
Sinusoidal Function

Sine and Cosine functions are

periodic functions, i.e., the

waveform repeats in certain in-

terval, called the period, T .

Note that sin(ωt) is the same as

cos(ωt− 90◦).

A sinusoidal function is made of

a linear combination of Cosine

and Sine functions: A cos(ωt) +

B sin(ωt) (where A and B are

constants). In general, all sinu-

soidal functions can be written

as a “phase-shifted” Sin or Cos

function:

A cos(ωt)−B sin(ωt) =M cos(ωt+ φ)

M =

√
A2 +B2

φ = tan−1
(
B

A

)
or

{
A =M cos(φ)

B =M sin(φ)

As is seen, sinusoidal functions are defined by 3 parameters:

Xm: Amplitude

T : Period (s)

φ: Phase (radians or degrees)

The sinusoidal form includes ω which is related to T , as is shown in the graph, by ωT = 2π.

Denoting the number of periods in one second as f , we have:

f =
1

T
Frequency, Unit: Hz (or 1/s)

ω =
2π

T
= 2πf Angular Frequency, Unit: rad/s
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AC circuits

The response of a time-dependent circuit is in the form of X = Xn+Xf where X is a circuit

state variable. Here, Xn is the natural response of the circuit (set by the circuit elements

themselves) and Xf is the forced response set by sources. The natural response of the circuit

typically decays away and the circuit response becomes Xf after a long time (5 time constant

of the circuit). Initial conditions are used to find the constant of integration in the natural

response. Forced response does not depend on the initial condition.

Obviously, it is much easier to find the forced response of the circuit than the complete

response. This is very fortunate as we are also mostly interested in the forced response of

the circuit to time-dependent sources and not the natural response. It is still very difficult to

find the forced response of a circuit to a general time dependent source. We note, however,

that most of electrical and electronic circuits use time-dependent sources which are periodic.

In addition, all periodic functions can be written as a sum of sinusoidal function (Fourier

Series Decomposition). Therefore, we are interested in finding the response of the circuit to

a “sum” of sinusoidal sources.

For linear circuits, the principle of superposition indicates that if we know the response of the

circuit to individual sources, we can construct the response to sum of the sources. Therefore,

we are greatly interested to find the forced response of linear circuit to sinusoidal sources.

The trial function for the forced response to a sinusoidal source is a sinusoidal function.

Therefore, all of the state variables in the circuit will have sinusoidal waveforms.

AC Circuits: Circuits with sinusoidal sources in “steady-state” (i.e., forced response only).

All v and i also have sinusoidal waveforms.

The fact that all of the state variables in the circuit have sinusoidal waveforms can be

exploited to simplify solution to AC circuits. The two examples below show the logical

process that leads to our simplified procedure using “phasors”

Solution of AC steady-state circuit in time domain

i i i

−

+

0.5Ω

R L C

0.5F82.5mH

4 Cos (4t)

v

Example: Find AC steady state response of v.

iR =
v

R
= 2v

ic = C
dv

dt
= 0.5

dv

dt

v = L
diL

dt
= 0.0825

diL

dt

KCL: 4 cos(4t)− iR − iL − iC = 0
4 cos(4t)− 2v − iL − 0.5dv

dt
= 0
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Differentiating KCL with respect to time and substituting for diL/dt:

−16 sin(4t)− 2 dv
dt
− diL
dt
− 0.5d

2v

dt2
= 0

d2v

dt2
+ 4
dv

dt
+ 32v = −32 sin(4t)

Since we are only interested in AC steady-state response, we only consider the forced response

of the differential equation. From the Forced Response Table of page 70, we find the forced

response should be in the form v(t) = A cos(4t) + B sin(4t) and A and B are found by

substituting v in the differential equation:

v = A cos(4t) +B sin(4t)

dv

dt
= −4A sin(4t) + 4B cos(4t)

d2v

dt2
= −16A cos(4t)− 16B sin(4t)

Substituting in the differential equation and after several lines of algebra we get:

(16A+ 16B) cos(4t) + (−16A + 16B) sin(4t) = −32 sin(4t)

Since this identity should hold for all t, the coefficients of functions of time on both side

should be identical:

16A+ 16B = 0

−16A+ 16B = −32

Solving the two equations in two unknowns, we find A = 1 and B = −1. Thus,

v = cos(4t)− sin(4t) = √2 cos(4t+ 45◦)

Note that we did not need any initial conditions to find the AC steady-state response as

the initial conditions set the starting point for the transient behavior and not steady-state

response.

