
Chapter 10
Radiation Emission and Scattering

Topics The radiation field. Multipole expansion. Electric dipole radiation. Magnetic
dipole radiation.

Basic equations of this chapter:
Fields in the radiation zone of a point-like source at r = 0 having an electric dipole
moment p(t):

E(r, t) =
[
p̈(tret)× r̂

]× r̂
rc2

, B(r, t) = r̂×E (10.1)

where tret = t− r/c.
Instantaneous radiation power from the electric dipole source and its angular distri-
bution

Prad =
2
3c3

|p̈|2 , dPrad

dΩ
=
3Prad

4π
sin2 θ , (10.2)

where θ is the angle between p and r, and the infinitesimal solid angle dΩ =
2πsinθdθ.
Analogous formulas for the fields and the power of a magnetic dipolem(t):

E(r, t) = − [m̈(tret)× r̂]
rc2

, B(r, t) = r̂×E , (10.3)

Prad =
2
3c3

|m̈|2 , dPrad

dΩ
=
3Prad

4π
sin2 θ . (10.4)

10.1 Cyclotron Radiation

An electron moves in the xy plane in the presence of a constant and uniform
magnetic field B = B0 ẑ. The initial velocity is v0 ≪ c, so that the motion is non-
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relativistic and the electron moves on a circular orbit of radius rL = v0/ωL and fre-
quency ωL = eB0/mec (Larmor frequency).
a) Describe the radiation emitted by the electron in the dipole approximation spec-
ifying its frequency, its polarization for radiation observed along the z axis, and
along a direction lying in the xy plane, and the total irradiated power Prad. Discuss
the validity of the dipole approximation.
b) The electron gradually loses energy because of the emitted radiation. Use the
equation Prad = −dU/dt, where U is the total energy of the electron, to show that the
electron actually spirals toward the “center” of its orbit. Evaluate the time constant
τ of the energy loss, assuming τ≫ ω−1L , and provide a numerical estimate.
c) The spiral motion cannot occur if we consider the Lorentz force fL = −(e/c)v×B
as the only force acting on the electron. Show that a spiral motion can be obtained
by adding a friction force ffr proportional to the electron velocity.

10.2 Atomic Collapse

In the classical model for the hydrogen atom, an electron travels in a circular orbit
of radius a0 around the proton.
a) Evaluate the frequency ω of the radiation emitted by the orbiting electron, and
the emitted radiation power, both as functions of a0.
b) Use the results of point a) to show that, classically, the electron would collapse
on the nucleus, and find the decay time assuming a0 = 0.53 ×10−8 cm (Bohr radius,
actually obtained from quantum considerations) .

10.3 Radiative Damping of the Elastically Bound Electron

The motion of a classical, elastically bound electron in the absence of external fields
is described by the equation

d2 r
dt2

+η
dr
dt

+ω20r = 0 , (10.5)

where the vector r is the distance of the electron from its equilibrium position, η is
a friction coefficient, and ω0 is the undamped angular frequency. We assume that at
time t = 0 the electron is located at r(0) = s0, with zero initial velocity.
a) As a first step, find the solution of (10.5) assuming η = 0, and evaluate the cycle-
averaged emitted radiation power Prad due to the electron acceleration.
b) Assuming the oscillation amplitude to decay due to the radiative energy loss,
estimated the decay time τ using the result of point a) for the emitted power Prad.
Determine under which conditions τ is much longer than one oscillation period.
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Now assume η ! 0, with η≪ ω0, in Eq.(10.5). In the following, neglect quantities
of the order (η/ω0)2 or higher.
c) Describe the motion of the electron and determine, a posteriori, the value of η
that reproduces the radiative damping.

