
Fourier Analysis 

In the foregoing theoretical development of light, we have assumed that only 
one frequency of light was present. In nature this never occurs; thus, we need 
to expand our discussion to allow for multiple frequencies. We will introduce 
severa! mathematical techniques in this chapter that will help in handling 
multiple frequencies. The techniques we will discuss were developed by 
Jean Baptiste Joseph Barcm de Fourier (1768-1830). (The technique was 
developed to aid- Fourier- in the solution of heat flow problems_. His first 
paper --on -the-- sub}ectwas rejected because Lagrange did not believe the 
serieswould converge. In -the 18th century, mathematicians did not view a 
functiÒn as an infinite-seriesof terms and the approach presented by Fourier 
required a major modffication in the thinking of mathematicians. Fourier did 
not discover-any Of the.principal results of the theory that, bears his name. 
Dlrichlet was one of the key contributers to the development of the theory, 
establishing some- ()f.the convergence criteria for the seri es.) The Fourier 
theory -states tha(aFOt:ir!er- -s-eri es·,- a su m of sir1Usoidal function.s·;- ca n o e 
used to-describe an�;periòdic functions and the Fourier transform, an integrai 
transfon:ri, can be--i.1se_a_ fo ·aescribe nonperiodic functions. 
- Qur discussions concerning light waves have also been limited to piane 
wavefronJ:� ---�e- wilf-learn in ·later chapters that the Fourier theory,-de.vei= 
oped to handl�m-ultiple frequencies, canbe used to descrlbe an arbitrary 
wavefrO!:!:tliJ-ferms of-combinations of p1Eù1e waves. The rriathematical te-cn­
niques for handling multiple frequencies and arbitrary wavefronts, based on 
the Fourier theory, form the foundations- ortEe-modern àpproach to physi­
cal optics. Applications of the Fourier theory will be found in Chapter 8 in 
the discussions concerning coherence an d in Chapter l O in the discussions 
concerning diffraction. 
. The Fourier theory allows the representation of a function in terms of �s f

requency or temporal characteristics and permits one to easily move 
f etween the two representations. The ability to move from a temporal to 

t
�equency representation and back, provided by the Fourier theory, allows 

e theory of optics to be developed using single frequencies and simple 
213 



214 FOURIER ANALYSIS 
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waveforms. The resultant theory can then be applieò to more genera! waves 
through applicatìon of the Fourier series or transform. 

In this chapter, we will first òiscuss the Fourier series for the repre­
sentation of periodic functions anò then introòuce the Fourier transform 
as an extension of the series, to handle nonperiodic functions. The use of 
a Fourier series to describe a souare wave is òiscussed as is the use or a 
Fourier-i:ra-nsfor-m to describe a sir1Usoidal wave of finite òuration. 
--The--measuremerit process use-d--to obtain-irliormation about continuous 
functions found in nature is accomplished by making discrete measurements 
(called samples) of the functions. The __ç!_�v-�_Lop!T!�rlt of the Fourier theory 
presents the opportunity to justify the experimental approach, by examinTng 
the-·p-rocesses oTrepliCation and sampling. The opportunity to discuss this 
important concepì is taken in this chapter even though the theory will not 
be directly applied in this book. 

In the mid-1940s the concepts developed for electrical communication 
systems based on linear system theory and dependent on the use of the 
Fourier method were introduced by P.M. Duffieux22 and R.K. Luneberg23 
for the analysis of optical imaging systems. In this chapter, the concepts of 
impuise respònse ·(also-ca!leCi.tEé Green;s functio-n) ancrconvolut!on integrals 
are fr1troduéedaii(ltheii'usÈùri't!ledescì:iption of a linear-system operatirig on 
an-arbitrE:\ry -inp-uf is dfscussed. The linear system approach to opti es will be 
associated with the Fresnel formulation of diffraction in Chapters 9 and 10. 
This approach to optics has resulted in the development of the application 
of optical signa! processing (Appendix 10-B) and has led to many of the 
advances in the area of medicai imaging. 

The mathematical concepts and examples in this chapter will often 
be presented without immediate association with the physical observations 
that require their use. The physical observations will be introduced in later 
chapters after the development of the mathematical tools. 

We wish to examine the use of a trigonometric expansion of sines and 
cosines- éalfed.the F'ouri(à series to describe periodic functions. The possibility 
of such- an expans1on was known to Euler, but it was nof unti! the derivation 
an d use of the-expansion- byFou;ie�ti�aTthe usefulness of sue h an expansion 
was recognized. 

The Fourier theorem as stated and proved by Oirichlet is this 
-----· ---- - -�------- --- ----

If a function f(t) is periodic, has a finite number of points of ordinary 

discontinuity, and has a finite number of maxima and minima in the 

intervai representing the period, then the function can be represented 

by a :-=ourier series 

,Y.:) (� 

f (t) = �o + :I, att cos (i�t) + ? bt. sin (lwt) 
J=l if=l 

/ . 

(6-1) 

The requirements on the function are all met by physically realizable func­
tions. 

We will not prove the theorem but simply show that it is plausible by 
provìng that the rìght side of (6-1) ì s  perìodìc. We have requìred the left sìde 
of (6-1), j(t), to be periodic, i. e., f (t) = f (t+ T), where T= 27T/w; thus, the 
right side of (6-1) must also l:Je periodic. 



�o + L a1 cos fwt + L b1 sin fwt 
t= l t= l 

�o + L a1 cos tw(t + T) + L b1 sin tw(t + T) 
(=l t= l 

For all values of t; we must have 

a1 cos fwt = a1 cos (twt + 21rt) 
b1 sin twt = b1 sin (twt + 27rt) 

which are true if t is an integer. 
Examination of (6-1) shows that the expansion is in terms of sine and 

cosine functions that are harmonics of the frequency w = 21r!T, where T is 
the peri od of the periodic function f (t) . Each harmonic l of the fundamental 
frequency w is multiplied by a coefficient�nd thetas1<-ofapplying the Fourier 
ilieorem reduces. to th_e ___ prol)lerri o'f finding the coefficients Ot an d br. The 
steps needed to derive the expressions for the còeffldents are--quHesfmple, 
as are the resulting equations for determining the coefficients. We will derive 
the expressions used to determine the coefficients of the harmonics making 
up the Fourier series and discuss two special cases that result in a shortcut 
in applying the Fourier series to certain classes of functions. 

dc Term 
The coefficient associateci with t = O is called the dc term because it is 
ass�ciated with zero frequency. (There is no b0-coeTficient because the sine 
of zero frequency is--ieroJ -fo determ-lne-the--constant cio�- w-e multiply both 
sides or(6-Ifby--at"anèi integrate over one period ( -1rlw < t< 1r!w) 

CJ (t) dt = r�w � dt + � c: w a, cos &nt dt + � r:
w 
�( sin twt dt 

The integrai of a sine or a cosine function over one period is zero; thus, 

J 
7rlw 

ao = � j(t) dt 
1T -'TrfW 

( 6-2) 

We see that ao is the average value of f (t) over o ne peri od. If f (t) is symmetric 
�bout the abscissa, then ao = O. 

----·-.. ·---·-·--

Cosine Series 
To obtain the coefficients of the cosine series ar; we multiply both sides of 
(6-1) by cos nwt, where n represents a preselected harmonic of the series f 7T/w l -7T!w f (t) cos n (vt dt = J n 

w 
00 cos nwt dt -7T!w 2 

+ � r:
w 

Or COS &nt COS nwt dt + � J ::w bt Sin twt COS nwt dt 
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We now use the trigonometric identities 

l . 
cos (twt) cos (nwt) � 2 [cos (t+ n)wt + cos (t- n)wt] 

l 
sin (twt) cos (nwt) = 2[sin (t + n)wt + sin (é'- n)wt] 

to evaiuate the two summations. The first summation contains terms of the 
form 

f 7T/W ar cos é'wt cos n wt d t -7TfW 
= -21 f 7T!w ar cos (t+ n)wt dt + -21 f 7Tiw ar cos (/- n) (ùt dt -�w -�w 

When t=rf n, both of the integrais are zero (see Probiem 6-14). When /= 
n, the first integrai is zero but the second integrai is ( nlw)an. The second 
summation contains terms of the form 

f 7T!w ���/sin twt cos nwt d t -7T/w 
f 7T/w · 

l f 7T!w ',, = -21 /�( sin (t + n)wt dt + -2 _fit sin ((- n) wt dt -�w -�w 
which are zero for ali values of t. (The fact that the integrals invoiving sines 
and cosines are zero except when t'=-n.defines a- property of sfnusoids known 
as-·orthog011ality.) Therefore, 

-·-· - ... 

f 7T/w l f 7T/w 1Tan 
f(t) cos nwtdt = -2 an dt = --7T/w -7T/w W 

The coefficients of the cosine series are obtained by using the integrai 

Sine Series 

f7T/w an = � f (t) cos nwt dt 
1T -7TfW (6-3) 

An integrai similar to (6-3) can be derived for the coefficients b�'of the sine 
series if we multiply both sides of (6-1) by sin(nwt) ancl mak; use of the 
identity 

l 
sin (t'wt) • sin (nwt) = 2 [cos (/- n)wt- cos (/ + n)wt] 

We find that the coefficients of the sine series are given by f rrlw 

bn = � f (t) sin nwt dt 
1T -7Tiw (6-4) / 

The equations for the FQurier coefficients (6 -3) and ( 6-4) are sometimes/ 
cali er'Eulér' s formulas, in recognition of Euler' s early involvement with the 
expansion. 

