡ ⎤⎨ ⎬⎣ ⎦∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

G G G GJG G

 

In other words:  

         0           for  

ˆ  for  

         0            for  

free

C

a

JBE a
t

a

ρ

ϕ ρ
σ

ρ

<⎧
⎪

⎧ ⎫⎪∂ ⎪ ⎪∇× = − = ∞⋅ =⎨ ⎨ ⎬∂ ⎪ ⎪ ⎪⎩ ⎭
⎪

>⎩

GGJG G
 

 
 

( )aρΘ −  

ρ
aρ =0  

0  

1
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Thus, {only} for aρ >  integration volumes, we {very definitely} need to {explicitly} include 
the δ -function such that its contribution to the integral at aρ =  is properly taken into account! 
 

( ) ( )

( )2 21 1
2

2 21 1
2 2

1

1

  

        

        

        

        

o

o

o

o

EMv S

ov S

o v v S

o v v S

o v

dW t dP t u d S da
dt dt
d E B d S da
dt

d dE d B d S da
dt dt
dE dBE d B d S da
dt dt
dEE d B
dt

μ

μ

μ

μ

τ

ε τ

ε τ τ

ε τ τ

ε τ

= = − −

= − + −

= − − −

= − − −

= − + ∇

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫

G Gi

G Gi

G Gi
G G GG G Gi i i
GG G

i i

v

v

v

v

( ) ˆ        

v S

free
o v v S

o C

Ed S da

JdEE d B a d S da
dt

τ

ε τ δ ρ ϕ τ
μ σ

× −

= − + − −

∫ ∫

∫ ∫ ∫

JG GG Gi
GG GG G Gi i i

v

v

 

 

For this specific problem: 0dE dt =
G

 and for aρ > , ( ) ( ) ( )1

0

0
o

S a E a B aμρ ρ ρ
=

> = > × > =
G G G

��	�
 . 

Thus for aρ > : 
 

  ( ) ( ) ( )ˆ 2 2free free

v
o C o C

J J
P t B a d aL B a aδ ρ ϕ τ π ρ π

μ σ μ σ
= − = = =∫
G G

G G
i free

o

J
L
μ

G
o

C

μ

σ 2
I
aπ

free

C

J
I L

σ
= ⋅

G

 

 

But: ˆfree

C

J VE z
Lσ
Δ

= =

G
G

, and thus, finally we obtain, for aρ > : ( ) VP t
L
Δ

= I L⋅ V I= Δ ⋅ ,  

which agrees precisely with that obtained earlier for aρ < : ( )P t V I= Δ ⋅ !!! 
 
For an E&M problem that nominally has a steady-state current I present, it is indeed curious that 

( ) ˆfree

C

J BE a
t

δ ρ ϕ
σ

∂
∇× = − = −

∂

G GJG G
 is non-zero, and in fact singular {at aρ = }! The singularity is a 

consequence of the discontinuity in E
G

 on the aρ =  surface of the long, current-carrying wire.  
 
     The relativistic nature of the 4-dimensional space-time world that we live in is encrypted into 
Faraday’s law; here is one example where we come face-to-face with it! 
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     Let’s pursue the physics of this problem a bit further – and calculate the magnetic vector 
potential ( )A r

G G  inside ( )aρ <  and outside ( )aρ >  the long wire… 

In general, we know/anticipate that {here}: ( ) ( ) ˆA r J r z+
G GG G& &  since: ( ) ( )

4
o

v

J r
A r dμ τ

π ′

′
′= ∫

G GG G
r

 

where r r′= ≡ −
G GG

r r .  
 

     We don’t need to carry out the above integral to obtain ( )A r
G G  − a simpler method is to use 

( ) ( )B r A r= ∇×
GG GG G  in cylindrical coordinates. Since ( ) ( ) ˆzA r A r z=

G G G  (only, here), the only non-

zero contribution to this curl is: ( ) ( ) ˆzA r
B r ϕ

ρ
∂

= −
∂

GG G . 