10.4 Radiation Emitted by Orbiting Charges

Two identical point charges q rotate with constant angular velocity ω on the circular
orbit x2+ y2 = R2 on the z = 0 plane of a Cartesian reference frame.
a) Write the most general trajectory for the charges both in polar coordinates ri =
ri(t), φi = φi(t) and in Cartesian coordinates xi = xi(t), yi = yi(t) (where i = 1,2 labels
the charge) and calculate the electric dipole moment of the system.
b) Characterize the dipole radiation emitted by the two-charge system, discussing
how the power depends on the initial conditions, and finding the polarization of the
radiation emitted along the x̂ , ŷ and ẑ directions.
c) Answer questions a) and b) in the case where the charges are orbiting with oppo-
site angular velocity.
d) Now consider a system of three identical charges on the circular orbit with the
same angular velocity. Find the initial conditions for which the radiation power is
either zero or has its maximum.
e) Determine whether the magnetic dipole moment gives some contribution to the
radiation, for each of the above specified cases.

10.5 Spin-Down Rate and Magnetic Field of a Pulsar

α

m

ω

R

M

Fig. 10.1

A pulsar is a neutron star with mass M ≈1.4M⊙≈
2.8×1033 g (where M⊙ is the Sun mass), and radius
R ≃10km = 106 cm. The star rotates with angular
velocity ω and has a magnetic moment m, which is,
in general, not parallel to the rotation axis. [1]
a) Describe the radiation emitted by the pulsar, and
find the total radiated power, assuming that the angle
between the magnetic moment and the rotation axis
is α, as in Fig. 10.1.
b) Find the “spindown rate” (decay constant of the
rotation) of the pulsar, assuming that energy loss is
due to radiation only.
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Chapter S-10
Solutions for Chapter 10

S-10.1 Cyclotron Radiation

a) The electric dipole moment p = −er rotates in the xy plane with frequency ωL,
which is also the frequency of the emitted radiation. The dipole approximation is
valid if the dimensions of the radiating source are much smaller than the emitted
wavelength λ. Here this corresponds to the condition 2rL = 2v/ωL ≪ λ = 2πc/ωL,
always true for non-relativistic velocities.

The rotating dipole can be written as p = p0 (x̂cosωLt+ ŷsinωLt). For the electric
field of the dipole radiation observed in a direction of unit vector n̂, we have E ∝
−(p×n̂)×n̂. If n̂= ẑ, then E∝ x̂cosωLt+ ŷsinωLt (circular polarization); if n̂= x̂or
n̂ = ŷ, we vave E ∝ −ŷsinωLt and E ∝ −x̂cosωLt, respectively (linear polarization).

Since r̈ = v×ωL (where ωL = ẑωL), the radiated power can be written as

Prad =
2
3
|er̈|2
c3

=
2
3
e2v2ω2L
c3

. (S-10.1)

b) We assume that the energy loss due to radiation is small enough to cause a vari-
ation of the orbit radius ∆rc ≪ rc during a single period, so that, during a single
period, the motion is still approximately circular. Thus the magnitude of the elec-
tron velocity v = v(t) can be written as v≃ωLr, where r = r(t) is the radius of the
orbit at time t. The electron energy is

U =
mev2

2
=
meω2Lr

2

2
, (S-10.2)

and the equation for the energy loss, dU/dt = −Prad, becomes

d
dt

(
meω2Lr

2

2

)
= − 2

3c3
(
e2ω4Lr

2
)
= −2remeω4L

3c
r2 , (S-10.3)
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where re = e2/(me c2) is the classical electron radius. Substituting the relation
d(r2)/dt = 2rdr/dt into (S-10.3) we obtain

dr
dt

= −2reω
2
L

3c
r ≡ − r

τ
, with τ =

3c
2reω2L

=
3mec3

2e2ω2L
, (S-10.4)

whose solution is

r(t) = r(0)e−t/τ , (S-10.5)

and the trajectory of the electron is a spiral with a decay time τ. Inserting the expres-
sions for re and ωL we have

