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Definitions of the degree of polarization
of a light beam
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A necessary and sufficient condition is derived for certain ad hoc expressions that are frequently used in the
literature to represent correctly the degree of polarization of a light beam. © 2007 Optical Society of America
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The degree of polarization P�r� of a quasi-
monochromatic light beam at a point r is the ratio of
the (averaged) intensity of the polarized portion of
the beam to its total (averaged) intensity, both taken
at that point. An exact expression for the degree of
polarization is implicit in the early work of G. C.
Stokes,1 in terms of the well-known parameters
which he introduced and which now bear his name.
Much later the degree of polarization was expressed
in terms of the so-called coherency matrix (or polar-
ization matrix) of the electric field by E. Wolf.2 Mod-
ern treatments of the subject are presented in Refs.
3, Sec. 10.9.1 and 4, Sec. 6.3.

That the formally different but mathematically
equivalent expressions for the degree of polarization
P�r� introduced in Refs. 1 and 2 are physically mean-
ingful is also evident from the fact that they are in-
variant with respect to the choice of the coordinate
axes—more specifically that they are invariant under
rotation of the axes about the direction of propaga-
tion of the beam. However, it seems that many work-
ers in the field of polarization optics are not familiar
with the rigorous and unambiguous definition of the
degree of polarization and frequently use various ad
hoc definitions of the form

Q�r� =
�Ix�r� − Iy�r��

Ix�r� + Iy�r�
, �1�

where Ix and Iy are the averaged intensities in two
mutually orthogonal directions, their choice being
suggested by the geometry of the problem (see, for ex-
ample, Refs. 5 and 6). Unlike the degree of polariza-
tion P�r�, given by Eq. (4) below, the quantity Q�r�
depends on the choice of the x ,y axes.
The question arises whether, and under what cir-
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cumstances, ad hoc definitions of the form (1) are
valid representations of the degree of polarization as
introduced in Refs. 1 and 2. We show that, in general,
they are not but that are so under certain circum-
stances which we will elucidate.

Let us consider a quasi-monochromatic stochastic
beam which propagates close to the z-direction, into
the half-space z�0. Its polarization properties at a
point r in that half-space may be described in terms
of elements of the coherency matrix, also known as
the polarization matrix (Ref. 3, Sec. 10.9.1, Ref. 4,
Sec. 6.2),

JJ�r� = ��Ex
*�r�Ex�r�� �Ex

*�r�Ey�r��

�Ey
*�r�Ex�r�� �Ey

*�r�Ey�r��� . �2�

Here Ex and Ey are the components of the (complex)
electric vector in two mutually orthogonal directions
perpendicular to the axis of the beam, the asterisks
denote the complex conjugate, and the angular brack-
ets denote the ensemble average. The matrix is evi-
dently Hermitian and may be shown to be also non-
negative definite (Ref. 4, Eq. 6.2-9).

Let

P�r� =
Ip�r�

I�r�
�3�

be the degree of polarization of the beam at the point
r. In this expression Ip�r� is the (averaged) intensity
of the polarized portion of the beam and I�r� is the
(averaged) total intensity. One can show2–4 that, in

terms of the polarization matrix,
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P�r� =�1 −
4Det JJ�r�

	Tr JJ�r�
2
, �4�

where Det denotes the determinant of the matrix,
i.e.,

Det JJ = JxxJyy − JxyJyx, �5�

and Tr denotes its trace, viz.,

Tr JJ = Jxx + Jyy. �6�

It is clear that the trace of the matrix is the (aver-
aged) beam intensity. Since both the trace and the de-
terminant are invariant under an arbitrary unitary
transformation and, in particular, under a rotation of
the x ,y axes about the z-direction, so is the degree of
polarization P�r�. On the other hand, since the right-
hand side of the expression (1) depends on the choice
of axes, Q�r� cannot be equal to the degree of polar-
ization P�r�, except perhaps for some special choice of
the axes.

In order that the expression (4) for the degree of
polarization P�r� and the ad hoc definition (1) are
equal to each other the following relations must ob-
viously be satisfied:

1 −
4�JxxJyy − JxyJyx�

�Jxx + Jyy�2 =
�Jxx − Jyy�2

�Jxx + Jyy�2 . �7�

A simple calculation shows that this relation will
hold only if

JxyJyx = 0 �8�

or, because the polarization matrix is Hermitian, only
if

Jxy = Jyx
* = 0. �9�

Hence Q�r�=P�r� if, and only if, the polarization ma-
trix is diagonal.

