Fourier Analysis

In the foregoing theoretical development of light, we have assumed that only
one frequency of light was present. In nature this never occurs; thus, we need
to expand our discussion to allow for multiple frequencies. We will introduce
several mathematical techniques in this chapter that will help in handling
multiple frequencies. The techniques we will discuss were developed by
dJean Baptiste Joseph Baron de Fourier (1768-1830). (The technique was
- ... to aid Fourer in the solution of heat flow problems. His first
wwev. ON the subject was rejected because Lagrange did not believe the
converge. In the 18th century, mathematicians did not view a
function as an infinite series of terms and the approach presented by Fourier
required a major modification in the thinking of mathematicians. Fourier did
not discover any of the principal results of the theory that bears his name.
Dirichlet was one of the key contributers to the development of the theory,
establishing some of the convergence criteria for the series.) The Fourier
theory states that a Fourier series, a sum of sinusoidal functions, can be
used any periodic functions and the Fourier transform, an integral
can be used to describe nonperiodic functions.
discussions concerning light waves have also been limited to plane
wavefronts. We will learn in later chapters that the Fourier theory, devel-
oped to handle multiple frequencies, can be used to describe an arbitrary
wavefront in terms of combinations of plane waves. The mathematical tech-
niques for handling multiple frequencies and arbitrary wavefronts, based on
the Fourier theory, form the - of the modern approach to physi-
cal optics. Applications of the Fourier theory will be found in Chapter 8 in
the discussions concerning coherence and in Chapter 10 in the discussions
toncerning diffraction. '
’ The Fourier theory allows the representation of a function in terms of
Es frequency or temporal characteristics and permits one to easily move
frZtWeen the two representations. The ability to move from a temporal to
quency representation and back, provided by the Fourier theory, allows
@ theory of optics to be developed using single frequencies and simple
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FOURIER SERIES

waveforms. The resultant theory can then be applied to more general wayes
through application of the Fourier series or transform.

In this chapter, we will first discuss the Fourier series for the repre-
sentation of periodic functions and then introduce the Fourier transform,
as an extension of the series, to handle nonperiodic functions. The use of
a Fourier series to describe a square wave is discussed as is the use of 3
Fourier transfofm to describe a sinusoidal wave of finite duration.
~ The measurement process used to obtain information about continuous
functions found in nature is accomplished by making discrete measurements
(called samples) of the functions. The development of the Fourier theory
presents the opportunity to justify the experimental approach, by examining
the processes of replication and sampling. The opportunity to discuss this
important concept is taken in this chapter even though the theory will not
be directly appiied in this book.

In the mid-1940s the concepts developed for electrical communication
systems based on linear system theory and dependent on the use of the
Fourier method were introduced by P.M. Duffieux?? and R.K. Luneberg?
for the analysis of optical imaging systems. In this chapter, the concepts of
impulse response (also called the Green’s i_.. “and convolution integrals
are introduced and their use in the description of a linear system operating on
an arbitrary input is discussed. The linear system approach to optics will be
associated with the Fresnel formulation of diffraction in Chapters 9 and 10.
This approach to optics has resulted in the development of the application
of optical signal processing (Appendix 10-B) and has led to many of the
advances in the area of medical imaging.

The mathematical concepts and examples in this chapter will often
be presented without immediate association with the physical observations
that require their use. The physical observations will be introduced in later
chapters after the development of the mathematical tools.

We wish to examine the use of a trigonometric expansion of sines and
cosines called the Fourier series to describe periodic functions. The possibility
of such an expansion was known to Euler, but it was not until the derivation
and use of the expansion by Fourier that the usefulness of such an expansion
was recognized.

The Fourier theorem as stated and proved by Dirichlet is this

If a function f(t) is periodic, has a finite number of points of ordinary
discontinuity, and has a finite number of maxima and minima in the
intervai representing the period, then the function can be represented
by a Fourier series

%
f(t) = 0—20- + L ag cos ({wt) + Z{ b, sin (¢wt) (6-1)
The requirements on the function are all met by physically realizable func-
tions.

We will not prove the theorem but simply show that it is plausible by
proving that the right side of {6-1) is periodic. We have required the left side
of (6-1), j(t), to be periodic, i.e., f(t) = f(t + T), where T = 27/ w; thus, the
right side of (6-1) must also e periodic.



+ Z a, Cos (wt + Z b, sin ‘wt

/=1 =1

+ Za, cos tw(t + T) + Zb/ sin w(t + T)

=1 =1

For all values of /; we must have
a, cos {wt =a, cos (lwt + 2/)

b, sin twt = b, sin (wt + 2¢)

which are true if # is an integer.