T 
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The sine and cosine series can individually be used to represent certain 

classes of functions. For example, suppose f is an even function 

f( t )  = j (-t )  

then f ( t )  can be represented by a series o f  cosines [ao is included in this 

series as the coefficient of cos(O)]. This occurs because the integrai, over one 

period about zero (from -rrlw to rr/w), of an even function is nonzero, but 

the integrai of an odd function over the same interval is zero (see Problem 
6-15). Using this fact, we can determine that (6-4) will be zero whenever f( t )  
i s  a n  even function. [To understand why (6-4) i s  zero for a n  even function, 

remember that the sine is an odd function and the product of an odd function 

and an even function is an odd function.] 

If f ( t )  is an odd function 

f( t )  = -j (-t ) 

then it can be represented by a seri es of sin e terms. If f ( t )  is neither odd nor 
even (for example, f ( t )  = et) then both the sine and cosine series are required. 

Exponential Representation 

The representation of the Fourier series given in (6-1) is c onvenient for ana­
lyzing rea! functions, but for extending our discussion to Fourier transforms, 
we will find it useful to express the Fourier series as an exponential series. 

The first step in reformulating the Fourier series is to use the identities 

to rewrite ( 6-1) as 

cos t wt = ..!. (e itwt + e -itwt) 
2 

sin twt = -i (e ifwt- e-itwt) 
2 

f 
( ) ao l � ( 'b ) 

vwt l � ( .b ) -i&vt 
t = 2 + 2 L at- 1 t e + 2 L at + 1 t e 

t= l t= l 
where the coefficients in the summations are given by 

f 7T
/W 

a+t = a1± ibt = !!!. j(t)(cos twt ±i sin twt) dt 
1T -

7T
!w 

f 7T
/W 

=
!!!. f (t)e±itwt 

dt 
1T -

7T
/W 

(6-5) 

This allows (6-5) t o  be rewritten as a summation over positive and negative 
values of t 

t=oc f 
(t) = L ateitwt (6-6) 

t= -00 

w h ere 

(6-7) 

FOURIER SERIE$ 217 



218 FOURIER ANALYSIS 

PERIODIC SOUARE 
"'fAVE 

One of the mathematical divi­
dends provided by the Fourier series 
is that it can be used to evaluate 
infinite series. Although it does not 
impact on our study of optics, it is 
interesting to see an example of this 
application of the Fourier series. We 
demonstrate this use of the Fourier 
series by evaluating the square wave 
at t = O in Figure 6-1 to obtain 

l 
j (O) =l = - + 2 

2(1. - l_ + l_ - l_ + ... ) 
1T 37T 51T 71T 

By rewriting this relationship, we 
obtain the sum of Gregory's series 

1T l l l 
-= 1 --+---+ 
4 3 5 7 

We ca n establish some generai properties of a1 given by ( 6-7) by repiac­
ing t by -t 

· I 1rlw 

a; = _!!!____ f (- t)e
ilwt dt 

21T -1r!w 

Sin ce f ( -t) = f (t) for an even function an d f ( -t) = -f (t) for an od d function 
we can make the following statement about the coefficients: 

' 

a1 = a_1 f(t) even 

a; = -a-; f (t) od d 

a1 -::/= a-t f(t) neither odd nor even 

a's compiex f (t) neither odd nor even 

As an exampie 0f how the Fourier series is applied, we will evaiuate the 
function 

J(t) = ( l, 

O, 

T T 
-- :::; t::; -k k 

T T 
- ::; t::; T --k k 

(6-8) 

The graphicai representation of (6-8) , shown in Figure 6-1 , consists of a 
periodic array of rectanguiar puises called a square wave. The process of 
calcuiating the Fourier coefficients of the square wave is càlled harmonic 
analysTs� ·-·�- - ... 

-

-----
The coefficients of the Fourier series in exponentiai form are given by 

ap = l IT!k 

e
-itwt dt 

L· T -Tik 

For t# O, we have 

1 (. . . . ) 2 sin (27T//k) a1 = - � exp { -z t(21Tik)}- exp { -z t(21T!k)} = -k 2 'lk -� � 
For ao, the integrai is 

ao = l. I T!k 

d t = l (I + I) = � 
T �Tfk T k k k 

l f(t) 

r Il 
Tlk l 

T 
FIGURE 6·1. Generalized square wave where k is a constant. 

L 

(6-9) 

(6-10) 



Square wave 

0.0 0.2 0.4 0.6 

Ti me 
0.8 
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-- 3rd Harmonic 

· 5th Harmonic -- 7th Harmonic 

l. O 1.2 

FIGURE 6·2. The Fourier series approximation of a square wave with the series terminated 
after the fundamental, third, fifth, and seventh harmonic. 

As an example, let k = 4. The Fourier series is given by 

J(t) = .!. + 2 ( cos wt _ cos 3 wt + cos S wt ... ) 
2 7T 37T 57T 

where we have combined the positive and negative exponents of (6-6) in 
order to express the expansion in terms of cosine functions. As you can 
see in Figure 6-1, the square wave defined by (6-8) i s  an even function; 
from our previous comments concerning even and odd functions, we are 
not surprised to find that the Fourier series is a cosine series. 

In Figure 6-2 we plot the Fourier series for f (t) with the seri es terminated 
at t= l, 3, 5, and 7. Each additional term adds another odd harmonic to the 
previous estimate of the function. As we include more and more terms, the 
series becomes a better approximation of the square wave we are attempting 
to represent. 

; 

Increasing the value of k is equivalent to increasing the peri od of the square 
wave. If we think of each positive going part ofj (t) in Figure 6-1 as a pulse, then 
the width of the pulse decreases as k increases, and the time between pulses 
increases. We can easily calculate the coefficients of the harmonics for three 
examples of square waves with k = 4, 8, and 16. The results of the calculation 
are shown in Table 6. 1 .  A convenient way of displaying these results is to plot 
the size of the coefficients aras a function of t w. This plot is calle d the frequency 
spectrum and is shown in Figure 6-3. Each spectrum displays the coefficients, 
that is, the amplitudes, of each of the harmonic waves in the Fourier series of a 
square wave with different values of k. 

TABLE 6.1 Fourier Coefficients for a Square Wave 
k a o al a2 a3 a4 as 

4 0.5 0.318 o -0.106 o 0.064 8 0.25 0.225 0.159 0.075 o -0.045 16 0.125 0 .122 0.1 1 3  0.098 0.080 0.059 
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o -0.045 o 
-0.053 -0.032 o 

0.038 0.017 o 
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(a) 
FIGURE 6·3a� The coefficients of the Fourier series of a square wave of width T/2. 

(b) 
FIGURE 6·3b. Coefficients of the Fourier series of a square wave of width T/4. 

(c) 

FIGURE 6·3lc. Coefficients of the Fourier series of a square wave of width T/8. 
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The discrete spectra in Figure 6-3 are symmetric about zero because 
f (t) is symmetric. For this reason, we only display the positive values of 
t, that is, t > O. As we decrease the width of the square pulse, that is, 
increase the value of k, there is the suggestion that a smooth curve could 
be drawn through the a's in Figure 6-3. On examining the interval between 
zero frequency and the frequency of the first occurrence of a zero coefficient, 
we find that the number of coefficients contained in this interval increases 
as the width of the pulse decreases. If we measure the position of the first 
zero coefficient in terms of the harmonic t associateci with the zero, we see 
that the frequency tw at which the zero occurs increases as the width of the 
pulse decreases. We will find this reciproca} relationship between frequency 
and time is a fundamental property of Fourier series and transforms and will 
be repeatedly encountered both in mathematics and optics. 