Now the polarization matrix, being Hermitian, can
be reduced to diagonal form by a unitary
transformation.7 However, the unitary transforma-
tion need not be a rotation.8 Let us examine under
what conditions the matrix can be diagonalized by a
rotation of the axes. It can readily be shown (Ref. 3,
p. 623; Ref. 4, p. 348) that when the x ,y-axes are ro-
tated clockwise about the position through an angle
�, then JJ→JJ�, where

Jxy� = �Jyy − Jxx�cs + Jxyc
2 − Jyxs

2, �10a�

Jyx� = �Jyy − Jxx�cs + Jyxc
2 − Jxys

2, �10b�

with c=cos �, s=sin �. Since the matrix is diagonal
in the rotated coordinate axes, we must have

Jxy� = Jyx� = 0 �11�

or, using Eqs. (10), we obtain the conditions
�Jyy − Jxx�cs + Jxyc
2 − Jyxs

2 = 0, �12a�

�Jyy − Jxx�cs + Jyxc
2 − Jxys

2 = 0. �12b�

On substituting Eq. (12b) from Eq. (11) we find that

Jxy − Jyx � Jxy − Jxy
* = 0,

i.e.,

Im Jxy = 0, �13�

where Im denotes the imaginary part. Equation (13)
implies that the transformed matrix will be diagonal
(i.e., Jxy� =Jyx� =0) if, and only if, the imaginary parts of
Jxy and Jyx are zero. Thus we have shown that, in or-
der that the polarization matrix can be diagonalized
by rotation of the axes, it must be a real matrix. The
axes in which it is diagonal are obviously along the
eigenvectors of the matrix and the at hoc definition,
Q�r�, [Eq. (1)] will correctly represent the degree of
polarization P�r�, provided that Ix and Iy are taken to
be the eigenvalues of the matrix. The formula then
expresses the degree of polarization in its well-known
form in terms of the eigenvalues of the polarization
matrix (Ref. 3, p. 628).

This research was supported by the U.S. Air Force
Office of Scientific Research under grants F49260-03-
1-0138 and FA 9451-04-C-0296, and by the Air Force
Research Laboratory (AFRC) under contract FA
9451-04-C-0296 and by NSERC. E. Wolf ’s e-mail ad-
dress is ewlupus@pas.rochester.edu.

References

1. G. G. Stokes, Trans. Cambridge Philos. Soc. 9, 339
(1952), Sec. 19. Reprinted in Polarized Light, W.
Swindell, ed. (Dowden, Hutchinson and Ross, 1975),
pp. 124–141.

2. E. Wolf, Nuovo Cimento 13, 1165 (1959).
3. M. Born and E. Wolf, Principles of Optics, 7th ed.

(Cambridge University Press, 1999).
4. L. Mandel and E. Wolf, Optical Coherence and

Quantum Optics (Cambridge University Press, 1995).
5. S. Chandrasekhar, Radiative Transfer (Dover, 1960), p.

247, Eq. (100).
6. W. T. Grandy, Scattering of Waves from Large Spheres

(Cambridge University Press, 2000), p. 82, Eq. (3.71).
7. F. W. Byron and R. W. Fuller, Mathematics of Classical

and Quantum Physics (Addison-Wesley, 1969,
reprinted by Dover, 1992), p. 165, Theorem 4.20.

8. In his classic paper on generalized harmonic analysis
N. Wiener, Acta Math. 55, 117 (1930) defined
“percentage of polarization” in term of the coherency
matrix (Eq. (9.5.1), p. 191). It is not difficult to show
that his definition can be expressed in the form of Eq.
(1). Wiener obtained the formula by use of a real
unitary transformation. However, in general, the
unitary transformation which diagonalizes the
coherency matrix is a complex matrix. To perform the
diagonalization physically one has, in general, to make
use not only of a rotator (real transformer) but also of a
phase plate (complex transformer).

Martina
Evidenzia

Martina
Evidenzia

Martina
Evidenzia

Martina
Evidenzia