Above example shows major simplification in finding response of the circuit. Complete

solution of the circuit (including natural response) requires several pages of algebra. Still,

we need to find and solve a differential equation. We also have to keep track of two sets of
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functions sin(ωt) and cos(ωt). If instead of sinusoidal functions, we were using exponential

function, derivatives would have been easier, (d/dt)(est) = sest, and est would have canceled

out from both side (similar to the case of natural solution). This would simplify the algebra

significantly. Fortunately, sinusoidal functions are related to exponential functions through

the Euler’s formula:

vse
j(ωt+φs) = vs cos(ωt+ φs) + jvs sin(ωt+ φs)

and linear nature of the circuits allows a new approach.

Transformation to Complex Sources and Response

ω    φ

ω    φ
ω    φ

ω    φω    φ
ω    φ

ω    φ

ω    φ

+

+

−
Circuit
Rest of

−

+

−
Circuit
Rest of

Circuit
Rest of

ssv cos(   t+    )

v sin(   t+   )11

sv sin(   t+    )s

sv sin(   t+    )sv sin(   t+   )11

1v cos(   t+   )1

ssv cos(   t+    )

1v cos(   t+   )1

α+α

+

−

+

−

+

−

+

−

Consider a linear circuit driven by one source

vs cos(ωt+φs). Let the voltage across an ele-

ment of interest to be v1 cos(ωt+φ1). In the

same circuit, if we replace the source strength

with vs sin(ωt+φs), the voltage across our el-

ement will be v1 sin(ωt+φ1) as this is equiv-

alent to shifting the time axis by π/(2ω)

(t→ t− π/(2ω)).
Because the circuit is linear, principles of

superposition and proportionality tells that

if the source is replaced with a source

vs cos(ωt + φs) + αvs sin(ωt + φs), the re-

sponse of the circuit will be v1 cos(ωt+φ1)+

αv1 sin(ωt + φ1). We now move from real

circuit to mathematical circuits by setting

α = j:

Source Response

vs cos(ωt+ φs) v1 cos(ωt+ φ1)

vs sin(ωt+ φs) v1 sin(ωt+ φ1)

vs cos(ωt+ φs) + αvs sin(ωt+ φs) v1 cos(ωt+ φ1) + αv1 sin(ωt+ φ1)

Let α = j

vs cos(ωt+ φs) + jvs sin(ωt+ φs) v1 cos(ωt+ φ1) + jv1 sin(ωt+ φ1)

Euler’s Formula:

vse
j(ωt+φs) v1e

j(ωt+φ1)

Note: v1 cos(ωt+ φ1) = Re
{
v1e
j(ωt+φ1)

}

Therefore, we can use the following procedure to find the response of AC steady-state circuits:

1) Replace the sources with their complex counterpart using Euler’s formula
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2) Solve the circuit and find the complex response V1
3) Circuit response is Re{V1}
Let’s try the above procedure in the context of the above example:

i i i

−

+

−

+
I I I

0.5Ω

R L C

0.5F82.5mH

4 Cos (4t)

0.5Ω 0.5F82.5mH

4 e
j4t

R L C

v

V

Following the above procedure, we replace the source

with its complex counterpart 4ej4t. We also denote the

state variables with upper case to remember that they

are complex responses. Then, we have:

IR =
V

R
= 2V

IC = C
dV

dt
= 0.5

dV

dt

V = L
dIL

dt
= 0.0825

dIL

dt

KCL: 4ej4t − IR − IL − IC = 0
4ej4t − 2V − IL − 0.5dV

dt
= 0

Differentiating KCL with respect to time and substituting for dIL/dt:

d2V

dt2
+ 4
dV

dt
+ 32V = j32ej4t

The differential equation is identical to before, only the RHS side is replaced with the complex

source. Trial function for the forced solution is:

V = Vme
j4t dV

dt
= j4Vme

j4t d2V

dt2
= −16Vmej4t

−16Vmej4t + 4
(
j4Vme

j4t
)
+ 32Vme

j4t = j32ej4t

Vm(−16 + j16 + 32) = j32

Vm =
j2

1 + j
=
j2(+1− j)
(1 + j)(1− j) =

+j2 + 2

2
= 1 + j =

√
2� 45

◦
=
√
2ej45

V = Vme
j4t =

√
2e−j45ej4t

v = Re{V } = √2 cos(4t+ 45◦)

As can be seen the solution is simplified because we are only calculating Vm as opposed to A

and B in time-domain case. In addition, time dependence of all voltages and currents show

up as ejωt, and ejωt cancels out from both side of circuit differential equation.
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Phasors

In previous examples, we found that transformation of a circuit to complex domain simplifies

the solution. All voltages and current will have the form:

V = Vejωt V = vme
jφ

The time dependence of circuit variables are captured in ejωt and the amplitude (vm) and

phase (φ) of each state variable is captured in V. As such, V is called the “phasor.” Because

the time dependence ejωt cancels out of the circuit equations, it is possible to write the circuit

equations directly in terms of phasors:

Suppose we write KVL for a loop in a circuit and arrive at:

v1 + v2 − v3 + v4 = 0

In complex domain, the KVL will become:

V1e
jωt +V2e

jωt −V3ejωt +V4ejωt = 0
V1 +V2 −V3 +V4 = 0

The last equation includes only phasors and is identical to our original KVL equations.