τ =
3
2
m3
ec

5

e4B2
0

=
5.2×105

B2
0

s (S-10.6)

where the magnetic field B0 is in G. The condition τ≫ ω−1L implies

3
2
m3
ec

5

e4B2
0

≫ mec
eB0

, or B0≪
3
2
m2
ec

4

e3
= 9.2×1013G , (S-10.7)

a condition well verified in all experimental conditions: such high fields can be
found only on neutron stars! (see Problem 10.5)
c) We insert a frictional force ffr = −meηv into the equation of motion, obtaining

me
dv
dt

= −e
c
v×B0−meηv . (S-10.8)

This corresponds to the following two coupled equations for the the x and y compo-
nents the electron velocity

v̇x = −ωLvy−ηvx , v̇y = ωLvx −ηvy . (S-10.9)

An elegant method to solve these equations is to combine the x and y coordinates of
the electron into a single complex variable R = x+ iy, and the velocity components
into the complex variable V = vx+ ivy. The two equations (S-10.9) are thus combined
into the single complex equation

V̇ = (iωL−η)V , with solution V = V(0)eiωLt−ηt = v0 eiωLt−ηt . (S-10.10)

For the electron position we have

R =

∫
V dt+C =

v0
iωL−η

eiωLt−ηt +C = − (η+ iωL)v0
ω2L +η

2
eiωLt−ηt +C , (S-10.11)
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where C is a complex constant depending on our choice of the origin of the coordi-
nates. We choose C = 0, and rewrite (S-10.11) as

R = − v0√
ω2L +η

2
(cosφ+ i sinφ)eiωLt−ηt = − v0√

ω2L +η
2
ei(ωLt+φ)−ηt , (S-10.12)

where

cosφ =
η

√
ω2L +η

2
, sinφ =

ωL√
ω2L +η

2
, φ = arctan

(
ωL

η

)
. (S-10.13)

Going back to the real quantities we have

vx = Re(V) = v0 e−ηt cosωLt , (S-10.14)

vy = Im(V) = v0 e−ηt sinωLt , (S-10.15)

x = Re(R) = − v0√
ω2L +η

2
e−ηt cos(ωLt+φ) , (S-10.16)

y = Im(R) = − v0√
ω2L +η

2
e−ηt sin(ωLt+φ) . (S-10.17)

Thus, the velocity rotates with frequency ωL, while its magnitude decays exponen-
tially, |v(t)| = v0 e−ηt. For the radius of the trajectory we have

r(t) = |R(t)| = v0√
ω2L +η

2
e−ηt . (S-10.18)

Thus, choosing η = 1/τ, the motion with frictional force is identical to the motion
with radiative power loss, and

ffr · v = −meηv2 = −
mev2

τ
= −mev2

2e2ω2L
3mec3

= −2e
2v2ω2L
3c3

= −Prad . (S-10.19)

A drawback of this approach is that the frictional coefficient inserted here is
not universal but is dependent on the force on the electron (in this case, via the
dependence on ωL). See Problem 10.12 for a more general approach to radiation
friction.
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S-10.2 Atomic Collapse

a) An electron describing a circular orbit of radius a0 (Bohr radius) around a proton
corresponds to a counterrotating electric dipole p(t) of magnitude p0 = ea0. The
angular velocity of the orbit ω can be evaluated by considering that the centripetal
acceleration is due to the Coulomb force,

ω2a0 =
1
me

e2

a20
, (S-10.20)

from which we obtain

ω =

√
e2

mea30
= 4.1×1016 rad/s . (S-10.21)

Actually, the strongest emission from the hydrogen atom occurs at a frequency
smaller by about one order of magnitude.

Since p is perpendicular to ω, we have p̈ = (p×ω)×ω and |p̈|2 =
(
ω2p0

)2
(the

same result can be obtained by considering the rotating dipole as the superposition
of two perpendicularly oscillating dipoles). Thus the radiated power is

Prad =
2
3c3

|p̈|2 = 2
3

ω4e2a20
c3

=
2
3
e2r2ec

a40
, (S-10.22)

where re is the classical electron radius.
b) We assume that, due to the emission of radiation, the electron loses its energy
according to dU/dt = −Prad, where U = K +V is the total electron energy, K and V
being the kinetic and potential energy, respectively. If the energy lost per period is
small with respect to the total energy, we may assume that the electron the orbit is
almost circular during a period, with the radius slowly decreasing with time, r = r(t)
with ṙ/r≪ ω.