Examination of (6-1) shows that the expansion is in terms of sine and
cosine functions that are harmonics of the frequency w = 27/T, where T is
the period of the periodic function f (t). Each harmonic ¢ of the fundamental
frequency w is multiplied by a coefficient, and the task of applying the Fourier
theorem reduces to the problem Of finding the coefficients a, and b, The
steps needed to derive the expressions for the are quite simple,
as are the resulting equations for determining the coefficients. We will derive
the expressions used to determine the coefficients of the harmonics making
up the Fourier series and discuss two special cases that result in a shortcut
in applying the Fourier series to certain classes of functions.

dc Term

The coefficient associated with /= 0 is called the dc term because it is
associated with zero frequency. (There is no by coefficient because the sine
of zero frequency is zero.) To determine the constant ag, we multiply both
sides of (6-1) by dt and integrate over one period (—mw < t < 7 w)

7w Tlw a x 7w o 7w
J f(t)dtzj —Odt+2j a, cos lwt dt+2j b, sin dwt dt
—7lw -l 2 . —7lw — J -7l
/=1 (=1
The integral of a sine or a cosine function over one period is zero; thus,
7w
1)
ap = —J f(t)dt (6-2)
TJ) -7l

We see that ag is the average value of f (t) over one period. If f (t) is symmetric
§bout the abscissa, then ag = 0. I

Cosine Series

To obtain the coefficients of the cosine series a,, we multiply both sides of
(6-1) by cos nwt, where n represents a preselected harmonic of the series

f o s
J f#) cos net dt = J

cos nwt dt

0
e —alw 2

7lw

i Tiw ol
+ Z J' a, cos /(wt cos nwt dt + Z[ b, sin fwt cos nwt dt
/=1° "Tlo

1 )
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We now use the trigonometric identities

cos (¢wt) cos (nwt) = =[cos (£ + n)wt + cos (/— n)wt ]

sin (¢wt) cos (nwt) = =[sin (¢ + n)wt + sin (— n)wt ]

NI~ NI

to evaluate the two summations. The first summation contains terms of the
form

7w
J a, cos (wt cos nwt dt

—7lw

1 w 1 7w
=—j a, cos (+ n)wt dt +—[ as cos ((— n) wt dt
2 —mlw 2)-no

When ¢# n, both of the integrals are zero (see Problem 6-14). When /' =
n, the first integral is zero but the second integral is (#/w)a,. The second
summation contains terms of the form

o |
f Ay sin dwt cos nwt dt

)

mlw 7w
1 1 '

=—j as sin (+ n)owt dt + —j a, sin (= n) wt dt
. - 2] -mw

which are zero for all values of ¢ (The fact that the integrals involving sines
and cosines are zero except when /= n defines a property of sinusoids known
as orthogonality.) Therefore,

7w 1 wlw ma
f f(t) cos nwtdt = —[ ap dt = L

—7lw 2 ) -wlo w

The coefficients of the cosine series are obtained by using the integral

an = c_uJ' f(t) cos nwt dt (6-3)

Sine Series

An integral similar to (6-3) can be derived for the coefficients beof the sine
series if we multiply both sides of (6-1) by sin(nwt) and make use of the
identity

sin (¢wt) * sin (nwt) = l[cos (= n)owt — cos (¢ + n)wt]

2
We find that the coefficients of the sine series are given by
7w
®
b, = —f f(t) sin nwt dt (6-4)
TJ -7l
The equations for the coefficients (6-3) and (6-4) are sometimes

call d Euler’s formulas, in recognition of Euler’s early involvement with the
expansion.
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The sine and cosine series can individually be used to represent certain
classes of functions. For example, suppose f is an even function

flo) = f(-1)

then f(t) can be represented by a series of cosines [ag is included in this
series as the coefficient of cos(0)]. This occurs because the integral, over one
he period about zero (from —7/w to @w), of an even function is nonzero, but
the integral of an odd function over the same interval is zero (see Problem
6-15). Using this fact, we can determine that (6-4) will be zero whenever f(t)
is an even function. [To understand why (6-4) is zero for an even function,
remember that the sine is an odd function and the product of an odd function
and an even function is an odd function.]
If f(#) is an odd function

dt
flh=~-f(-t)
= then it can be represented by a series of sine terms. If f(#) is neither odd nor
nd even (for example, f(t) = ') then both the sine and cosine series are required.
Exponential Representation
The representation of the Fourier series given in (6-1) is convenient for ana-
dt lyzing real functions, but for extending our discussion to Fourier transforms,
we will find it useful to express the Fourier series as an exponential series.
il The first step in reformulating the Fourier series is to use the identities
n 1 . .
) cos fwt = 5(8 ot | ikt
sin ‘wt = ;l(e"“’t — e i)
to rewrite (6-1) as
@ 1w Lo 1 Ly
3) fin =23+ 5Z(a/— ibs) €% + 5Z(a[+ ib;) e ™ (6-5)
/=1 =1
where the coefficients in the summations are given by
@ 7w
ne az,= as* ibs :—f f(t)(cos fwt £ i sin Lwt) dt
TJ)-7lw
he
w 7w '
- _j f(t)eil{'wt dt
R )
This allows (6-5) to be rewritten as a summation over positive and negative
values of 7
f=0oc
f =2 ae™ (6-6)
4) (= —
where
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PERIODIC SQUARE
WAVE