Therefore, Phasors obey KVL. Identically we can show: Phasors obey KCL.

As all of our circuit analysis tools are build upon KVL, KCL, and i-v characteristics, we now

examine element Laws:

Resistor: v = Ri → Vejωt = RIejωt → V = RI

Capacitor: i = C
dv

dt
→ Iejωt = C

d

dt

(
Vejωt

)
= jωCVejωt → V =

1

jωC
I

Inductor: v = L
di

dt
→ Vejωt = L

d

dt

(
Iejωt

)
= jωL Iejωt → V = jωL I

Or in general: V = ZI Z : Impedance (Unit: Ω)

Resistor: Z = R

Capacitor: Z =
1

jωC

Inductor: Z = jωL
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We found that phasors obey KCL and KVL and I-V characteristics reduce to a “generalized

Ohm’s Law.” As such, using phasors reduces AC circuits to a “resistive” circuit. All resistive

circuit methods (node-voltage and mesh-current methods, Thevenin Theorem, etc.) could

be used.

Use of phasor simplifies analysis of AC circuit significantly. Table below shows the steps

which are taken in this approach. Note that as transformation from time domain to frequency

domain (phasors) and back is straight forward and the formulas are given in the table.

Procedure for Solving AC Steady-State Circuit with Phasors

1) Time Domain: Real Sources vs cos(ωt+ φs) vs sin(ωt+ φs)

2) Complex Domain: Complex Sources vse
jφsejωt −jvsejφsejωt

3) Frequency Phasor Sources Vs = vse
jφs Vs = −jvsejφs

Domain: Solve “resistive”circuit

Phasor Response V1 = v1e
jφ1 = v1 � φ1

4) Complex Domain: Complex Response V1e
jωt = v1e

jφ1ejωt

5) Time Domain: Real Response v1 cos(ωt+ φ1)

Power in AC circuits

Instantaneous power in AC circuits is given by

p = v×i. As both v and i are sinusoidal functions,
p is also sinusoidal. The instantaneous power can

be divided into two components. One compo-

nents which averages out to zero over each period.

This is called reactive power. The remain portion

(which averages to P ) is called the real power as

is shown in the figure.

Complex power, S, allows one to find P and Q

using phasors:

S ≡ 1
2
VI =

1

2
Z|I|2 = P + jQ

For example:

Resistor: S =
1

2
R|I|2 → P =

1

2
R|I|2, Q = 0

Capacitor: S =
1

2

−j
ωC
|I|2 → P = 0 Q = − |I|

2

ωC

Inductor: S =
1

2
jωL|I|2 → P = 0 Q = +ωL|I|2
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Note that P = 0 for capacitor and inductor as these elements do not dissipate power. They

absorb power in portion of cycle and supply power in remaining of the cycle. Q = 0 for a

resistive as this element absorbs power all the time.

Parallel and Series Impedances:

Since impedances are similar to resistors, we expect that series and parallel rules for resistors

apply also to impedances:

Series: Zeq = Z1 + Z2 + Z3 + ...

Parallel:
1

Zeq
=
1

Z1
+
1

Z2
+
1

Z3
+ ...

An impedance is a complex number (specially when parallel and series reduction is used).

Z = R(ω) + jX(ω)

R(ω) : AC resistance

X(ω) : Reactance

Resistor: R(ω) = R X(ω) = 0

Capacitor: R(ω) = 0 X(ω) = − 1

ωC

Inductor: R(ω) = 0 X(ω) = ωL

1Ω 1Ω

1 H 1 F

1Ω

j

1 1

jω
ω 1

1

Ζ1
Ζ2

Ζeq

Example: Find Zeq
As the frequency is not given, we use pa-

rameter ω. First step is to transform the

circuit to frequency domains:

1 F → 1

jωC
=
1

jω

1 H → jωL = jω

Z1 = 1 +
1

jω
Z2 = 1 + jω

1

Z3
=
1

Z1
+
1

Z2
=

1

1 + 1
jω

+
1

1 + jω
=
jω

jω + 1
+

1

1 + jω
= 1

Zeq = Z3 + 1 = 1 + 1 = 2 Ω
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