For aρ < : ( ) ( )
2

1ˆ ˆ ˆ          
2 2

zo
o

A aIB a J
a

ρμ ρρ ϕ μ ρϕ ϕ
π ρ

∂ <
< = = = −

∂

G
    ⇒   ( ) 1 ˆ

2 o

A a
J z

ρ
μ ρ

ρ
∂ <

= −
∂

G
 

For aρ ≥ : ( ) ( )21 1ˆ ˆ ˆ  
2 2

zo
o

A aIB a Ja
ρμρ ϕ μ ϕ ϕ

πρ ρ ρ
∂ ≥⎛ ⎞

≥ = = = −⎜ ⎟ ∂⎝ ⎠

G
    ⇒   ( ) 21 1 ˆ

2 o

A a
Ja z

ρ
μ

ρ ρ
∂ ≥ ⎛ ⎞

= − ⎜ ⎟∂ ⎝ ⎠

G
 

 

     Using aρ =  as our reference point for carrying out the integration {and noting that as in the 
case for the scalar potential ( )V rG , we similarly have the freedom to e.g. add any constant vector 

to ( )A r
G G }: 

  ( ) ( ) ( )2 2 2 2
1 1

1 1 1 1ˆ ˆ ˆ           
2 2 2 4o o oA a J d z J c z J c zρ μ ρ ρ μ ρ μ ρ< = − = − − = − −∫

G
 

  ( ) ( )2 2
2

1 1 1ˆ ˆ ln
2 2o oA a Ja d z Ja c zρ μ ρ μ ρ

ρ
⎛ ⎞

≥ = − = −⎜ ⎟
⎝ ⎠
∫

G
 

where 1c  and 2c  are constants of the integration(s).  
 

Physically, we demand that ( )A ρ
G

 be continuous at aρ = , thus we must have: 
 

( ) ( ) ( )2 2 2
1 2

1 1ˆ ˆln
4 2o oA a J a c z Ja a c zρ μ μ= = − − = −

G
 

 

Obviously, the only way that this relation can be satisfied is if 1 2c c a= = ± , because then ( ) 0A aρ = =
G

 

{n.b. ( ) 0ln 1 ln 0e= = }.  
 

     Additionally, we demand that ( ) ( ) ˆA r J r z+
G GG G& & , hence the physically acceptable solution is 

1 2c c a= = − , and thus the solutions for the magnetic vector potential ( )A r
G G for this problem are: 

 

( ) ( ) ( )2 2 2 21 1ˆ ˆ  
4 4o oA a J a z J a zρ μ ρ μ ρ< = − − = + −

G
 

( ) ( ) ( )2 21 1ˆ ˆln ln
2 2o oA a Ja a z Ja a zρ μ ρ μ ρ≥ = − − = +

G
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     ( )A ρ
G

 

 
 
            
 
      0       aρ =         ρ  
 
 
 
 
 

     Note that: ( ) ( )1 ˆln
2 oA a J a zρ μ ρ≥ =

G
 has a {logarithmic} divergence as ρ →∞ , whereas:  

( ) ( ) 21 1 ˆ 0
2 oB A Jaρ ρ μ ϕ

ρ
⎛ ⎞

→∞ = ∇× →∞ = →⎜ ⎟
⎝ ⎠

GG
 

 
     This is merely a consequence associated with the {calculationally-simplifying} choice that we 
made at the beginning of this problem, that of an infinitely long wire – which is unphysical.  
It takes infinite EM energy to power an infinitely long wire… For a finite length wire carrying a 
steady current I, the magnetic vector potential is mathematically well-behaved {but has a 
correspondingly more complicated mathematical expression}. 
 

     It is easy to show that both of the solutions for the magnetic vector potential ( )  A aρ <
≥

G
 satisfy 

the Coulomb gauge condition: ( ) 0A r∇ =
GG Gi , by noting that since ( ) ( ) ˆ   zA a A a zρ ρ< <

≥ ≥=
G

 are 

functions only of ρ , then in cylindrical coordinates: ( ) ( )   0zA a A a zρ ρ< <
≥ ≥∇ = ∂ ∂ =

GG
i . 