One of the mathematical divi-
dends provided by the Fourier series
is that it can be used to evaluate
infinite series. Although it does not
impact on our study of optics, it is
interesting to see an example of this
application of the Fourier series. We
demonstrate this use of the Fourier
series by evaluating the square wave
at t = 0 in Figure 6-1 to obtain

1 1 1 1

m 37 57 Im .“,

By rewriting this relationship, we
obtain the sum of Gregory’s series

We can establish some general properties of a, given by (6-7) by replac-
ing t by —t

: mlw
13 .
, = —t i’wt t
s 277'J—7'r/wf( )e <

Since f (—t) = f(t) for an even function and f (—t) = —f (t) for an odd function,
we can make the following statement about the coefficients:

a, = a-, f(t) even

a = —a, f(t) odd
o # a-, f(t) neither odd nor even
o’s complex f{t) neither odd nor even

As an example of how the Fourier series is applied, we will evaluate the
function

1 T T
’ kK k

flt)= (6-8)
0, %stsT—%

The graphical representation of (6-8), shown in Figure 6-1, consists of a
periodic array of rectangular pulses called a square wave. The process of
calculating the Fourier coefficients of the square wave is called harmonic
analysis.

- The coefficients of the Fourier series in exponential form are given by

1 Tlk
ar= = e "t dt
g Tj—r/k

For /# 0, we have

: .
o=~ 1 lexp{oir@nlkl} - exp{—ic@mi))) = 25T g )
L ko2 Ik
For ap, the integral is
Tk
_ lj _1 (I T _2
=T ~T/kdt_T\k+k)_k (6-10)

L)

Tik

FIGURE 6-1. Generalized square wave where k is a constant.
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Square wave

=== Fundamental
=== 3rd Harmonic

+ 5th Harmonic
—— 7th Harmonic

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time

FIGURE 6-2. The Fourier series approximation of a square wave with the series terminated
after the fundamental, third, fifth, and seventh harmonic.

As an example, let k = 4. The Fourier series is given by

fif) = 1 4o ‘cos wt  cos 3wt L cos St
2 T 3T 5

where we have combined the positive and negative exponents of (6-6) in
order to express the expansion in terms of cosine functions. As you can
see in Figure 6-1, the square wave defined by (6-8) is an even function;
from our previous comments concerning even and odd functions, we are
not surprised to find that the Fourier series is a cosine series.

In Figure 6-2 we plot the Fourier series for f (t) with the series terminated
at¢= 1, 3,5, and 7. Each additional term adds another odd harmonic to the
previous estimate of the function. As we include more and more terms, the
series becomes a better approximation of the square wave we are attempting
to represent.

Increasing the value of kis equivalent to increasing the period of the square
wave. [f we think of each positive going part of f (t) in Figure 6-1 as a pulse, then
the width of the pulse decreases as k increases, and the time between pulses
increases. We can easily calculate the coefficients of the harmonics for three
examples of square waves with k = 4, 8, and 16. The results of the calculation
are shown in Table 6.1. A convenient way of displaying these results is to plot
thesize of the coefficients a,as a function of 7w. This plot is called the frequency
spectrum and is shown in Figure 6-3. Each spectrum displays the coefficients,
thatis, the amplitudes, of each of the harmonic waves in the Fourier series of a
square wave with different values of k.

TABLE 6.1 Fourier Coefficients for a Square Wave
k

(o] (03] [6%) [0 %] (67 as ag g asg

4 05 0.318 0 —0.106 0 0.064 0 -0.045 0
8 0.25 0.225 0.159 0.075 0 —0.045 —0.053 —0.032 0
16 0.125 0.122 0.113 0.098 0.080 0.059 0.038 0.017 0
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(a)
FIGURE 6-3a. The coefficients of the Fourier series of a square wave of width T/2.

(b)
FIGURE 6-3b. Coefficients of the Fourier series of a square wave of width T/4.

(c)
FIGURE 6-3¢. Coefficients of the Fourier series of a square wave of width T/8.



The discrete spectra in Figure 6-3 are symmetric about zero because
f(t) is symmetric. For this reason, we only display the positive values of
¢4 that is, ¢ > 0. As we decrease the width of the square pulse, that is,
increase the value of k, there is the suggestion that a smooth curve could
be drawn through the «’s in Figure 6-3. On examining the interval between
zero frequency and the frequency of the first occurrence of a zero coefficient,
we find that the number of coefficients contained in this interval increases
as the width of the pulse decreases. If we measure the position of the first
zero coefficient in terms of the harmonic ¢ associated with the zero, we see
that the frequency 4w at which the zero occurs increases as the width of the
pulse decreases. We will find this reciprocal relationship between frequency
and time is a fundamental property of Fourier series and transforms and will
be repeatedly encountered both in mathematics and optics.