In the discussion of Fourier seri es, we have required that f (t) be periodic. 
We now wish to expand the theory to handle nonperiodic functions. We 
can apply a Fourier expansion to nonperiodic functions by recognizing that 
a nonperiodic function is really a periodic function whose period is infinite. 
Allowing the period of a periodic function to approach infinity is an extrap­
olation of the procedure used to generate Figure 6-3, that is, k increases 
until the width of the pulse is an infinitesimal fraction of the period T. Since 
w = 7TIT, we have w ----7 O as T ----7 co and in the limit as the fundamental 
frequency approaches zero, the summation over discrete harmonics of the 
fundamental frequency becomes a definite integrai over a continuous distri­
bution of frequencies. 

In taking the limit, we first define the fundamental frequency as IJ.w and 
rewrite (6-9) in terms of the frequency IJ.w 

' 2 ) l t= 00 { 
J 
TTI t::. w 

} J (t) = J ( t + _!!_ = - L J (t) e -itllwt dt eitt::.wt IJ.w IJ.w 27T t= -x -TTI!::.w (6-11) 

The limit is now taken as IJ.w ----7 O. The harmonics making up the distribution 
become infinitely dose to one another and, in the lim'it, we replace the 
discrete set of harmonics with a continuous function 

lim (t!J.w) =w t::. w� o 
Also as the limit is taken, the period approaches infinity 

lim (T) = lim (±__!!__) = ±co t::.w�o t::.w�o IJ.w 
Taking the limit of (6-11) yields 

l 
J
oo 

J
oo . 

j(t) = - j(T)e1w(t-r)dTdw 277 -oo -x 

We define the function F(w) as the Fourier tr;nsform of f (t) 
l'f.., 

00 c 

_'T {J (t)} = F(w) = J -ooj ( 7)
e-iujf d'T 

(6-12) 

(6-13) 

The transformation from a temporal to a frequency representation given by 
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(6-13) does not destroy information; thus, the inverse transform can also be 
defined by simply substituting the definition (6-13) into (6-12) 

_r-1\F(w)\ �f(t) = Lff(w)e;""dw (6-14) 

[J(t) and F(w) are called a Fourier transform pair and will be denoted by 
lower- and uppercase letters.] The nonperiodic function f (t) is repre­
sented by an infinite number of sinusoidal functions with angular frequencies 
infinitely dose together. F(w) measures the spectral density, that is, the frac­
tiana! contribution of frequency w to the representation of the function. The 
absolute value of F(w) is called the spectrum of the function f (t) . 

In other books, slightly different definitions of the Fourier transform are 
used.  In some books, the transform (6-13) and its inverse (6-14) are defined 
in a symmetric fashion 

.T{f(t)} = F(w) = -1- I% j(r)e -iwr dr 

fo -x 
.r-1{ f(w)} =f ( t ) = -1- Ix F(w)eiwtdw 

fo -x 
In other books, the constants 

are absent and the integrals are expressed in terms of v rather than w ( = 21Tv). 
Sometimes, the positive and negative exponentials in (6-13) and (6-14) are 
interchanged. The definition one selects is somewhat arbitrary. 

We have written the relationships using time and frequency but we 
could replace time by a space variable, say, x. The transform or conjugate 
variable must have reciproca! units; thus, when a space variable is used, 
the conjugate units would be "distance" an d its reciproca! 1/" dista n ce". The 
conjugate variable to the space variable is called spatial frequency and in 
optics is the propagation constant k. Another example of conjugate variables 
are the periodic lattice and the reciproca! lattice, which are members of a 
three-dimensional Fourier transform pair used in crystallography. 

There are validity conditions, called Dirichlet conditions, placed o n f (t) 
for F(w) to exist. These are the same conditions we placed on f (t) for the 
Fourier seri es to exist. They state that f (t) must 

l. Be single valued. 
2. Have a finite number of maxima and minima in any finite interval. 
3. Have a finite number of finite discontinuities but no infinite discontinuities 

in any finite interval. 
4. Lead to a finite frequency spectrum. 



(The approach we have used to obtain the Fourier transform would not 
be satisfactory to a mathematician. lt would be more correct to consider 
the Fourier series as a special case of the Fourier transform. In this case, 
the validity conditions for the series follow naturally from a statement of 
the conditions for the transform.) These conditions are met by ali physi­
cally occurring functions but not by such useful functions as constants and 
periodic functions. Techniques involving the use of limits allow these useful 
functions to be included. The difficulty also disappears when the theory of 
generalized functions is used. 24 (W e will discuss an example of a generalized 
function, the Dirac delta function, in this chapter. ) 

Evaluation of the Fourier Transform 
It is not immediately obvious how the Fourier transform defined by (6-13) 
is to be carried out. By expressing the transform in terms of its real and 
imaginary components, we see that 

F( w) = I��j(T) cos wTdT- i I��j(T) sin wTdT 
If f ( r) is a real function, then the Fourier transform can be obtained by 
calculating the cosine transform 

and the sine transform 

I �oo f( r) sin wr dr 

(6-lSa) 

(6-lSb) 

If f ( r) is not only real-valued but also even, we n?ed only calculate 
the cosine transform (6-15a). If f ( r) is complex, it cah be expressed as 
f ( r) = YJ( r) + ig( r) an d the Fourier transform is 

F(w) = I�oo Y]( r) cos WT dr + J:oo g( r) sin WT dr 
-j [x /;{7) COS WTdT - rx T)(T) Sin WTdT] 

which demonstrates that to calculate the Fourier transform of a generai 
function, we must evaluate the sine and cosine transforms of both the real 
and imaginary components of f ( r) . The calculation of the Fourier transform 
on a digitai computer makes use of an algorithm developed by James W. 
Cooley and J.W. Tukey in 1965.24 Subroutines based on this algorithm are 
now standard components in computer software packages. 

In generai, the Fourier transform is a complex function and to display 
the Fourier transform 

F( w) = j( w)e-iq>(w) 
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RECTANGULAR PULSE 

In some books, the sinc function 
is defined as 

sin 1TX 
sinc(x) = --

1TX 

The only advantage of this alternate 
definition is that the zeroes occur at 
integer values of x. 

we plot the amplitude spectrum _((w) and the phase spectrum cjJ(w). If 
the originai function f (t) is real and even, then cjJ(w) is a constant and we 
ignare it. 

We will now examine threè applications of Fourier transforms; Appendix 
6-A contains a few additional Fourier transform pairs along with some of the 
important properties of the Fourier transform. 

T o understand the Fourier transform, the transform of the rea!, even function 

f(r) = rect(r) = { l, 

O, 

l 
lrl <­-2 

ali other T 

(6-16) 

will be calculated. This function is a rectangular pulse and is the result of 
allowing k � oo in the expression for a square wave (6- 8). (lt might be 
easier to think of the process of obtaining the single pulse as one in which 
we keep the pulse width constant and allow the period T� x. ) T o calculate 
the Fourier transform, we use (6-15a) that reduces to 

w 

J 
112 

1 sin-)112 2 F(w) = cos wrdr = -(sin wr _112 = ---112 w w 
2 

(6-17) 

We interpret this equation as follows: cos wr is a weighting function called the 
kernel. The shape and d,uration of the weighting function determine the time 
average of f (t) calculated by (6-15a). In Figure 6-4, the cosine weighting 
function is plotted as a two-dimensional surface in wt space. 

The function rect(t) slices the weighting function perpendicular to the w 
axis. The profile of each slice is modified by the cosine weighting function; 
the frequency of the weighting function is determined by the position of the 
slice on the w axis. The extent of the weighting function in the t direction 
is determined by rect(t). The value of F(w) at each frequency is the area 
under the cosine curve. Figure 6-4 displays a few represenfative points. The 
Fourier transform of the rectangular pulse (6-16) is the continuous frequency 
spectrum shown in Figure 6-5 and is given by a function of the form 

sin x 
sinc(x) = -­

x 
(6-18) 

where x may represent w or k, far example. This function is encountered 
so often it has been given its own name: the sinc function. It has zeroes 
whenever x = n 'TT. 