 
     Let us now investigate the ramifications of the non-zero curl result associated with Faraday’s 
law at aρ =  for the A

G
-field at that radial location:  

 

( ) ˆfree

C

J BE a
t

δ ρ ϕ
σ

∂
∇× = − = −

∂

G GJG G
 

 

Since ˆzAB A ϕ
ρ

∂
= ∇× = −

∂

GG G
 {here, in this problem}, then:  

( )
( )ˆ ˆfreez

C

A JAB a
t t t

ϕ δ ρ ϕ
ρ σ

∂ ∇× ⎛ ⎞∂∂ ∂
= = − = − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

GG GG
    or:    ( )freez

C

JA a
t

δ ρ
ρ σ

⎛ ⎞∂∂
= −⎜ ⎟∂ ∂⎝ ⎠

G

 

 

Then: ( )
( )

( )
 

free freez

C C
a

J JA a d a
t

ρ

δ ρ ρ ρ
σ σ

≡Θ −

∂
= − = Θ −

∂ ∫
G G

���	��

 or: ( ) ˆfree

C

JA a z
t

ρ
σ

∂
= Θ −

∂

GG
. 

 

( )inA aρ <
G

 
varies as 1−(ρ/a)2

( )outA aρ ≥
G

 
varies as ln(ρ/a)

( ) 21
40 oA Jaμ=

G
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     Now, recall that the {correct!} electric field for this problem is: 
 

( ) ( ) ˆ1free

C

J
E a zρ ρ

σ
= −Θ −⎡ ⎤⎣ ⎦

G
G

 

 
However, in general, the electric field is defined in terms of the scalar and vector potentials as: 
 

( ) ( ) ( ),
, ,

A r t
E r t V r t

t
∂

= −∇ −
∂

G GG GG G
 

 

Since {here, in this problem}: ( ) ˆfree

C

JA a z
t

ρ
σ

∂
= Θ −

∂

GG
,  we see that: ˆfree

C

J
V z

σ
−∇ =

G
G

  

 

and hence {in cylindrical coordinates} that: ( ) free

C

J
V z z

σ
= −

G

 , then:  

 

( )ˆ ˆ ˆfree free free

C C C

J J J
V z z z z z

z zσ σ σ

⎛ ⎞∂ ∂⎜ ⎟−∇ = + = =
⎜ ⎟∂ ∂⎝ ⎠

G G G
G

. 

 

Note that the {static} scalar field ( ) free

C

J
V z z

σ
= −

G

 pervades all space, as does ( ) ˆ  A a zρ <
≥ +

G
& . 

 
Explicitly, due to the behavior of the Heaviside step function ( )aρΘ − we see that the electric 

field contribution ( ) ˆfree

C

JA a z
t

ρ
σ

∂
= Θ −

∂

GG
 is: 

    0       for  

ˆ  for  free

C

a
A

J
t z a

ρ

ρ
σ

<⎧
⎪∂

= ⎨∂ ≥⎪
⎩

G
G

.  

 
Explicitly writing out the electric field in this manner, we see that: 
 

( ) ( ) ( ) ˆ ˆ      0         for  
  

    

ˆ ˆ  0           for  

free free

C C

free free

C C

J J
z z a

A a
E a V a

t J J
z z a

ρ
ρ σ σ

ρ ρ

ρ
σ σ

<
≥< <

≥ ≥

⎧
⎪ + = <

∂ ⎪
= −∇ − = ⎨∂ ⎪

− = ≥⎪
⎩

G G
G

G G
G G  

 

     Thus, for aρ ≥  we see that the ( )A a tρ−∂ ≥ ∂
G

 contribution to the E
G

-field outside the wire 

{which arises from the non-zero E∇×
G G

of Faraday’s law at aρ = } exactly cancels the 

( )V aρ−∇ ≥
G

contribution to the E
G

-field outside the wire, everywhere in space outside the wire, 

despite the fact that ( )A aρ ≥
G

varies logarithmically outside the wire!!!! 
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     The long, current-carrying wire can thus also be equivalently viewed as an electric flux tube: 
 

( ) ( ) ˆ1E free C CS S
E da J a z da Iσ ρ σΦ = = −Θ − =⎡ ⎤⎣ ⎦∫ ∫
G GG Gi i  

 

     The electric field E
G

 is confined within the tube ( = the long, current carrying wire) by the 
( )A a tρ−∂ ≥ ∂
G

 contribution arising from the Faraday’s law effect on the aρ =  boundary of the 
flux tube, due to the {matter geometry-induced} discontinuity in the electric field at aρ = ! 
 