In the discussion of Fourier series, we have required that f(t) be periodic.
We now wish to expand the theory to handle nonperiodic functions. We
can apply a Fourier expansion to nonperiodic functions by recognizing that
a nonperiodic function is really a periodic function whose period is infinite.
Allowing the period of a periodic function to approach infinity is an extrap-
olation of the procedure used to generate Figure 6-3, that is, k increases
until the width of the pulse is an infinitesimal fraction of the period T. Since
w = 7T, we have w — 0 as T — o« and in the limit as the fundamental
frequency approaches zero, the summation over discrete harmonics of the
fundamental frequency becomes a definite integral over a continuous distri-
bution of frequencies.

In taking the limit, we first define the fundamental frequency as Aw and
rewrite (6-9) in terms of the frequency Aw

, o0 1 (= 7lAw
t+ —) = {J f(t)e "« dtJ BN (6-11)

Aw 2 —nlAw
(= —x

fie)y =1

The limit is now taken as Aw — 0. The harmonics making up the distribution
become infinitely close to one another and, in the limit, we replace the
discrete set of harmonics with a continuous function

lim (Aw) = w
Aw—0

Also as the limit is taken, the period approaches infinity

lim (T) = lim (ii) B
Aw—0 Aw—0 Aw

Taking the limit of (6-11) vields
f(t) ! fﬁ f (P dr dw (6-12)

:ZT =

We define the function F(w) as the Fourier iransform of f(t)

s

F{f()} = Flo) = f_mf(r)e—@f dr (6-13)

The transformation from a temporal to a frequency representation given by
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{6-13) does not destroy information; thus, the inverse transform can also be
defined by simply substituting the definition (6-13) into (6-12)

?AI{F(w)} =f(t) = %J Flw)e ™ dw (6-14)
mJ)—=

[f(t) and F(w) are called a Fourier transform pair and will be denoted by
lower- and uppercase letters.] The nonperiodic function f(t) is repre-
sented by an infinite number of sinusoidal functions with angular frequencies
infinitely close together. F(w) measures the spectral density, that is, the frac-
tional contribution of frequency w to the representation of the function. The
absolute value of F(w) is called the spectrum of the function f (t).

In other books, slightly different definitions of the Fourier transform are
used. In some books, the transform (6-13) and its inverse (6-14) are defined
in a symmetric fashion

f{f(t)} = Flo) = —f flre "o dr
F Y Flo)} =fl)= ! J _ Flo)e™ do

In other books, the constants

are absent and the integrals are expressed in terms of v rather than w(=2mv).
Sometimes, the positive and negative exponentials in (6-13) and (6-14) are
interchanged. The definition one selects is somewhat arbitrary.

We have written the relationships using time and frequency but we
could replace time by a space variable, say, x. The transform or conjugate
variable must have reciprocal units; thus, when a space variable is used,
the conjugate units would be “distance” and its reciprocal 1/“distance”. The
conjugate variable to the space variable is called spatial frequency and in
optics is the propagation constant k. Another example of conjugate variables
are the periodic lattice and the reciprocal lattice, which are members of a
three-dimensional Fourier transform pair used in crystallography.

There are validity conditions, called Dirichlet conditions, placed on f(t)
for F(w) to exist. These are the same conditions we placed on f(t) for the
Fourier series to exist. They state that f (t) must

1. Be single valued.

2. Have a finite number of maxima and minima in any finite interval.

3. Have a finite number of finite discontinuities but no infinite discontinuities
in any finite interval.

4. Lead to a finite frequency spectrum.



(The approach we have used to obtain the Fourier transform would not
be satisfactory to a mathematician. It would be more correct to consider
the Fourier series as a special case of the Fourier transform. In this case,
the validity conditions for the series follow naturally from a statement of
the conditions for the transform.) These conditions are met by all physi-
cally occurring functions but not by such useful functions as constants and
periodic functions. Techniques involving the use of limits allow these useful
functions to be included. The difficulty also disappears when the theory of
generalized functions is used.?* (We will discuss an example of a generalized
function, the Dirac delta function, in this chapter.)

Evaluation of the Fourier Transform

It is not immediately obvious how the Fourier transform defined by (6-13)
is to be carried out. By expressing the transform in terms of its real and
imaginary components, we see that

2

Flw) = Jg f(71) cos wrdr — ij f(7) sin wrdr

-

If f(7) is a real function, then the Fourier transform can be obtained by
calculating the cosine transform

(6-15a)

and the sine transform

I_ fl7) sin wrdr (6-15b)

If f(7) is not only real-valued but also even, we need only calculate
the cosine transform (6-15a). If f(7) is complex, it can be expressed as
f(7) = n(7) + i&7) and the Fourier transform is

%

Flo) = j_ n(7) cos wrdr + J &(7) sin wrdr

—o

%

j_- &(7) cos wrdr —J 7(7) sin wrdT

—®

—i

which demonstrates that to calculate the Fourier transform of a general
function, we must evaluate the sine and cosine transforms of both the real
and imaginary components of f (7). The calculation of the Fourier transform
on a digital computer makes use of an algorithm developed by James W.
Cooley and J.W. Tukey in 1965.2% Subroutines based on this algorithm are
Now standard components in computer software packages.