At x= O, the sinc function takes on the indeterminate form 0/0 and we 
must apply L'Hospital's rule to determine the value of the function 

d . 
d(sm x) 

lim x 
d 

= lim cos x = l x�o x�o 
dx

(x) 

Comparing a plot of (6-18) in Figure 6-5 with the envelope of the coefficients 
of the Fourier series in Figure 6-3c, we find that they are equivalent. We can 

F. 



sinc(w) 

rect(t) COS(wt) 

FIGURIE 6·4. Geometrica! construction of the Fourier transform integrai of a rectangular 
pulse. (Jack D. Gaskill, Linear Systems, Fourier Transforms and Optics, Wiley, New York, 
1978.) 
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FIGURE 6·5. The sinc function sinc(x) = sin(x)/x. 
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PULSE 
MODULATION·WAVE 
TRAI S 

aiso compare (6-9) wi th (6-18) to see that (6-9) is a discrete representation 
of (6-18). Equation (6-9) is said to be a sampled version of (6-18). 

The Fourier transform provides us with a tooi to evaiuate any wave of finite 
duration. As an exampie, consider a wave of frequency wo that is turned on 
at time -tr and off at time t1 (see Figure 6-6) . The wave shown in Figure 
6-6 has its amplitude moduiated by a rectanguiar puise of width 2tl. Because 
the wave is symmetric about the time origin, we need oniy calculate the 
cosine transform 

I 
t/ 

F( w) = -

t 

A cos ·woT cos wT dT 
l 

I 
t/ 

= -t A[ cos ( wo + w) T+ cos ( wo - w)T] dT 
l 

The Fourier transform of the puise-moduiated wave contains two terms 

F( w) = A [ sin ( wo + w)t1 + sin ( wo - w)tl l 
wo + w wo- w ( 6-19) 

The frequency spectrum given by (6-19) i s  shown in Figure 6-7. There are 
two identicai frequency spectra, centered at w0 and - wo, where wo is called 
the carrier frequency. The small peaks to the sides of each large centrai 
peak are called side lobes. The first term of (6-19) is associateci with the 
negative frequency distribution in Figure 6-7. It appears to contain redundant 
information but we must retain the negative frequencies if we wish to recover 
the originai signal. If the conjugate variabies were x an d k, the negative vaiues 
of k wouid have physicai significance, as we will see Iater in the discussion 
of diffraction. 

The major contribution to F( w) occurs from the central peak (in fact, the 
first side Iobe's peak is only 21.7% of the center peak); thus, the spectrum 
can be evaluated without excessive error by considering oniy the central 
peak. The width of the central peak can be defined as twice the distance from 
the carrier frequency wo to the frequency where F( w) = O. The 

l r- f(t) 

0. 5-

0=--� 

0.5 t-

-1 l l 
-2 -1 o 

{Acosw0t, 

f(t) = 
O, 

l l t 
2 

ali other t 

FIGURE 6·6. A wave of frequency w;; whose amplitude is modulated by a rectangular pulse 
of duration 2t . 
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PULSE MODUU\TION·WAVE TRAINS 2.27 

FIGUR!E 6·7. The frequency spectrum of a pulse of width (a) 2t1 and (b) 20t1 and c_arrier 
frequency wr; = 3. Note that the wider pulse results in a narrower frequency spectrum. 

frequency spectrum of the pulse-modulated w ave F( w) is equal t o zero 
when sin(wo - w)t1 = O and wo =:1= w. The zeroes occur when 

n1T w=wo±-, . tl 
The width of the central peak 

2(wo- w) 

n = l, 2, . . . 

1T 

h 

is inversely proportional to the pulse width t1. Here, we see a reciprocal 
relationship between conjugate variables similar to what we observed in the 
Fourier series of Figure 6-3. 

As an example, suppose wo = 106Hz and h =  10 f..LSec; then, the width 
of the frequency spectrum would be 600 kHz (from 700 kHz to 1.3 MHz). 
lf the l MHz signal remained on for l sec, then the width of the spectral 
distribution would be about 6 Hz. 

. 

. The Fourier spectra at two different values of pulse width t1 are shown 
m Figure 6-7. There are two ways to interpret the frequency spectra of Figure 6-7: 
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-4 

-6 l 
-2 - l  o 2 

FIGURE 6·8. A wave of frequency wr; whose amplitude is modulated by a Gaussian pulse. 

( 

l. The classica! viewpoint treats the frequency plot as a display of the actual 
frequencies contained in the pulse. 

2. The quantum viewpoint treats the frequency plot as a display of the 
uncertainty in assigning a particular frequency to the pulse. Another way 
to state this viewpoint is that the frequency spectrum is the probability 
that a given frequency is present in the pulse. 

A second pulse shape that will be analyzed is a pulse with a Gaussian 
profile shown in Figure 6-8 and described mathematically in (6-20) 

j(t) = AJ!Ie-1214"cos wot (6-20) 

We can rewrite this rea! function using compi ex notation by applying (28-6) 

The Fourier transform of this Gaussian modulated wave is 

This integrai can be solved by completing the squares in the exponent 

T2 
- 4a - i { w ± wo ) T 

- a  l w ± wo )2 - [ ;: + i( w ± "'11 ) T - a l w ± "'11 f] 
= - a(w±wo)2 - [ -7 + i .j:x( w± wo)j

2 

2Ja 

Now by substituting 



we can solve the integrals to get 

F(w) = A1r[ e�a(��""'J' + e�a(�+wol' ] 
The Fourier transform of a Gaussian is another Gaussian. The widths of the 
transform pair are conjugate variables and are thus inversely proportional to 
each other. 

Consider the envelope of the two pulses we ha ve just examined using Fourier 
transforms. We can widen the temporal pulse, and as we do, the frequency 
spectrum narrows until in the limit of a cw signal, only one frequency 
exists in frequency space. In this limit, the frequency spectrum becomes the 
Dirac delta function (sometimes called the impulse function). The Dirac delta 
function was the first generalized function to be defined and is the only one 
we will discuss25 (the generalized function is also called a singularity function, 
functional, or distribution). 

The definition of the delta function usually encountered is as follows: 

o ( t - to ) = O, (6-21) 

i.e. , the function is zero everywhere except at the point to. The integrai of 
the delta function is 

J�co O (t- to) dt = l (6-22) 

i. e., the delta function has a finite area contai n ed beneath it. 
A mathematically more precise definition of the delta function, based 

o n distribution theory, is obtained by using the sifting property of the delta 
functon 

· 

J�cof (t) o (t - to) dt = f(to) (6-23) 

A distribution is not an ordinary function, but rather it is a method of 
assigning a number to a function. The assignment is expressed formally by 
an integrai of the form of (6-23) , where the delta function located at to 
assigns the value f (to) to the function f (t). lt should be emphasized that it 
is not the delta function itself but rather the assignment operation that is 
defined. 

The Fourier transform of the delta function is easily obtained using 
(6-23) 

D(w) = J�oo o (t- to)e_:iwt dt = e-iwto (6-24) 
The function D(w) has a constant amplitude but a phase that varies linearly 
wtth w. lf to = O, that is, the delta function, is centered at the origin t = O , 

then the delta function is an even function and the Fourier transform is given 

DIRAC DELTA FUNCTION 229 

DIRAC DELTA 
FUNCTION 



230 FOURIER ANALYSIS 

{(t) 

' j 

=_2t0 2t0 3t0 

FIGURE 6·9. The comb function consisting of delta functions spaced by t0. 

by the cosine transform. The transform of the delta function located at the 
origin is a constant [D(w) = cos O = 1]. 

A series of equally spaced delta functions, called the Dirac series or 
sometimes the comb function, is written 

N 

comb(t) = L 8 (t- tn) (6-25) 
n=-N 

where tn = nto; see Figure 6-9. It is useful because it performs a sampling 
operation on another function, as we will see in a moment. The Fourier 
transform of the comb function is 

]' { comb(t)} = COMB(w) = L e-wtn (6-26) 

If there are two delta functions a t to an d - to (se e Figure 6-1 O), then the 
Fourier transform is a cosine function of fr

,
equency llto 

C(w) = e-iwto + eiwto = 2 cos wto 

as shown in the lower half of Figure 6-10. 
If we have a series of 2N + l delta functions equally spaced about the 

origin, we can write their sum as a geometrie series 

N 

L e-iwnto (6-27) 
n=-N 

{(t) 

F(w) 

w 

FIGURE 6·10. The Fourier transform of two delta functions positioned at ±t is the cosine 
function with a frequency of 1/t0. 