Since the velocity is v = rω, the total energy can be written as a function of a:

U = K +V =
mev2

2
− e2

r
= − e

2

2r
. (S-10.23)

Therefore

dU
dt
≃ −e

2

2
d
d

(
1
r

)
=

e2

2r2
dr
dt

. (S-10.24)

 
 



342 Chapter S-10 Solutions for Chapter 10

S-10.2 Atomic Collapse

a) An electron describing a circular orbit of radius a0 (Bohr radius) around a proton
corresponds to a counterrotating electric dipole p(t) of magnitude p0 = ea0. The
angular velocity of the orbit ω can be evaluated by considering that the centripetal
acceleration is due to the Coulomb force,

ω2a0 =
1
me

e2

a20
, (S-10.20)

from which we obtain

ω =

√
e2

mea30
= 4.1×1016 rad/s . (S-10.21)

Actually, the strongest emission from the hydrogen atom occurs at a frequency
smaller by about one order of magnitude.

Since p is perpendicular to ω, we have p̈ = (p×ω)×ω and |p̈|2 =
(
ω2p0

)2
(the

same result can be obtained by considering the rotating dipole as the superposition
of two perpendicularly oscillating dipoles). Thus the radiated power is

Prad =
2
3c3

|p̈|2 = 2
3

ω4e2a20
c3

=
2
3
e2r2ec

a40
, (S-10.22)

where re is the classical electron radius.
b) We assume that, due to the emission of radiation, the electron loses its energy
according to dU/dt = −Prad, where U = K +V is the total electron energy, K and V
being the kinetic and potential energy, respectively. If the energy lost per period is
small with respect to the total energy, we may assume that the electron the orbit is
almost circular during a period, with the radius slowly decreasing with time, r = r(t)
with ṙ/r≪ ω.
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Since

Prad =
2
3
e2r2ec
r4

(S-10.25)

the equation dU/dt = −Prad can be written as

e2

2r2
dr
dt

= −2
3
e2r2ec
r4

⇒ r2
dr
dt

= −4
3
r2ec ⇒ 1

3
dr3

dt
=
4
3
r2ec (S-10.26)

The solution, assuming r(0) = a0, is

r3 = a30−4r2ec t , (S-10.27)

giving for the time need by the electron to fall on the nucleus

τ =
a30
4r2ec

≃1.6×10−11 s . (S-10.28)

This is a well-known result, showing that a classical “Keplerian” atom is not stable.
It is however interesting to notice that the value of τ is of the same order of mag-
nitude of the lifetime of the first excited state, i.e., of the time by which the excited
state decays to the ground state emitting radiation.

S-10.3 Radiative Damping of the Elastically Bound Electron

a) The solution of (10.5) with the given initial conditions and η = 0 is

r = s0 cosω0t . (S-10.29)

The corresponding average radiated power in the dipole approximation is

Prad =
2
3c3
〈
−e|r̈|2

〉
=
2e2

3c3
ω40s

2
0

〈
cos2ω0t

〉
=

e2

3c3
ω40s

2
0 . (S-10.30)

The radiated power is emitted at the expense of the energy of the oscillating elec-
tron. Thus, the total mechanical energy of electron must decrease in time, and the
harmonic-oscillator solution of (S-10.29) cannot be exact. Assuming that the energy
of the oscillator decays very slowly, i.e., with a decay constant τ ≫ ω−10 , we can
approximate (S-10.29) as

r≃s(t)cosω0t . (S-10.31)
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harmonic-oscillator solution of (S-10.29) cannot be exact. Assuming that the energy
of the oscillator decays very slowly, i.e., with a decay constant τ ≫ ω−10 , we can
approximate (S-10.29) as

r≃s(t)cosω0t . (S-10.31)
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where s(t) is a decreasing function of time to be determined. Consequently, we must
replace s0 by s(t) also in equation (S-10.30) for the actual average radiated power.
b) At time t, the total energy of the oscillating electron is U(t) = meω20s