In general, the Fourier transform is a complex function and to display
the Fourier transform

Flo) = f(w)e”
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RECTANGULAR PULSE

In some books, the sinc function
is defined as
. sin 7x
sinc(x) = ——
X
The only advantage of this alternate
definition is that the zeroes occur at
integer values of x.

we plot the amplitude spectrum f(w) and the phase spectrum ¢é(w). If
the original function f(t) is real and even, then ¢(w) is a constant and we
ignore it.

We will now examine three applications of Fourier transforms; Appendix
6-A contains a few additional Fourier transform pairs along with some of the
important properties of the Fourier transform.

To understand the Fourier transform, the transform of the real, even function

1
1, |T| =
f(7) = rect(r) = 2 (6-16)
0 all other 7

)

will be calculated. This function is a rectangular pulse and is the result of
allowing k — <« in the expression for a square wave (6-8). (It might be
easier to think of the process of obtaining the single pulse as one in which
we keep the pulse width constant and allow the period T — <.} To calculate
the Fourier transform, we use (6-15a) that reduces to

w
2 (6-17)

172 1

Flw) = J cos wrdr = = (sin wn)'%, =
~112 w

2

We interpret this equation as follows: cos w is a weighting function called the
kernel. The shape and duration of the weighting function determine the time
average of f(t) calculated by (6-15a). In Figure 6-4, the cosine weighting
function is plotted as a two-dimensional surface in wt space.

The function rect(t) slices the weighting function perpendicular to the w
axis. The profile of each slice is modified by the cosine weighting function;
the frequency of the weighting function is determined by the position of the
slice on the w axis. The extent of the weighting function in the t direction
is determined by rect(t). The value of F(w) at each frequency is the area
under the cosine curve. Figure 6-4 displays a few representative points. The
Fourier transform of the rectangular pulse (6-16) is the continuous frequency
spectrum shown in Figure 6-5 and is given by a function of the form

sin x

sinc(x) = ~ (6-18)

where x may represent w or k, for example. This function is encountered
so often it has been given its own name: the sinc function. It has zeroes
whenever x = nm.

At x = 0, the sinc function takes on the indeterminate form 0/0 and we
must apply L'Hospital’s rule to determine the value of the function

d .
d—(sm X)
lim 9% = lim cos x =1
x—0 d x—0
(x)
dx

Comparing a plot of (6-18) in Figure 6-5 with the envelope of the coefficients
of the Fourier series in Figure 6-3¢, we find that they are equivalent. We can
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sinc(w)

rect(t) COS(wt)

FIGURE 6-4. Geometrical construction of the Fourier transform integral of a rectangular
pulse. (Jack D. Gaskill, Linear Systems, Fourier Transforms and Optics, Wiley, New York,
1978.)

0.8
0.6

0.4

FIGURE 6-5. The sinc function sinc(x) = sin(x)/x.
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PULSE
MODULATION-WAVE
TRAINS

also compare (6-9) with (6-18) to see that (6-9) is a discrete representation
of (6-18). Equation (6-9) is said to be a sampled version of (6-18).

The Fourier transform provides us with a tool to evaluate any wave of finite
duration. As an example, consider a wave of frequency wp that is turned on
at time —t; and off at time t; (see Figure 6-6). The wave shown in Figure
6-6 has its amplitude modulated by a rectangular pulse of width 2t;. Because
the wave is symmetric about the time origin, we need only calculate the
cosine transform

t/
Flw) =J A cos wyT cos wT dT

—t/

t/
=f Al cos (wp + w)T + cos (wg — w)7] dT
t

4

The Fourier transform of the pulse-modulated wave contains two terms

sin (wg + w)t; N sin (wy — w)t;

Flow) = (6-19)

wy + w wy) — W

The frequency spectrum given by (6-19) is shown in Figure 6-7. There are
two identical frequency spectra, centered at wg and —wp, where «y is called
the carrier frequency. The small peaks to the sides of each large central
peak are called side lobes. The first term of (6-19) is associated with the
negative frequency distribution in Figure 6-7. It appears to contain redundant
information but we must retain the negative frequencies if we wish to recover
the original signal. If the conjugate variables were x and k, the negative values
of k would have physical significance, as we will see later in the discussion
of diffraction.

The major contribution to F(w) occurs from the central peak (in fact, the
first side lobe’s peak is only 21.7% of the center peak); thus, the spectrum
can be evaluated without excessive error by considering only the central
peak. The width of the central peak can be defined as twice the distance from
the carrier frequency wp to the frequency where F(w) = 0. The

1, f@
A cos wgt,

fit) =
0, all other ¢

0.5

-1
-2 -1 0 2

FIGURE 6-6. A wave of frequency w,, whose amplitude is modulated by a rectangular pulse
of duration 2t .
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FIGURE 6-7. The frequency spectrum of a pulse of width (a) 2t, and (b) 20t, and carrier
frequency w,, = 3. Note that the wider pulse results in a narrower frequency spectrum.

frequency spectrum of the pulse-modulated wave F(w) is equal to zero
when sin(wy — w)t; = 0 and wg # w. The zeroes occur when

w=wyx —, n=1,2,...

