L AlEL I NEWA Thomson's Jumping Ring

Elihu Thomson’s “jumping ring", shown in Figure 14.22, consists of a cylindrical solenoid and a
coaxial metal ring with a slightly larger radius a. If the ring rests on a support mounted just above
the top end of the solenoid and a current I5(t) = Iy exp(—iwt) is applied to the solenoid, the force
(14.122) can be sufficient to launch the ring into the air. We will calculate the time-averaged force by
treating the ring and solenoid as circuits coupled by a mutual inductance M. An order-of-magnitude
estimate should agree with the predictions in (14.130).

Figure 14.22: Cartoon of Thomson’s jumping ring.

The fringing magnetic field Bs near the top of the solenoid exerts a force on the current /g (¢) induced
in the ring by the time variations of I5(¢). If B,(¢) is the radial component of Bg, the instantaneous
force exerted on the ring in the z-direction is

F.(t)=1%- fRe[IR]d( x Re[Bs] = Re[Ig]2maRe[B,]. (14.160)

If the ring has resistance R and self-inductance L, the linear equation in (14.156) which contains the
EMF in the ring (which is zero) is

—ioMIs+ (R —iwL)Ig =& = 0. (14.161)
Solving this for the current in the ring gives
RelZp(0)] = —2M10__ R siner — wL coswr) (14.162)
e = ————(Rsinwt — wL cos wt). .
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Now, Re[B,(t)] ~ uonk Re[Is(t)], where n = N/L is the number of turns/length of wire wound
around the solenoid and « is a geometrical factor which accounts for the fringing of the field at the
position of the ring. Therefore,
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F.(t) = Monk(2na)%(am cos? wt — R sinw cos wt). (14.163)
Carrying out the time average of this force over one period of the current oscillation explicitly gives
(F.) = SNiepo2 x & x =ML (14.164)
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We know from (14.92) and (14.153) that this quasi-magnetostatic analysis makes sense both when
o <K R/L and when w > R/L. As in (14.153), we estimate the self-inductance of the ring as L ~
woa/2m. If ®p = Bma? is the magnetic flux through the ring, magnetostatic theory (Section 12.8.2)
tells us that the mutual inductance satisfies ®gz = M I,. Finally, R = 2ma/o A if the ring has cross
sectional area A. Substituting this information into the formula just above gives the limiting behaviors
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These results agree with (14.130) in detail when we recognize that a measures both the solenoid size
£ s and the ring size € in the high-frequency limit. In the low-frequency limit, € is the radius of the
wire which constitutes the ring. [ |




Example 14.5 A popular lecture demonstration uses a pendulum mechanism to swing a disk of
metal between the pole faces of a magnet. Estimate the damping force on the metal at a moment
when the pendulum speed is v. What happens when a parallel array of long and narrow slots are
cut out of the disk?

Figure 14.19: An eddy-current pendulum where a conducting disk swings betweens the poles of a magnet.

Solution: Eddy currents appear in the metal as soon as the downward swing brings the leading edge
of the metal into the space occupied by the magnetic field B. Let the metal disk in Figure 14.19
have conductivity o, radius R, and thickness 7. At a moment when the disk speed is v, it is
simplest to estimate the damping force directly from an integral over the volume 7 Rt of the
disk:

F:/d3rij.

Ohm’s law does not seem immediately relevant because there is no source of electric field. However,
(14.35) makes clear that a sensible generalization for a conductor in motion with velocity v is

j=0oE+vxB).

The vectors v and B are perpendicular in Figure 14.19. Therefore, when the entire disk is immersed
in the field, a good estimate is

F ~ nR*tovB>.

The direction of this force is such that a sufficiently strong magnet halts the pendulum in mid-swing.
This is an effective way to prevent the introduction of magnetic flux into the metal, as Lenz’ law
dictates. The force disappears if long thin slots are cut out of the metal because closed loops of
eddy current cannot form.




LCAENCIN AN The Point Magnetic Monopole

There is no experimental evidence for the existence of free magnetic monopoles. Nevertheless, we can
synthesize one from a semi-infinite solenoid (N turns/length of wire with current /) in the limit when
the solenoid’s cross sectional area S — O (Figure 11.5).

The construction begins with a planar, circular loop with current / which lies in the x-y plane and
is coaxial with the z-axis. The magnetic moment of the loop ismg = I SZ. If r = p p + z Z, the vector
potential far from the loop is given by the dipole formula,
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The vector potential of the semi-infinite solenoid follows by superposing contributions of this form
from a stack of loops which extends from zop = —o0 to zg = 0 on the negative z-axis. If g = Nmy is

the magnetic dipole moment per unit length, we let A — dA and mo — Nmodzo = gdzo, s0O
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Figure 11.5: A “monopole” at the origin simulated by a semi-infinite solenoid coincident with the
negative z-axis.

The associated magnetic field B =V x A is
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B(r) = —— - (sinAg) £ — — = (rd) 0 = ‘:—‘;fr—z. (11.36)
This Coulomb-type formula is valid at all points that are sufficiently far from the solenoid that
the dipole approximation is valid. This domain expands to include all of space (except the negative
z-axis) in the limit when S — 0 (somy — 0) and N — oo in such a way that g remains constant. The

magnetic field above satisfies

V- B(r) = nog 4(r) and V x B(r) =0. (11.37)

These are the equations we expect for the field of a magnetic monopole at the origin with magnetic
charge g. ]