     The ( ) ( ) ˆfree CE J a B tσ δ ρ ϕ∇× = − = −∂ ∂
JG G G G

 effect at aρ =  also predicts a non-zero “induced” EMF 

in a loop/coil of wire: m tε = −∂Φ ∂ . The magnetic flux through a loop of wire is: 
loop

m C S
A d B da B A⊥Φ = = ⋅∫ ∫
G G Gi A i �v  where loopA⊥  is the cross-sectional area of a loop of wire {whose plane 

is perpendicular to the magnetic field at that point}. Note further that the width, w of the coil only needs 
to be large enough for the coil to accept the B t∂ ∂

G
 contribution from the δ-function at aρ = . Then, here 

in this problem, since the magnetic field at the surface of the wire is oriented in the ϕ̂ -direction, and: 
 

( ) ˆfree

C

JB a
t

δ ρ ϕ
σ

∂
= − −

∂

GG
, then we see that: ( )

looploop
freem

C

J AB A a
t t

ε δ ρ
σ

⊥⊥
⋅∂Φ ∂ ⋅

= − = − = −
∂ ∂

GG
 

 
     For a real wire, e.g. made of copper, how large will this EMF be – is it something e.g. that we 
could actually measure/observe in the laboratory with garden-variety/every-day lab equipment??? 
 
     A number 8 AWG (American Wire Gauge) copper wire has a diameter D = 0.1285” = 0.00162 m  
(~ 1/8” = 0.125”) and can easily carry I = 10 Amps of current through it.  
 
The current density in an 8 AWG copper wire carrying a steady current of  I = 10 Amps is: 
 

( )
( )6 2

8 22 2

4 4 10 4.8 10   
0.001632

AWG
I IJ Amps m
a Dπ π π

⋅ ⋅
= = = ×�  

 

The electrical conductivity of {pure} copper is:       ( )75.96 10   Cu
C Siemens mσ = × . 

 
     If our “long” 1/8” diameter copper wire is 1 L m= long, and if we can e.g. make a loop of ultra-
fine gauge wire that penetrates the surface of the wire and runs parallel to the surface, then if we 
approximate the radial delta function ( )aδ ρ −  at aρ =  as ~ a narrow Gaussian of width 

9~ 10 Å 1 10w nm m−= =  (i.e. ~ the order of the inter-atomic distance/spacing of atoms in the copper 
lattice {3.61 Å }), noting also that the delta function ( )aδ ρ −  has physical SI units of inverse length 
(i.e. m-1) and, neglecting the sign of the EMF, an estimate of the magnitude of the “induced” EMF is: 
 

( )8 8
loop

AWG AWG
Cu Cu

C

J A J L waε δ ρ
σ

⊥⋅ ⋅ ⋅
= − � Cu

C

w
σ

⋅
( )

( )

6 2
8

7

4.8 10
1 80 !!!

6 10
AWG
Cu
C

Amps mJ L m mV
Siemens mσ

⎛ ⎞×⎛ ⎞
⎜ ⎟= ⋅ ⋅⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

� �  

     
 This size of an EMF is easily measureable with a modern DVM…  
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     Using Ohm’s Law: V I R= ⋅ , note that the voltage drop dropV  across a 1 L m=  length of  
8 AWG copper wire with 10 I Amps=  of current flowing thru it is: 
 

1
1 8

Cu
m wireC

drop m AWGwire

LV I R I J A
A
ρ

⊥
⊥

= ⋅ = ⋅ = ⋅( ) Cu wire
C

L
Aσ ⊥

⋅ 8 !!!AWG
CuCu

C

J L ε
σ

= ⋅ =  

 

     In other words, the “induced” EMF, ( ) ( )loop
free CJ A aε σ δ ρ⊥= ⋅ −
G

 in the one-turn loop coil of 

length L {oriented as described above} is precisely equal to the voltage drop ( )drop free CV J Lσ= ⋅
G

 

along a length L of a portion of the long wire with steady current I flowing through it, even though 
the 1-turn loop coil is completely electrically isolated from the current-carrying wire!!! 
 