Since this is the sum of a geometrie series, we can write 
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1.5 2.0 

1.5 2.0 

(6-28) 

FIGURE 6·11. (a) A plot of the Fourier transform of a set of 2N +l equally spaced delta 
functions where N = 5.  The maximum value of the Fourier transform is 2N + l and the first 
zero is inversely proportional to (2N + 1). (b) A plot of the Fourier transform of a set of 2N + 1 equally spaced delta functions where N= 15. Note that the width of the primary peaks 
narrows as N increases. 
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F (w) 

� � � j Il 'Il Il' � Il j • j j Il � �� j j Il j � Il � Il 

w 
-6w0 w o 6w0 

FIGURE 6·1 2. The Fourier transform of the infinite comb function shown in Figure 6-9. 

A plot of (6-28) is shown in Figure 6-11 for two values of N : N =  5 and 
N= 15. 

As can be seen in Figure 6-11, (6-28) is a periodic function made 
up of large primary peaks surrounded by secondary peaks that decrease in 
amplitude as you move away from the primary peak. The amplitude of the 
primary peak is (2N + l) an d the first zero (a measure of the width of the 
primary peak) is given by 

w = ----

(2N + l)to 

In the limit as N � oo, Figure 6-lla, and b suggest that (6-28) 
approaches a delta function; this can be proved formally.26 Thus, the Fourier 
transform of the comb function in the time domain, for N� oo, is a similar 
comb function in the frequency domain, as shown in Figure 6-12 

JC L�, 8 (t- nfo)} = t�� 8 (w- niLI)) 

In the limit as N� oo, the comb function becomes a periodic function and 
the coefficients of the Fourier series of the periodic function can be shown 
to be equal to the values of the Fourier integrai at nwo = 21T nlto, which 
is the location of the delta functions in the frequency domain (see Figure 
6-12). 

A second approach to evaluating the spectral content of a nonperiodic 
function is to assume that the function,  over the interval of interest, is one period 
of a periodic function. In making this assumption, we treat the function as if it 
were replicated over ali time; the period of the replication would be equa! to the 
length of the interval of interest. We will look at an example of the application 
of this replication process and then treat the replication process formally. The 
result of the formai treatment will be the demonstration that the process of 
replication in the time domain results in a frequency spectrum consisting of 
discrete frequencies, a sampled version of the continuous frequency distribution 
that would be obtained by application of the Fourier transform. This result will 
justify the statement of an important theorem from communication theory that 
specifies the number of samples of a function that are needed to represent the 
function. 

As an example of the application of replication, a Fourier series is used to 
represent a straight line over the interval -l :::; t :::; l. The details are left for 
Problem 6-8; here, we will only display, in Figure 6-13, the first three terms 
of the series over the interval -2 <x< 2. In the interval of interest, the series 
approaches the straight line. Outside the intervaL the fit is poor. The curve 
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r 

FIGURE 6·1 3. Fourier series approximation of the function g(t) = t  over the interval -l ::::; t 
::::; l using the first three terms of the series. We display the interval -2 :S t ::::; 2 to show the 
failure of the approximation outside the desired interval. 

for the Fourier series (the gray curve) demonstrates that the function has been 
replicated. 

T o treat the replication process formally, assume we ha ve a nonperiodic 
function g{t ) defined over the interval -to <t< to, such as the function g(t ) = t 
shown in Figure 6-13. We replicate g(t ) 2N times, creating the function 

N 
gN( t )  = L g(t- nt0) 

n=-N 
{6-29) 

shown in Figure 6-14. We can use a property of a Fourier transform called the 
shifting property ( 6A-5) t o write 

N 
L G(w)e-inwto {6-30) 

n=-N 

We have already found the sum of the geometrie' progression of this form in 
(6-27) and (6-28) 

[ wto ,.. l 
N . sin 2 (2N + l) 

_r { gN (t ) } � G(w) L e -•nwto � G(w) ( 
J . � n=-N · �n 2 

This equation can be rewritten as a function centered on the point wt0 = 21Tn 
and defined over the frequency region one-half a period on either side of these 
points, i.e., we replace w by w± 21rnlto 

g(t) 

FIGURe 6.14. Replication of the function g(t} = t shown in Figure 6-13. 
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As was mentioned earlier, in the limit as N �  x, this becomes a series of delta 
functions. We can use the definition wo = 21r!to to write each delta function in 
terms of frequency ( wto . ) 2 ( 2n 1r) 2 ( ) 

o - - n 1T = - o  w - - = - o w - n w o 2 t0 t0 t0 

When wto l= 21rn, then :;: { gN (t) } = O. Because there are a periodic array of 
these delta functions (see Figure 6-1 2 ) ,  the Fourier transform is an infinite sum 

n = cc 

:J{ gN (tl } = f L G(w) o (w - nwo) 
O n = - :c  

(6-31)  

We have shown mathematically what can be surmised by inspecting Fig­
ures 6-3 and 6-5. The frequency spectrum of a rectangular pulse is shown in 
Figure 6-5. If we replicate the rectangular pulse, we generate a square wave. 
The frequency spectrum of the square wave, shown in Figure 6-3, is a sam­
pled version of Figure 6-5. By replication in the time domain, a function that 
is sampled in the frequency domain is obtained (the comb function, discussed 
in the previous section, performs the sampling). 

The converse is also true. We could measure the spectrum in Figure 6-5 
at discrete, equally spaced, frequency intervals and obtain the same spectrum 
shown in Figure 6-3. If we took the inverse transform of the disc.rete frequency 
samples, we would not get a square pulse but instead would generate the 
function that led to Figure 6-3; namely, a periodic square wave whose period 
equals the origina! pulse width. 

A natura! question is how should F(w) be sampled if the resulting periodic 
function is to truly represent the desired function over one period? The answer 
is called the sampling theorem and was developed by Claude Shannon to 
determine the amount of information that can be transmitted in a communica­
tion c ha n nel. 27 The sampling theorem states that 

if the Fourier transform F( w) of the function f(t) is zero above some cut­
off frequency 

F(w) = O , 

then f(t) is uniquely determined from its values measured at a set of 
ti m es 

1T t =  nt0 = n­
wc 

Thus, at a minimum, we must sample twice in one period of the highest 
frequency present in a waueform. 

Experimentally, the sampling theorem is very important because the nor­
ma! procedure for measuring a temporal signa! is to sample the signa! at a 
number of points in a time interval. The sampled data are then plotted or put 
into a computer for data analysis. An example of the use of sampled temporal 
data is found in the use of digita! audio recordings. These recordings are made 
by sampling the audio signa! and storing the sampled data in digita! form. The 
sampling theory states that if frequencies above a certain value are unimpor­
tant, 20 kHz for human hearing, then samples need only be taken at a temporal 
spacing of to = 112 v, 25 fLSec for audio signals. (The actual sampling frequency 
used in digita! audio recording is 44. 1  kHz, corresponding to a temporal sam­
pling of 22.7 JLSec. The frequency used is slightly higher than required in order 
to be compatible with television.) 
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We often find it necessary to compare functions. With light, we effectiveiy CORRELATION 
compare two waves by interfering them. Where the two waves are alike, 
we see a bright band and when they are dissimilar, we see a biack band. 
We will show an exampie of this type of comparison after discussing the 
methodoiogy. The method for calcuiating the similarity of two functions is 
called the correlation integra! and the resulting function is called the correla-
tion function , h (  T) . If we wish to compare a( t) and b (t) , where a( t) and b (t) 
are different functions, the integrai is called the cross correlation function 

h (  T) = a( t) EB b (t) = I �x a( t)b ''' ( t - T) dt (6-32) 

If a ( t) and b ( t) are the same function, then the correiation integrai is called the 
autocorrelation function.  It is usefui to normalize the correiation functions, 
by dividing by the root mean square average of the two functions, to allow 
comparison with other correiations. The normalized correiatìon function is 

I�z a ( t)b "' ( t - T) dt 
h (  T) = a ( t) EB b( t) = 

"' 1 12 "' 112 [L a( t)a ' (t) dtl [L b (t)b " ( t) dtl 
(6-33) 

If a( t) and b ( t) were light waves, the integrals in the denominator wouid be 
the average intensity of each wave ; thus, the name average energy is usually 
associateci with these integrais. , 

To deveiop a physical intuition about the correlation function, we will 
calculate the autocorrelation function of A(t) ,  a square pulse, defined as 

lA, 
A ( t) = 

O, 

- t0 ::::::: t ::::::: t0 

ali other t 

We will use this example to discover that the autocorrelation function . is 
always an even function and that h (O) of the autocorreiation function is the 
average energy of the function. The function, a construction showing the 
correlation value for t = T, and the normalized autocorrelation function are 
shown in Figure 6- 1 5 .  