2(t). The
time decay constant τ is defined as

τ =
U(t)
Prad(t)

=
3mec3

2e2ω20
=

3c
2reω20

, (S-10.32)

and is thus independent of t. Since the classical electron radius is re ≃ 2.82×10−15 m,
the condition τ > 2π/ω0 leads to

ω0 <
3
4π

c
re
≃ 3×1022 rad/s . (S-10.33)

For a comparison, estimating ω0 as the frequency of the 1S←2P Lyman-alpha emis-
sion line of the hydrogen atom, we have ω0 ≃ 3×1016 rad/s.
c) We look for a solution of the form r = Re(s0 e−iωt), with complex ω. Substituting
this into (10.5), the characteristic equation becomes

ω2+ iηω+ω20 = 0 , (S-10.34)

whose solution is

ω = −iη
2
±
√
ω20−

η2

4
≃ −iη

2
±ω0 , (S-10.35)

where we have neglected the terms of the order (η/ω0)2 and higher. Thus, the
approximated solution for the electron position is

r ≃ s0 e−ηt/2 cosω0t . (S-10.36)

Actually, this approximation gives an initial velocity ṙ(0) = −ηs0/2 instead of zero.
However, this discrepancy can be neglected if η≪ω0. The maximum speed reached
by the electron is vmax ≃ ω0s0, and ηs0/2≪ ω0s0.

The time-dependent total energy of the electron and average radiated power are

U(t) ≃ me

2
ω20s

2
0 e
−ηt , and Prad(t) ≃

e2

3c3
ω40s

2
0 e
−ηt . (S-10.37)

The condition dU/dt = −Prad leads to

η =
2reω20
3c

=
1
τ
. (S-10.38)
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S-10.4 Radiation Emitted by Orbiting Charges

a) Let us denote by r1 and r2 the location vectors of the two charges with respect to
the center of their common circular orbit. In polar coordinates we have

r1 ≡
[
R,φ1(t)

]
, and r2 ≡

[
R,φ2(t)

]
. (S-10.39)

Defining ∆φ = φ2 −φ1 and choosing an appropriate origin of time, the equations of
motion in polar coordinates are

r1 ≡
(
R,ωt− ∆φ

2

)
, and r2 ≡

(
R,ωt+

∆φ

2

)
. (S-10.40)

In Cartesian coordinates we have

r1 ≡
[
x1(t),y1(t)

]
, and r2 ≡

[
x2(t),y2(t)

]
, (S-10.41)

with, respectively,

x1(t) = Rcos
(
ωt− ∆φ

2

)
, y1(t) = Rsin

(
ωt− ∆φ

2

)
, (S-10.42)

x2(t) = Rcos
(
ωt+

∆φ

2

)
, y2(t) = Rsin

(
ωt+

∆φ

2

)
. (S-10.43)

The dipole moment of the system is p = q(r1+ r2), with Cartesian components

px = qR
[
cos
(
ωt− ∆φ

2

)
+ cos

(
ωt+

∆φ

2

)]
= 2qRcos

(
∆φ

2

)
cosωt , (S-10.44)

py = qR
[
sin
(
ωt− ∆φ

2

)
+ sin

(
ωt+

∆φ

2

)]
= 2qRcos

(
∆φ

2

)
sinωt , (S-10.45)

i.e., p has constant magnitude p= 2qRcos(∆φ/2), and rotates in the z = 0 plane with
angular frequency ω.
b) In the dipole approximation, the electric field of the radiation emitted along a
direction of unit vector the n̂ is parallel to the vector

(p× n̂)× n̂ = p⊥ . (S-10.46)

