Supplemental Handout # 6

Symmetry Properties of Electromagnetism

The various field and source quantities, such as $\vec{E}, \vec{D}, \vec{P}, \vec{H}, \vec{B}, \vec{M}$ e.g. $\vec{J}_e, \vec{J}_m, \vec{v}, \varepsilon_o, \mu_o, \vec{L}, \vec{S}, \ldots$ etc. have various symmetry properties under symmetry operations such as:

- $P \equiv$ Parity (Space-Inversion, $\vec{r} \rightarrow -\vec{r}$) \rightarrow Reflection in a mirror
- $T \equiv$ Time Reversal (e.g. particle motion, but run <u>backwards</u> in time)
- $C \equiv$ Electric Charge Conjugation (Charge of Particle \rightarrow Charge of Antiparticle, e.g. $e^- \rightarrow e^+$)
- M = Magnetic Charge Conjugation (Magnetically Charged Particle \rightarrow Magnetically charged antiparticle, e.g. $g_N \rightarrow g_S$)

The field and source quantities mentioned above fall into various generic mathematical classes of objects, or quantities:

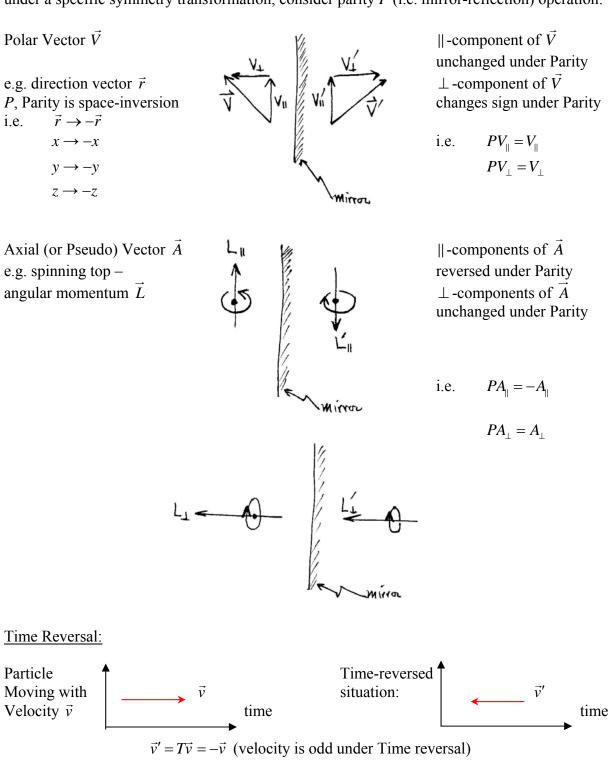
- 1) Scalar quantities under a given symmetry transformation, designated ϕ .
- 2) <u>Pseudoscalar</u> quantities under a given symmetry transformation, designated *p*.
- 3) <u>Polar Vector</u> quantities under a given symmetry transformation, designated \vec{V} .
- 4) <u>Axial</u>, or <u>Pseudo-Vector</u> quantities under a given symmetry transformation, designated \vec{A} .
- 5) $\overline{N^{th}}$ rank covariant / contravariant tensors under a given symmetry transformation,

$$T_{\mu\nu}, T^{\mu\nu}, T^V_{\mu}, T_{\sigma\mu\nu}, T^{\gamma\mu\nu}_{\alpha\beta\gamma}, \dots$$

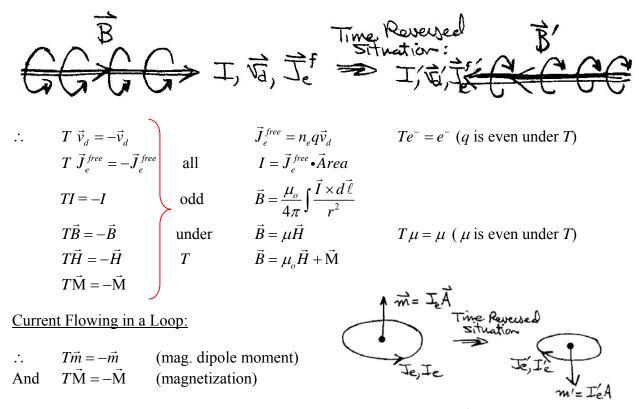
Note that, e.g.:

Electric charge q is <u>ODD</u> under electric charge conjugation: $Ce^- = e^+$ (i.e. q behaves as a <u>pseudoscalar</u> quantity p under C)

Magnetic charge g_m is <u>ODD</u> under magnetic charge conjugation: $Mg_m^- = g_m^+$ (i.e. g_m behaves as a <u>pseudoscalar</u> quantity *p* under *M*)

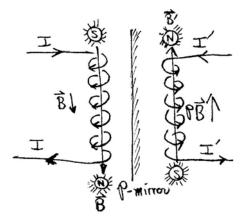

<u>However note also that, e.g.</u>: Electric charge is <u>EVEN</u> under magnetic charge conjugation: $Me^- = e^-$ (i.e. q behaves as a scalar quantity ϕ under M.)

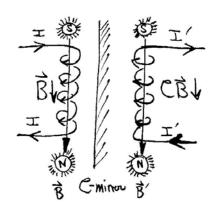
Magnetic charge is <u>EVEN</u> under electric charge conjugation: $Cg_m^- = g_m^-$


(i.e. g_m behaves as a <u>scalar</u> quantity ϕ under *C*.)

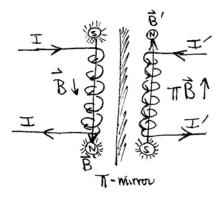
Note also that (if \exists no magnetic charges) the combined operations CPT = 1 (in any order) (i.e. CPT = identity operator). If have magnetic charges, then CPTM = 1 (in any order).

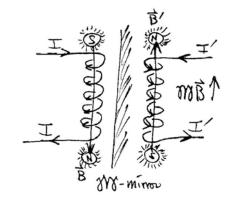
In order to understand the distinction between <u>Polar Vectors</u> and <u>Axial (or Pseudo)-Vectors</u> under a specific symmetry transformation, consider parity P (i.e. mirror-reflection) operation:


Electric Current Flowing in a Long Wire:


By considering a parallel-plate capacitor, it can be seen that \vec{E}, \vec{D} and \vec{P} fields, \vec{p} = electric dipole moment, ε = permittivity, etc. are all <u>even</u> under time reversal.

 $T\vec{E} = \vec{E} \qquad (\text{e.g. } \vec{E} = \frac{1}{4\pi\varepsilon_o} \frac{q}{r^2} \hat{r}) \qquad Tq = +q \text{ (even under } T)$ $T\vec{P} = \vec{P}$ $T\vec{D} = \vec{D} = \varepsilon \vec{E} \qquad T\varepsilon = \varepsilon$


Parity and Magnetic Fields


Electric Charge Conjugation & Magnetic Fields

Time Reversal & Magnetic Fields

Magnetic Charge Conjugation & Magnetic Fields

Summary of Symmetry Properties of Kinematic & Electromagnetic Quantities

 $\phi \equiv$ Scalar Quantity $p \equiv$ Pseudoscalar Quantity

 \vec{V} = Polar Vector

 \vec{A} = Axial Vector (Pseudo-Vector)