T o calculate the correlation function, we simply slide one function across 
the second, calculating the overlapping area for each dispiacement T. The 
autocorrelation function at T is the overlap area of the function and its clone, 
the area shaded in Figure 6- 15 .  For A(t) ,  the area of overlap equals the 
area of the two pulses (A ·2t0 + A·2t0) , minus the area of each pulse not 
overlapped (AT + A T) .  The area is thus 

4At0 - 2AT 

We divide by the area of the pulses to normalize, yielding 

lf we p lo t h ( T) ,  w e obtain a triangle whose base is twice the width of the 
pulse; this is the autocorrelation of the square pulse A(t) .  
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-t o 

A(t ) A(t) - A<t--r) 

-t o 

h (T) 

-2t0 2t0 

t0 + -r 

FIGURE 6·1 5. The calculation of the autocorrelation function h( T) , of the function A(t) .  We 
simply slide one A(t) over another copy of A(t) and record the overlapping area, shown here 
as the shaded area. 

A negative shift of A(t) with respect to its clone (leftward shift in Figure 
6-15) is equivalent to a positive shift between the two functions. We can 
easily demonstrate this fact and thereby discover that the autocorrelation is 
an even function. Mathematically, the use of a negative shift to generate the 
autocorrelation function is written as 

h( - 7) = f�x A(t)A(t + 7) dt 

Let t + 7 = y and dt = dy so that the correlation integrai can be rewritten 

h(- 7) = f�x A(y - 7)A(y) dy = h(7) 

This means that the autocorrelation is always an even function. 
The maximum value of the autocorrelation occurs when the two iden­

tica} functions are aligned and 7 = O ,  where the autocorrelation is given by 

h(O) = J�)A(t) ]2 dt 

This integrai is equal to the average energy of A(t) . 
If the two functions are identical but o ne leads the other by a time r, 

then the maximum value of what should now be called a cross correlation 
occurs at 7 = r. As an example of this property, we will calculate the 
cross correlation function of two periodic functions with the same period 
but different epoch angles 

a(t ) = A cos (wot + e) 
b(t) = B cos (wot + c/>) 

The cross correlation function is 

AB 
h( 7) = 2 COS (WQ 'T  + e - cp) 

The peak of this correlation function is periodic and the location of the 
maximum allows the determination of the relative phase difference between 
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a(t) and b(t) , i .e. , how much a (t) leads or lags b(t) . This result is the mathe­
matical representation of an optical interference experiment. 

In summary, the peak value of a correlation function as well as the 
value of the relative displacement T measure the degree of similarity an d the 
relative temporal position of the functions. 

One of the properties of the Fourier transform is that the correlation 
integrai is given by the Fourier transform of the product of the Fourier 
transforms of the two functions 

h( T) = a (t) EB b(t) = .r { A(w)B* (w)} (6-34) 

Another class of integrals we will find usefui is called convolution integrals 

g (T) = a(t) 0 b (t) = J�oo a (t)b (T- t) dt (6-35) 

In German, this integrai is called the faltung or folding integrai because the 
function b(t) is foided over the ordinate before the integrai is performed. The 
weighting function b (T - t) , calle d the convoiution kernei, ca n be thought of 
as a window that moves in time and through which we observe the function 
a(t) . The convolution is the time average of the temporai function a(t) viewed 
through this window. 

The convoiution function is easily confused with the correiation function 
(6-33) , but they are not the same. In generai, the correlation operation does 
not commute 

a (  t) EB b(t) =l= b ( t) EB a(t) 

while the convolution does (see Appendix 6A) 

a (t) 0 b( t) = b( t) 0 a(t) 

There is a simple reiationship between the convolution and correlation func­
tions 

a(t) EB b(t) = a(t) 0 b* ( - t) (6-36) 

We see that the correlation and convolution functions are identica! if the 
weighting function b (t) is a real, even function. If we look back at (6-12) we 
can now recognize it as a convoiution integrai. 

We will evaiuate the convoiution of the two functions in Figures 6- 16a 
and b. Figures 6- 1 6c and d display graphically the evaiuation of the integrai. 
The convolution an d correiation for the two functions shown in Figures 6- 1 6a 
and b are listed in Table 6.2.  The differences between the convoiution and 
correlation for these two functions are not large even though the functions are 

TABLE 6.2 Comparison of Correlation and Convolution 
Correlation h (T) Convolution g( T) 

o 
( l /3 ) (T  + 3)2 3 
3 - ( l/3) ( T - 1 )2 
o 

T <  - 3  
- 3  < T < Q 

0 < T < 1  
1 < T < 4  

T > 4  

o 
(1/3){ T + 1 )2 

3 
3 - (1/3){ T - 3)2 

o 

T <  - 1  
- 1 < T < 2  

2 < T < 3  
3 < T < 6  

T >  6 
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CONVOLUTION 
INTEGRALS 

The two functions in Figures 
6-16a and b are called functions with 
compact support. This means that 
both are identically zero outside some 
finite interval. For this type of func­
tion, the width of the convolution is 
equa! to the sum of the widths of the 
two functions, of compact support, 
being convolved. Figures 6-16 and 
6-17 verify this statement. For func­
tions that do not have compact sup­
port, the relationship between the 
widths is only approximate. 
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' li ,  

a{ T} b('T) 

2 2 

'T 
3 -1 3 

(a) (b) 

a (T) b (-T) a (T) b (4-T) 

-3 3 - 1 3 5 

(c) (d) 
FIGURE 6- 1 6. The calculation of the convolution integrai involving the functions a('T) and 
b ('T) ,  shown in (a) and (b) ,  respectively, is obtained by the operation shown in (c)  and (d) .  We 
reflect b ('T) through the ordinate and then slide the reflected b ( - t) over a ( t) ,  respectively, as 
we did for the correlation function .  

not symmetric about the origin; one of the problems at the end of the chapter 
involves two functions that produce larger differences in the correlation and 
convolution. 

Figure 6- 1 7  displays a plot of the convolution and correlation functions 
for our example. Note that the convolution operation is a smoothing oper­
ation, i. e. , sharp peaks are rourded an d steep slopes are reduced. Because 
of the smoothing process, the convolution is often referred to as filtering. 
The amount of smoothing depends on the nature of the two functions. For 
example, if we replaced b (t) in the above example with a delta function , 
then the convolution of a(t) with o(t) would be 

-3 -2 -1  o 2 3 4 

.....,.. Correlation 

-o- Convolution 

5 6 

FIGURE 6- 1 7 . Convolution and correlation functions for the two functions shown in Figure 
6- 1 6. 
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a(t) 0 o ( t) = J:C/0 a(t) o  (T - t) dt = a (  T) (6-37) 

Thus, the convolution of an arbitrary function a(t) with a delta function 
reproduces the value of the function a(t) at the delta function position. If 
we move the delta function over a(t) , the convolution function produced is 
identica! to the originai function. If the function b(t) is allowed to change 
from the delta function to a rectangular pulse of increasing width, then the 
resulting convolution becomes an increasingly smoothed versi o n of a ( t) . The 
amount of smoothing is directly proportional to the width of the rectangular 
pulse. 

A Fourier transform property allows us to write the Fourier transform of 
the convolution as the product of the Fourier transforms of the two functions 
involved in the convolution 

J' { a (t) ® b( t) j = J' { r% a(t)b (T - t) dt} = A(w)B(w) (6-38) 

Why are we interested in the convolution? It is an important function in the 
theory of linear systems and we will find it useful to treat optical systems as 
linear systems. To define a linear system, we use an operational definition. 
We then use the operational definition to L'rove that we can characterize 
a linear system by determining its response to a delta function input. The 
output of the linear system to an arbitrary input function will be shown to 
be the convolution of the input function and the delta function response. 