Since for a dipole rotating in the z = 0 plane

(p× x̂ )× x̂ is parallel to ŷ , and (p× ŷ)× ŷ is parallel to x̂ , (S-10.47)

the polarization of the radiation observed in the x̂ (ŷ) direction is linear and along ŷ
(x̂ ). For radiation observed the ẑ direction  
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(p× ẑ)× ẑ is parallel to p , (S-10.48)

and the observed polarization is circular.
The total radiated power is

Prad =
2
3c3

|p̈|2 = 4q2R2ω4

3c3
cos2
(
∆φ

2

)
, (S-10.49)

which obviously vanishes when p = 0, i.e., for ∆φ = π (charges on opposite ends of
a rotating diameter), and has a maximum for ∆φ = 0 (superposed charges).
c) In this case charges are superposed to each other every half turn. We choose the
coordinates and the time origin so that the charges are superposed at t = 0 we have
r1 = r2 = (R,0). Thus the trajectories can be written as

r1 = r2 = R , φ1(t) = ωt , φ2(t) = −ωt , (S-10.50)

in polar coordinates, and as

x1(t) = Rcosωt , y1(t) = Rsinωt ,

x2(t) = Rcosωt , y2(t) = −Rsinωt , (S-10.51)

in Cartesian coordinates. The total dipole moment is thus p = (2qRcosωt) x̂. No
radiation is emitted along x, while the radiation emitted along all other directions is
linearly polarized. The total average radiated power is

Prad =
2
3c3

|p̈|2 = 4q2R2ω4

3c3
. (S-10.52)

d)With an appropriate choice of the time origin the equations of motion of the three
charges can be written, in polar coordinates, as

r1 = r2 = r3 = R , φ1(t) = ωt ,

φ2(t) = ωt+∆φ2 , φ3(t) = ωt+∆φ3 , (S-10.53)

and, in Cartesian coordinates,

xi = Rcosφi(t) , yi = Rsinφi(t) , (i = 1,2,3) . (S-10.54)

The electric dipole moment vanishes if the three charges are on the vertices of a
rotating equilateral triangle (∆φ2 = −∆φ3 = 2π/3), and has its maximum value when
the three charges are overlapped (∆φ2 = ∆φ3 = 0).
e) The magnetic dipole moment for a point charge q, traveling at angular velocity ω
on a circular orbit of radius R, is defined by
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m =
1
2c

∫
r× J d3x = qR2ω

2c
, (S-10.55)

and is constant (notice thatm is proportional to the angular momentum of the orbit-
ing charge). Thus the magnetic dipole does not contribute to radiation, because the
radiation fields are proportional to m̈.

This problem explains why a circular coil carrying a constant current does not
radiate, although we may consider the current as produced by charges moving on
circular orbits, and thus subject to acceleration.

S-10.5 Spin-Down Rate and Magnetic Field of a Pulsar

a) Due to the nonzero angle α between the magnetic moment and the rotation axis
of the pulsar, the component ofm perpendicular toω rotates with frequency ω. Thus
the Pulsar emits magnetic dipole radiation of frequency ω. The total power is

P =
2
3c3

|m̈⊥|2 =
2
3
m2
⊥ω

4

c3
, (S-10.56)

where m⊥ = msinα.
b) The mechanical energy is U = Iω2/2, where I = 2MR2/5 ≃ 1.1× 1043 g cm2 is
the moment of inertia of the pulsar, assuming a uniform mass distribution over the
volume of a sphere of radius R. Assuming that the energy loss is due to radiation
emission only, we can write

dU
dt

=
d
dt

(
Iω2

2

)
= Iωω̇ = −P , (S-10.57)

and, substituting (S-10.56), we have

Iωω̇ = −2
3
m2
⊥ω

4

c3
⇒ ω̇

ω3
= −2m

2
⊥

3Ic3
. (S-10.58)

By integrating over time from 0 to t we obtain

1
2ω2(t)

− 1
2ω2(0)

=
2m2
⊥

3Ic3
t , (S-10.59)

and thus

ω(t) =
ω(0)
√
1+

t
τ

, where τ =
3Ic3

4m2
⊥ω

2(0)
. (S-10.60)

 