The width of the central peak

ar

2(wy — w) b

is inversely proportional to the pulse width t;. Here, we see a reciprocal
relationship between conjugate variables similar to what we observed in the
Fourier series of Figure 6-3.

As an example, suppose wy = 10° Hz and t; = 10 usec; then, the width
of the frequency spectrum would be 600 kHz (from 700 kHz to 1.3 MHz).
If the 1 MHz signal remained on for 1 sec, then the width of the spectral
distribution would be about 6 Hz. '
~_The Fourier spectra at two different values of pulse width t; are shown
In Figure 6-7. There are two ways to interpret the frequency spectra of Figure
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-, -1 0 2

FIGURE 6-8. A wave of frequency w,, whose amplitude is modulated by a Gaussian pulse.

1. The classical viewpoint treats the frequency plot as a display of the actual
frequencies contained in the pulse.

2. The quantum viewpoint treats the frequency plot as a display of the
uncertainty in assigning a particular frequency to the pulse. Another way
to state this viewpoint is that the frequency spectrum is the probability
that a given frequency is present in the pulse.

A second pulse shape that will be analyzed is a pulse with a Gaussian
profile shown in Figure 6-8 and described mathematically in (6-20)

A\/ET et %M o5 ot (6-20)

@

f(t)

We can rewrite this real function using complex notation by applying (2B-6)

The Fourier transform of this Gaussian modulated wave is

This integral can be solved by completing the squares in the exponent

. ‘l(a)i'wo)T
4a
2 72 2
—a(wtwo) | . + i(wiwo)’r—a(wiwo)
2
=—a(wiwo)2— L i\/;(w*‘wo)

Now by substituting



5-—_13

we can solve the integrals to get

Flw) = Ar| e7alomeo’ 4 galotwl

The Fourier transform of a Gaussian is another Gaussian. The widths of the
transform pair are conjugate variables and are thus inversely proportional to
each other.

Consider the envelope of the two pulses we have just examined using Fourier
transforms. We can widen the temporal pulse, and as we do, the frequency
spectrum narrows until in the limit of a cw signal, only one frequency
exists in frequency space. In this limit, the frequency spectrum becomes the
Dirac delta function (sometimes called the impulse function). The Dirac delta
function was the first generalized function to be defined and is the only one
we will discuss?® (the generalized function is also called a singularity function,
functional, or distribution).
The definition of the delta function usually encountered is as follows:

6(t—ty) =0, (6-21)

i.e., the function is zero everywhere except at the point tg. The integral of
the delta function is

[_ §(t—to)dt =1 (6-22)

i.e., the delta function has a finite area contained beneath it.

A mathematically more precise definition of the delta function, based
on distribution theory, is obtained by using the sifting property of the delta
function

f_ f(1)8(t— to) dt = f(to) (6-23)

A distribution is not an ordinary function, but rather it is a method of
assigning a number to a function. The assignment is expressed formally by
an integral of the form of (6-23), where the delta function located at tg
assigns the value f(to) to the function f(t). It should be emphasized that it
is not the delta function itself but rather the assignment operation that is
defined.

1 The Fourier transform of the delta function is easily obtained using
-23)

D(w) = J 5(t—to)e ™ dt = ™ (6-24)

The function D(w) has a constant amplitude but a phase that varies linearly
“}:‘th w. If ty = 0, that is, the delta function, is centered at the origin t = 0,
then the delta function is an even function and the Fourier transform is given
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f(t)

2t, 3¢,

FIGURE 6-9. The comb function consisting of delta functions spaced by t.

by the cosine transform. The transform of the delta function located at the
origin is a constant [D(w) = cos 0 = 1].
A series of equally spaced delta functions, called the Dirac series or
sometimes the comb function, is written
N
comb(t) = > &(t—t,) (6-25)
n=-N

where t, = ntp; see Figure 6-9. It is useful because it performs a sampling
operation on another function, as we will see in a moment. The Fourier
transform of the comb function is

7{ comb(t)} = COMB(w) = > e “n (6-26)

If there are two delta functions at ty and —tg (see Figure 6-10), then the
Fourier transform is a cosine function of frequency 1/tg
Clw) = e 0 + “o = 2 cos wty

as shown in the lower half of Figure 6-10.
If we have a series of 2N + 1 delta functions equally spaced about the
origin, we can write their sum as a geometric series

N

Z o~ iwnta (6-27)

n=-N

f®

F (w)

FIGURE 6-10. The Fourier transform of two delta functions positioned at =t is the cosine
function with a frequency of 1/t;.