	KINEMATIC AND/OR	PARITY (SPACE INVERSION) P(T-D-T)		CHARGE (HERE)		TIME REVERSAL		MAGNETIC CHARGE CONJUGATION	
	ELECTROMAGNETIC QUANTITY			C(g= - g=)		T(tt)		M (8m 8m)	
	7		$\vec{\nabla}$	+	Ϋ́	+	Ť	+	র্য
ĸ	テ=症; や=mで	-	Ť	-+	V	-	V	+	v
2 W K 4 - H	$\vec{\alpha} = \vec{d\vec{x}} = \vec{d\vec{x}}, \vec{F} = m\vec{\alpha}$	-	V	+	v	+	v	+	$\vec{\nabla}$
Ê	L=r×p	+	Ă	+	V		Ā	+	v
A	T=r×F	+	À	+	V	+	V	+	v
-	KE.= +2/2m, P.E.= 经款2 WORK= 声·文	+	ø	+	ø	+	ø	+	ø
CHARGES	e, le, Se, pe (egm=nh)	+	ø		P	+	ø	+	ø
	9m, 7m, Tm, Pm 9m= 2 v"		P	+	ø	_	P		P
VACUUM DIETECTRIE MAGNETIZ MATERIALS	$\varepsilon_0, \varepsilon_1, \chi_e, Ke^{\pm} \overline{\varepsilon_0} = \chi_e - 1$	+	ø	+	ø	+	ø	+	ø
	Mo, M, Xm, Km = 10 = Xm - 1	+	ø	+	ø	+	ø	+	ø
E+M CURRENTS	Ie, Ke, Je=nget		$\vec{\nabla}$		⊽		⊽	+	₹
l	$\overline{\Box}_{m}, \overline{K}_{m}, \overline{J}_{m} = n_{m} g_{m} \overline{v}^{-}$	_	À	+	Ā	+	À	-	Ā
electre Field Quantities	Ve	-	ø		Ø	+	ø	+	ø
	GRADIENT V = 2 XX + 2 S+ 2 2	+	$\overrightarrow{\nabla}$	+	$\vec{\nabla}$	+	T	+	$\overrightarrow{\nabla}$
	$\vec{E} = -\vec{\nabla} V_E = \frac{1}{4\pi\epsilon_0} \frac{8\epsilon}{r^2} \hat{r}$		$\overrightarrow{\nabla}$		$\overline{\nabla}$	+	マ	+	V
	Ď₌∈Ē	-	$\overrightarrow{\nabla}$	_	V	+	$\overrightarrow{\nabla}$	+	$\overrightarrow{\mathbf{v}}$
	ア=ガーのを=の人を; 戸=のる		$\overrightarrow{\nabla}$		$\overrightarrow{\nabla}$	+	V	-+	$\overrightarrow{\nabla}$
MAGNETIC FIELD QUANTTRES	$\vec{B} = \frac{\mu_0}{4\pi} \frac{g_m}{r^2} \hat{r}, \stackrel{\mu_0}{\leftrightarrow} I_{efc} \frac{d x \hat{r}}{r^2}, \vec{\nabla} \times \vec{A}$	_	À	(+ for	IE À		Ă		À
	$\overline{H} = \frac{1}{\mu} \overline{B} = -\overline{\nabla} V_{m}$			For (+ For	IE A gm)		Ā		À
	$\vec{M} = \vec{H} - \frac{1}{2}\vec{B} = \chi_m \vec{H}, \vec{m} = I\vec{a}_L = g_n \vec{d}$. —	ĂĂ	-	À	_	À	_	A
	A = 40 Ie Se di Metter POTENTIAL		Ā	(+ For som	лĂ		Ã		Â
	V.		P	(+ For gran	P		P		P
($\vec{\nabla} \cdot \vec{D} = \rho_e^{\text{free}}$	+	ϕ		P	+	ø	+	ø
MAXWELL'S	V·B= pm		P	+	ø		P		P
	₹×Ē=-J ^m _m - ૠ	_	Ă	-	Ā	+	À		Ā
Fm (₹xH= Jerrer+ #		V	-	V	_	<u>√</u>	+	$\overrightarrow{\nabla}$
EM ENERGY FLOW, etc.	S= EXH POYNTING'S VECTOR	+-	1 T	(- For a	· 7		₹	+	V
etc. I	THE MAKWELL'S STRESS YENSOR (RANK)	+	Ŷ	+	7		Ύ!	+	Ŧ