To define a linear system, assume that the system is a black box that 
may contain an optical, electrical, or mechanical system. The black box 
uniquely maps any input onto an output but not necessarily in a one­
to-one manner. We will represent the operation of the black box by the 
mathematical operator T, which maps the input function f ( t) onto the output 
function g(t) 

ry {h (t) } ::? gl ( t) , 

The box (system) has the homogeneous property if 

T { afi ( t) }  ::? ag1 (t) 

lt has linearity if it obeys the principle of superposition 

ry { afi ( t) + bf2 ( t) }  ::? ag1 (t) + bg2 ( t) 

lt has stationarity or is shift invariant if 

rr{JI (t - to ) } ::? g1 (t - to ) 

If the box is linear an d stationary (invariant), then w e will be ab le t o 
develop a number of useful relationships between the input and output of 
the system that form the foundation of linear system theory. The relationships 
are based on the principle of superpositio"n that allows the decomposition of 
a complex input into a linear combination of simple functions. Theory allows 
the calculation of the effect of the linear system on the simple functions. The 
modified versions of the simple functions are then recombined to form the 
response to the complex input. 
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The simple functions selected for characterization of a system are the eigen­
functions of the linear, invariant system. These eigenfunctions are exponentials 
of the form e iwt . The linear system modifies the phase and amplitude of the 
eigenfunctions but the eigenfunctions retain their form, i . e . ,  if f (t) + ig(t) is an 
eigenfunction of the linear system, then the output will be c1j(t) + iczg(t) . The 
constants c1 and cz are called eigenvalues of the system. The problem of find­
ing the output of a linear system to a complex input is therefore reduced to a 
problem of properly decomposing the input into a set of eigenfunctions, then 
modifying and recombining these eigenfunctions into the output function . 

To prove that the exponential e iwt is an eigenfunction , we denote the 
operation of the system on the exponential by 

ry { e iwt} = e( t) 
Since the system is invariant 

e(t + tl ) = rr{ e iw(t + tl l } = rr{ e iwte iwtl } 

Because the�system is homogeneous, this can be written 

ry { e iw(t + t1 ) } = ry { e iwt} e iwt1 = e iwtl e(t) 

At t =  O, we have 

but t1 is arbitrary so we can replace t1 by t and rewrite this result as 

e(t) = e(O)e iwt 

The multiplier of the exponent e(O) is a constant, possibly complex, demon­
strating that the exponential is an eigenfunction . 

When we put an impulse function (a delta function) into the input of 
the linear system, we obtain 

rr{o (t)} :::> s ( t) 

where s ( t) is called the impulse response [in mathematics, s ( t) is called the 
Green 's function an d in optics, it is cali ed the point spread function ] .  Because 
of the assumed properties of linearity an d stationarity, 

rr {f ( t1 ) 8  ( t - t1 ) + f ( tz ) o  ( t - tz ) } => f ( t1 )s ( t - t1 ) + f ( tz )s ( t - tz ) 

where f (t1 ) and f ( tz ) are eigenfunctions of the linear operation rr. For a large 
set of impulse responses, 

(6-39) 

We can extrapolate the result given by (6-39) to a continuous distribu­
tion by using the sifting property of the delta function 
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to decompose the input function 

'T { f f (t' ) lì ( t - t' )  dt'} 
We now use the linearity of the system and the fact that f (t' ) is an eigen­
function of 'T to write 

'T { J f (t' ) lì  ( t - t' ) dt'} =? J f (t ' )'T ( lì  (t - t' ) ) dt' =? J f (t' )s ( t - t' )  dt' 

The integrai 

J f (t' )s ( t - t' ) dt' (6-40) 

is a convoiution integrai (sometimes, this integrai is called the superposition 
integrai and the resuit just obtained expiains why) . Our result demonstrates 
the fact that a linear system is compieteiy characterized by its response to an 
impuise. To obtain the output from a linear system for a compiex input, we 
need oniy convolve the input with the impulse response of the system. 

The Fourier transform of s(t) is S(w) and is called the transfer function 
frequency response. The frequency spectrum of the system's output is the 
product of the input spectrum (the Fourier transform of the input function) 
and the transfer function S(w)F(w) . The output of the system is the Fourier 
transform of this product, as stated mathematically by (6-38). 

Another interpretation of the impuise response s (t) emphasizes its roie as 
a weighting function in the convolution integrai (6-40) . The impulse response 
can be viewed as a measure of the ability of the system to remember past 
events. This is in keeping with the earlier interpretation of the weighting 
function as a window through which a time average is performed. The 
window determines how much of the past history of the function can be 
seen when the time average is performed. 

We have limited our discussion to one-dimensional temporal functions but 
in optics, we will need to perform transforms of functions with two spatial 
coordinates. We can define a two-dimensional Fourier transform by making 
a simple extension of the one-dimensional definition (6-13) 

F(ç, 7]) = J f�x f (x, y)e
-i(çx+ 17y) dx dy 

lf f (x, y) is separable in x and y ,  we can write 

F(ç, 7]) = J�70j(x)e- içx dx J�x g (y)e-i11Y dy 

= F(ç)G (YJ) 

(6-41 )  

(6-42) 

FO RIER 
TRANSF RMS IN 
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For separable functions, our previous discussions are easily extended to 
two dimensions; however, performing the integration of the two-dimensional 
transform can become very difficult if the function is not separable. 

In optics, most of the functions we wish to consider have circular sym­
metry, an d i t is appropriate to make a change of variables to polar forma t x = r cos e, y = r sin () 

g = p cos e '  YJ = p sin e 

In polar coordinate, the circularly symmetric function is not only separable 
but because it has circular symmetry, it is independent of 8 ;  thus, 

f (x, y ) =? f (r, ()) = f (r)g( ()) = j (r) 

_7 {J (r, e) j = F(p, e ) = F(p) 

F(p,. e) = J27T d() J x j (r) e- ipr(cos 8 cos 8 + sin 8 sin 8) r dr ( o o 

= fa" 

f (r) r dr I:� e-;pc co,( e- e) dO (6-43) 

The second integral belongs to a class of functions called the Bessel function 
defined by the integral 

I 27T Jn (rp) = 
0 

e i[rp sin (e-ne) ]  d() 

The integral in (6-43 ) corresponds to the n = O, zero-arder Bessel function. 
Using this definition, we can write (6-43) as 

F(p) = I: f (r) Jo ( rp) r dr (6-44) 

This transform is called the Fourier-Bessel transform or the Hankel zero­
arder transform .  We now apply (6-44) to a simple circular symmetric func­
tion, sometimes called the top-hat function 

f (x, y) = { l , 
O, 

jx2 + y2 ::; l} = J (r, ()) = J (r) = { l , 
all other x, y O, 

The transform of the top-hat function is  

We use the identity 

to obtain 

F(p) = ( J0 (rp) r dr 

F(p) = 
JI (p) 

p 

r ::;  l 
all other r 

(6-45) 



!d to The Bessel functions are important in optics because most optical sys-
ional tems have circular symmetry. A whole family of Bessel functions exist, and 

as in the case for sines and cosines, they may be calculated using a series 
sym- expansion. The series expansion is 
ma t 

1rable 

(6-43) 
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(6-44) 

el zero­
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1er r 

(6-45) 

� ( - l )kpn + 2k 
Jn (p) = {:o 2n + 2kk ! (n  + k) ! (6-46) 

The values of Bessel functions have been tabulated and are found in most 
collections of mathematical tables. We will discuss the Bessel function of 
order l when we discuss diffraction by a circular aperture. 

In this chapter, we have introduced a number of mathematical tools that will be SUMMARY 
needed to interpret the optical observations presented in later chapters. 

Fourier Series T o describe a periodi c function f (t) , the seri es 
% % 

f (t) = 
a; + L a1 cos (wt + L b1 sin (wt 

t;, l /= 1 
can be used. The coefficients of the two summations are obtained by carrying out 
the integrals 

I 7TfW 

an = !::! f (t) cos nwt dt 
7T -7T!w 

I 7Tiw 
bn = !::! j ( t) sin nwt dt 

7T -7TfW 

Fourier Transform A nonperiodic function can be represented by the integrai 

which transforms f ( t) from a temporal representation to the frequency representation 
F(w) . The inverse transform can also be performed 

Correlation The correlation function is a useful integrai for comparing the sim­
ilarity between two functions 

h (r) = a ( t) EB b( t) = I�x a (t)b* (t - r) dt 

lt can be thought of as the calculation of the area of overlap of two functions as 
one of the functions slides over the other. We suggested that optical interference was 
related to this mathematical function . 