Since this is the sum of a geometric series, we can write

N

F{ > slt—nt)} =

n=-N

einto =i
givt — 1 ) -1

e —iNwty __ 1)

e ot — ]

cos (N — 1)wty — cos Nwty

2 wto

2 sin 9

sin $[(2N + 1)wto]

sin

%)
| 2 (6-28)

12 2N+1
10 WSE

{zs to)}
=N

Y P
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(a)

f{z8 @~ t0)
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H 00N [} o H»~ 00O N
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wlg

(b)

F|GURE 6-11. (a) A plof of the Fourier transform of a set of 2N+ 1 equally spaced delta
functions where N = 5. The maximum value of the Fourier transform is 2N + 1 and the first
2ero s inversely proportional to (2N +1). (b) A plot of the Fourier transform of a set of 2N +

qually spaced delta functions where N=15. Note that the width of the primary peaks
Narrows as N increases.
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F (w)

—6wg ®g 6wg

FIGURE 6-12. The Fourier transform of the infinite comb function shown in Figure 6-9.

A plot of (6-28) is shown in Figure 6-11 for two values of N: N= 5 and
N = 15.

As can be seen in Figure 6-11, (6-28) is a periodic function made
up of large primary peaks surrounded by secondary peaks that decrease in
amplitude as you move away from the primary peak. The amplitude of the
primary peak is (2N + 1) and the first zero (a measure of the width of the
primary peak) is given by

(2N + 1)ty

In the limit as N — o, Figure 6-11a, and b suggest that (6-28)
approaches a delta function; this can be proved formally.2® Thus, the Fourier
transform of the comb function in the time domain, for N — o, is a similar
comb function in the frequency domain, as shown in Figure 6-12

% %

F{ D 8t n) =% > 8w - na)

n=-—-x% n=-—%

In the limit as N — =, the comb function becomes a periodic function and
the coefficients of the Fourier series of the periodic function can be shown
to be equal to the values of the Fourier integral at nwg = 2 n/ty, which
is the location of the delta functions in the frequency domain (see Figure

6-12).

A second approach to evaluating the spectral content of a nonperiodic
function is to assume that the function, over the interval of interest, is one period
of a periodic function. In making this assumption, we treat the function as if it
were replicated over all time; the period of the replication would be equal to the
length of the interval of interest. We will look at an example of the application
of this replication process and then treat the replication process formally. The
result of the formal treatment will be the demonstration that the process of
replication in the time domain results in a frequency spectrum consisting of
discrete frequencies, a sampied version of the continuous frequency distribution
that would be obtained by application of the Fourier transform. This result will
justify the statement of an important theorem from communication theory that
specifies the number of samples of a function that are needed to represent the
function.

As an example of the application of replication, a Fourier series is used to
represent a straight line over the interval —1 <t < 1. The details are left for
Problem 6-8; here, we will only display, in Figure 6-13, the first three terms
of the series over the interval -2 < x < 2. In the interval of interest, the series
approaches the straight line. Outside the interval. the fit is poor. The curve
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FIGURE 6-13. Fourier series approximation of the function g(t) =t over the interval =1 < t
=< 1 using the first three terms of the series. We display the interval ~2 = t = 2 to show the
failure of the approximation outside the desired interval.

for the Fourier series (the gray curve) demonstrates that the function has been
replicated.

To treat the replication process formally, assume we have a nonperiodic
function g(t) defined over the interval —tg <t < ty, such as the function g(t) =t
shown in Figure 6-13. We replicate g(t) 2N times, creating the function

N
Nl = > glt—nig) (6-29)
n=-N
shown in Figure 6-14. We can use a property of a Fourier transform called the
shifting property (6A-5) to write
N
> Glalemnwio (6-30)
n=-N
We have already found the sum of the geometric progression of this form in

(6-27) and (6-28)

wtp 4
N sin[T(ZN +1)
Flan ) =Gla) > e = Gla)
n=-N sin ‘“42!3

This equation can be rewritten as a function centered on the point wtg = 27n
and defined over the frequency region one-half a period on either side of these
points, i.e., we replace w by w * 27nlty

g(t)

Fli
GURE 6.14. Replication of the function g(t) = t shown in Figure 6-13.
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As was mentioned earlier, in the limit as N — =, this becomes a series of delta
functions. We can use the definition wy = 27ty to write each delta function in
terms of frequency

£
6(“’_20 ='nar

When wty # 2mn, then F{ gy ()}

these delta functions (see Figure 6-12

Because there are a periodic array of
the Fourier transform is an infinite sum

( 2’”’) 2 5{u- nan)
2

QN (t) Z ()8 (w — nwp) (6-31)

We have shown mathematically what can be surmised by inspecting Fig-
ures 6-3 and 6-5. The frequency spectrum of a rectangular pulse is shown in
Figure 6-5. If we replicate the rectangular pulse, we generate a square wave.
The frequency spectrum of the square wave, shown in Figure 6-3, is a sam-
pled version of Figure 6-5. By replication in the time domain, a function that
is sampled in the frequency domain is obtained (the comb function, discussed
in the previous section, performs the sampling).