     This can be easily understood... Using Stoke’s theorem, the surface integral of E∇×
G G

 can be 
converted to a line integral of E

G
 along a closed contour C bounding the surface of integration S ; 

likewise, a surface integral of B t A t∂ ∂ = ∇×∂ ∂
GG G

 can be converted to a line integral of A t∂ ∂
G

 along 
a closed contour C bounding the surface of integration S: 
 

( ) m
S C S S C

B A AE da E d da da d
t t t t

ε
⎛ ⎞∂Φ ∂ ∂ ∂

= ∇× = = − = − = − ∇× = −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∫ ∫ ∫ ∫ ∫

G GGG GG G G GG G Gi i A i i i Av v  

 

n.b.:  0
C

V d−∇ ≡∫
GG

i Av  
 
     Then for any closed contour C associated with the surface S that encloses the Faraday law 

E∇×
G G

 δ-function singularity at aρ = , e.g. as shown in the figure below: 
 

 
 

the “induced” EMF ε  can thus also be calculated from the line integral 
C

E d∫
GG

i A  taken around 

the closed contour C. From the above discussion(s), the electric field inside (outside) the long 
current-carrying wire is in CE J σ=

G G ( )0outE =
G

, respectively {n.b. ⇒ tangential E
G

 is 

discontinuous across the boundary of a {volume} current-carrying conductor!}. Then: 

ẑ  

1 2d →

G
A  1

0outE =
G

 

a  
2

3  4
A

w

I

ˆinE J z
G G
& &  

3 4d →

G
A  

in CE J σ=
G G

 

coilA w⊥ = ⋅A  
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1 2

2 1 2 2 3
1 2 2 31

C

inC
J E V

E d E d E d
σ

ε
→

→ →
→ →

= = =Δ

= = +∫ ∫
A A

G G GG G G
i A i A i A��	�


3 3 4
3 42

 0

outsideE d→
→

≡

+∫
GG

i A
���	��


4 4 1
4 13

 0

E d→
→

≡

+∫
GG

i A
���	��


1

1 24
 0

E V →

≡

= ⋅ = Δ∫ A
��	�


 

 

     The presence of a non-zero Faraday’s law ( ) ( ) ˆfree CE B t J aσ δ ρ ϕ∇× = −∂ ∂ = −
G G G G

 term at the surface 

of the long current-carrying wire implies that the “induced” EMF ( ) ( )loop
free CJ A aε σ δ ρ⊥= ⋅ −
G

 can also 

be viewed as arising from the mutual inductance ( ) M Henrys associated with the long wire and the coil 
{oriented as described above}, and a non-zero I t∂ ∂ :  
 

( )
looploop

freem

C

J AB A IM a
t t t

ε δ ρ
σ

⊥⊥
⋅∂Φ ∂ ⋅ ∂

= − = − = − = −
∂ ∂ ∂

GG
 

 

     We can obtain a relation between B t∂ ∂
G

 and I t∂ ∂  using the integral form of Ampere’s law:  

o enclC
B d Iμ=∫

GG
i Av . Taking the partial derivative of both sides of this equation with respect to time: 

( ) encl
oC C

IBB d d
t t t

μ ∂∂ ∂
= =

∂ ∂ ∂∫ ∫
GG GG

i A i Av v  
 
     The contour of integration C needs to be taken just outside the surface of the long wire, along 
the ϕ̂ -direction, since ˆB ϕ

G
&  at aρ = , i.e. ˆd ϕ

G
A &  in order to include the non-zero Faraday’s law 

effect at the surface of the long wire.  
 

Then:  ( )
2

freeo

C

JB I a
t a t

μ δ ρ
π σ

∂ ∂⎛ ⎞= = − −⎜ ⎟∂ ∂⎝ ⎠

G

   or:   ( )2 2 free

o o C

JI a B a a
t t

π π δ ρ
μ μ σ

⎛ ⎞ ⎛ ⎞∂ ∂
= = − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

G

 

 

Then:  ( )
looploop

freem

C

J AB A IM a
t t t

ε δ ρ
σ

⊥⊥
⋅∂Φ ∂ ⋅ ∂

= − = − = − = −
∂ ∂ ∂

GG
 

Solving for the mutual inductance, we obtain a rather simple result: ( )  
2

loop

o
AM Henrys

a
μ

π
⊥⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
     Note that the mutual inductance, M involves the magnetic permeability of free space 

( )74 10o Henrys mμ π −= ×  {n.b. which has SI units of inductance/length} and geometrical 

aspects {only!} of the wire (its radius, a) and the cross-sectional area of the loop, loopA⊥ . 
 