The Fourier transform provides another way of calculating the correlation 
function .  The correlation function is the Fourier transform of the product of the Fourier 
transforms of the two functions to be correlateci 

h (r) = a (t) EB b (t) = J' { A(w)B* ( (v) } 

SUMMARY 243 
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Convolution A second integrai of use in linear system theory is the convolution 
integra!. It is sometimes called the smoothing operation because if the function a (t) 
has any sharp peaks, they will be rounded, or if a (t) has any steep slopes, they will 
be reduced. The amo un t of smoothing depends o n the nature of a ( t) an d b( t) . The 
convolution integrai of a ( t) and b(t) is defined as 

g( T) = a ( t) 0 b(t) = I �x a (t)b (  T - t) dt 

As was the case with the correlation, the Fourier transform can be used in the 
calculation of the convolution. The Fourier transform of the convolution is the product 
of the Fourier transforms of the two functions to be convolved 

� { a(  t) 0 b(t) } = A(w)B(w) 

Linear Systems In the discussion of linear systems, the delta function was 
found to be useful in the description of the response of a linear system. The delta 
function is délined by the integrai 

If the delta function is the input function to the linear system, then the output is s(t) , 
the impulse response of the linear system . The impulse response can be used in the 
convolution integrai to predict the output of the linear system. For an arbitrary input 
f ( t) ,  the output of a ìinear system is given by 

I j (t ' )s  ( t - t' )dt' 

Again, the Fourier transform can be used to calculate this information . The Fourier 
transform of the impulse response is called the transfer function of the linear system 
S(w) .  If F(w) is the frequency spectrum (Fourier transform) of the input function j (t) , 
then the output frequency spectrum of the linear system is given by S (w)•F(w) . 

Twomdimern ional Fourier -ransforms If the two-dimensional function 
under study h (x, y) is separable in its dependence on the spatial coordinates h (x, y) = 
f (x)g(y) , then the two-dimensional Fourier transform is 

For circularly symmetric functions, 

j (x, y ) =? f (r, e) = f ( r)g( e) = J (r) 

the Fourier transform is 

� { f (r, e) }  = F(p, 0} = F(p) 

and is given by the Hankel transform 

F(p) = I: f (r) Jo(rp)r dr 

Sampling Theorem The sampling theorem states that if the Fourier transform 
F(w) of the function f ( t) is zero above some cut-off frequency 
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F(w) = O , 

then f (t) is uniquely determined by the values of f (t) measured at a set of times 
calculated using the formula 

1T t =  nt0 = n­
wc 

This means that we must take two sample points in every period to, where llto is the 
high est frequency contained in the function f ( t ) .  

6- 1 .  Prove the linearity theorem of Fourier transforms 

w h ere 

_r { ag(x) + bh (x) } = a_r { g(x) f + b_r{ h (x) } 

= aG(k) + bH(k) 

6-2. Prove the similarity theorem of Fourier transforms if 

then 

_r { g(x) } = G(k) 

l ( k ' 
.7{ g(axl } = 

�G � ) 
6-3. Prove the shift theorem o f  Fourier transforms if 

_r { g(x) } = G(k) 

then 

_r { g(x - a)} = G(k)e -ika 

6-4. Prove the convolution theorem of Fourier transforms if 

_r { g(x) } = G(k) 

an d 

_r { h (x) } = H(k) 

then 

7 [ r% g(ç)h (x - l'l dç} � G(k)H(k) 

6-S . Prove the autocorrelation theorem of Fourier 
·
transforms 

7 { [% g(ç)g' (ç - x) dç} � /G(k) /2 

6"6 ·  Find the Fourier series for the function f (x) = x2 over the range -a :s x :s a .  
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6-7.  Fin d the Fourier series representation of the periodic function 

l 
l

, 

j ( t) = 
- l ,  

T o <  t <  2 

T 2 < t < T 

6-8. Find the Fourier transform of 

{ e - ax , X >  O 
f (x) = 

O, x <  O 

6-9. Compare the convolution and correlation of the following two functions: { l . 
a(t) = 

O, o >  t >  l 

b (t) � 

{ ò {t) � e � ', 

O, 
t �  o 
t <  o 

6- 10.  We can perform repeated convolutions, and as we do, the fina! convolution 
will tend toward a Gaussian function . To demonstrate this fact, calculate the 
convolutions of { l ,  

fn (t) = 
O, 

for 

7} = l ,  72 = 2 , 

Plot the results for each convolution 

6- H .  Assume that the function { t, 
f ( t) = 

O .  

l 7 1 ::; 7n 
ali other t 

- l 73 - 2 ·  

ali other t 
is periodic and find the Fourier series over the interval -l < t < l .  

6-12.  Evaluate the infin ite series derived i n  Problem 6 - 1 1 when t = TTI3. 
6-13. Using the results of Problem 6- 1 1 ,  write a computer program to verify Figure 

6- 13 .  
6- 14. Show that 

unless m = n .  
6-1 5 .  Show that 

r -,d,v . _ -,d,v cos(m - n )wt dt = O 

I r./w { O  
f (t) dt = ' 

-r.f,v nonzero, 

f (t) = -J ( - t) 
f (t) = J ( - t) 

6- 1 6 .  Assume that the Fourier transform of f (t) is F(w) . What is the Fourier transform 
of f (t + t ' )  + f (t - t' ) ?  



6- 1 7 .  Assume that the Fourier transform of j (t) is F(w) . What is the Fourier transform 
of j (t) sin (w'/2 ) t? 

6-18.  The Oirac delta function is the unit operator for convolutions, just as zero is for 
addition and one is for multiplication . Prove that this statement is true. 

6- 1 9 .  Find the Fourier transform of the function 

{ l + cos wot, 
j (t) = 

O, ali other t 

6-20. Use the shifting property of the Fourier transform (6A-5) to rewrite (6-29) into 
the form shown in (6-30) . 

6-21 .  Use (6-34) to find the Fourier transform of 

j (t) = ! l - lt l 
O,  

! t i :::; to 

!t i >  to 

PROBLEMS 24 7 
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FOURIER TRAN FORM Some of the important properties of the Fourier transform are given below. 
PROPERTIES Their proof is left to the reader as problems. We use the following definitions: 

248 

F(lù) =.r {f(t)} = J�
oof( r)e-iwT d-r 

G(lù) = _r { g(t)} = J�oo g( r)e-iwT dr 

We also let a and b be constants. 

Linearity 

Scaling 

Shlfting 

Conjug tion 

Dlfferentlation 

Convolutlon 

_r {af(t) + bg{t)} = aF(lù) + bG( lù) 

.1' {j* (t)} = F* ( - lù) 

.r{ dnj(t) } 
= ( ilù)nF(lù) dtn 

(6A-1) 

(6A-2) 

(6A-3) 

(6A-4) 

(6A-5) 

(6A-6) 

(6A-7) 

(6A-8) 
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Parseval's Theorem 

fJ(tJg' (t)dt = roo F(w)G(w) dw (6A-9) 

Correlat· on 

Y{ fJ(tJg' (t - T) dt} = F(w)G' (w) (6A- 1 0) 

A few common Fourier transform pairs are listed below. Some of these 
have been derived in the chapter and others are the subject of problems at 
the end of Chapter 6. See A. Papoulis26 for a more complete listing, as weli 
as more details on the subject of Fourier transforms. 

f(t) F(w) 

r, - to ::=; t ::; to  sin w ta 
ali other t w t0 O, 

(6A- 1 1 ) 

[ l - l t l .  - to ::=; t ::=; to 
sinc2 wto 

l O, ali other t 
(6A- 12)  

e - t l 
l +  w2 (6A- 13) 

comb t comb w (6A- 14) 

Commutative 

f(x) ® g(x) = g(x) ® f(x) (6A- 15)  

Distributive 

[aj(x) + bg(x) ]  ® w(x) = a[ j(x) ® w(x) ]  + b[ g(x) ® w(x) ]  (6A-16)  

Associative 

[ j(x) ® g(x) ]  ® w(x) = j(x) ® [ g(x) ® w(x) ]  (6A-1 7) 

ldentity 

j(x) ® o(x) = f(x) (6A-18) 

Shift·lnvariant 

f(x - xo) ® g(x) = f(x) ® g(x - xo) (6A- 19) 

CONVOLU ION 
PROPERTIES 