     What is astonishing {and unique} r.e. the “induced” Faraday’s law EMF ( ) ( )loop
free CJ A aε σ δ ρ⊥= ⋅ −
G

 

associated with a long, steady current-carrying wire is that “normal” induced EMF’s only occur in electrical 
circuits that operate at non-zero frequencies, i.e. 0 f Hz> . However, here, in this problem, we have an 
example of a DC  induced EMF – i.e. an induced EMF that occurs at 0 f Hz≡ , arising from the non-zero 

Faraday’s law effect ( ) ( ) ˆfree CE B t J aσ δ ρ ϕ∇× = −∂ ∂ = −
G G G G

 due to the longitudinal E
G

-field discontinuity 

at the surface ( )aρ =  of a long, steady current-carrying wire!!! 
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     Instead of using a long wire to carry a steady current I to observe this effect, one might instead 
consider using e.g. a long, hollow steady current-carrying pipe of inner (outer) radius a, (b) respectively. 
Following the above methodology, one can easily show that for such a long, hollow current-carrying 
pipe, two opposing non-zero Faraday law E∇×

G G
 radial δ-function contributions occur – one located at 

the aρ =  inner surface, and the other located at the bρ =  outer surface of the long hollow current-
carrying pipe: 

( ) ( ) ( ) ˆfree CE B t J a bσ δ ρ δ ρ ϕ∇× = −∂ ∂ = − − − −⎡ ⎤⎣ ⎦
G G G G

 

The E
G

-field is: 

( ) ( ) ( ) ˆ1free CE V A t J a b zσ ρ ρ⎡ ⎤= −∇ −∂ ∂ = +Θ − −Θ −⎣ ⎦
GG G G

 
 

where: ( )
1  for  
0  for  

a
a

a
ρ

ρ
ρ
<⎧

Θ − ≡ ⎨ ≥⎩
 is the complement of the Heaviside step function, such that: 

( ) ( )d x dx xδΘ = −  and: ( ) ( )
x

x t dtδ
−∞

Θ = −∫  where: ( )xδ is the Dirac delta-function. 
 

     Hence, a 1-turn coil {oriented as described above} enclosing the aρ =  inner surface .and. 
the bρ = outer surface of a current-carrying hollow pipe will have a “null” induced EMF, i.e. 

0ε =  due to the wire loop simultaneously enclosing the two opposing non-zero Faraday 
law E∇×

G G
 radial δ-function contributions, one located at aρ = , the other at bρ = : 

 

( ) ( )( ) 0
looploop

freem

C

J AB A a b
t t

ε δ ρ δ ρ
σ

⊥⊥
⋅∂Φ ∂ ⋅

= − = − = − − − =
∂ ∂

GG
 

 
     In general, any penetration/hole made into the metal conductor of a long, steady current-
carrying wire will result in a non-zero Faraday law E∇×

G G
 δ-function on the boundary/surface of 

that penetration/hole! Since the current density 0freeJ =
G

 in the penetration/hole, 0E =
G

there and 

thus a discontinuity in E
G

 exists on the boundary of the penetration/hole, hence a non-zero 
Faraday law E∇×

G G
 δ-function exists on the boundary of the penetration/hole! 

 
     This fact {unfortunately} has important ramifications for the experimental detection / 
observation of the predicted non-zero DC induced EMF in a coil {oriented as described above}, 
Embedding a portion of a physical wire loop inside the long, steady current-carrying wire 
requires making a penetration/hole {no matter how small} into the wire, which will result in a 
non-zero Faraday law E∇×

G G
 δ-function on the boundary/surface of that penetration/hole in the 

wire! Thus, the wire loop will in fact enclose not only the Faraday law E∇×
G G

 radial singularity at 
aρ =  on the surface of the wire, but will also enclose another, opposing singularity located on 

the boundary/surface of the penetration/hole made into the long wire {which was made to embed 
a portion of the wire loop in a long, steady current-carrying wire in the first place}, thus 
experimentally, a “null” induced EMF, i.e. 0ε =  is expected/anticipated, because of this…     
 
     Hence, in the real world of experimental physics, it appears that embedding a portion of a real wire 
loop in a long, steady current-carrying wire in an attempt to observe this effect is doomed to failure… 