The converse is also true. We could measure the spectrum in Figure 6-5
at discrete, equally spaced, frequency intervals and obtain the same spectrum
shown in Figure 6-3. If we took the inverse transform of the discrete frequency
samples, we would not get a square pulse but instead would generate the
function that led to Figure 6-3; namely, a periodic square wave whose period
equals the original pulse width.

A natural question is how should F(w) be sampled if the resulting periodic
function is to truly represent the desired function over one period? The answer
is called the sampling theorem and was developed by Claude Shannon to
determine the amount of information that can be transmitted in a communica-
tion channel.?” The sampling theorem states that

if the Fourier transform F(w) of the function f(t) is zero above some cut-
off frequency

Flw) =0

3

then f(t) is uniquely determined from its values measured at a set of
times
m
t=ntg=n—
We
Thus, at a minimum, we must sample twice in one period of the highest
frequency present in a waveform.

Experimentally, the sampling theorem is very important because the nor-
mal procedure for measuring a temporal signal is to sample the signal at a
number of points in a time interval. The sampled data are then plotted or put
into a computer for data analysis. An example of the use of sampled temporal
data is found in the use of digital audio recordings. These recordings are made
by sampling the audio signal and storing the sampled data in digital form. The
sampling theory states that if frequencies above a certain value are unimpor-
tant, 20 kHz for human hearing, then samples need only be taken at a temporal
spacing of tg = 1/2v, 25 usec for audio signals. (The actual sampling frequency
used in digital audio recording is 44.1 kHz, corresponding to a temporal sam-
pling of 22.7 pusec. The frequency used is slightly higher than required in order
to be compatible with television.)
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We often find it necessary to compare functions. With light, we effectively
compare two waves by interfering them. Where the two waves are alike,
we see a bright band and when they are dissimilar, we see a black band.
We will show an example of this type of comparison after discussing the
methodology. The method for calculating the similarity of two functions is
called the correlation integral and the resulting function is called the correla-
tion function, h(7). If we wish to compare a(t) and b(t), where a(t) and b(t)
are different functions, the integral is called the cross correlation function
r%

h(n) = all) ®b(t) = | __alb"(t = 7) dit (6-32)
If a(t) and b(t) are the same function, then the correlation integral is called the
autocorrelation function. It is useful to normalize the correlation functions,
by dividing by the root mean square average of the two functions, to allow
comparison with other correlations. The normalized correlation function is
r
|, alb"(t = 7)dt
2 .,

h(r) = a(t) ® b(t) = (6-33)

If a(t) and b(t) were light waves, the integrals in the denominator would be
the average intensity of each wave; thus, the name average energy is usually
associated with these integrals.
To develop a physical intuition about the correlation function, we will
calculate the autocorrelation function of A(t), a square pulse, defined as
—_ < <
A(t):jA’ to=t=1y
[O, all other t

We will use this example to discover that the autocorrelation function .is
always an even function and that h(0) of the autocorrelation function is the
average energy of the function. The function, a construction showing the
correlation value for t = 7, and the normalized autocorrelation function are
shown in Figure 6-15.

To calculate the correlation function, we simply slide one function across
the second, calculating the overlapping area for each displacement 7. The
autocorrelation function at 7 is the overlap area of the function and its clone,
the area shaded in Figure 6-15. For A(t), the area of overlap equals the

area of the two pulses (A-2tg + A-2tg), minus the area of each pulse not

overlapped (AT + A7). The area is thus
4Aty — 2AT

We divide by the area of the pulses to normalize, vielding

If we plot h(7), we obtain a triangle whose base is twice the width of the
pulse; this is the autocorrelation of the square pulse A(t).

=10 §
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A(t) A(t) — Alt—)

—to 5 to + 7

h(1)

—2tq 2tq

FIGURE 6-15. The calculation of the autocorrelation function h(7), of the function A(t). We
simply slide one A(t) over another copy of A(t) and record the overlapping area, shown here
as the shaded area.

A negative shift of A(t) with respect to its clone (leftward shift in Figure
6-15) is equivalent to a positive shift between the two functions. We can
easily demonstrate this fact and thereby discover that the autocorrelation is
an even function. Mathematically, the use of a negative shift to generate the
autocorrelation function is written as

h(—71) = j,. A(NA(t + 1) dt

Lett + 7= yand dt = dy so that the correlation integral can be rewritten

h(=1) = LLAW— 7)A(y) dy = h(7)

This means that the autocorrelation is always an even function.
The maximum value of the autocorrelation occurs when the two iden-
tical functions are aligned and 7 = 0, where the autocorrelation is given by

h(0) = f _'_,_[A(t)lz dt

This integral is equal to the average energy of A(t).

If the two functions are identical but one leads the other by a time T,
then the maximum value of what should now be called a cross correlation
occurs at 7 = I'. As an example of this property, we will calculate the
cross correlation function of two periodic functions with the same period
but different epoch angles

a(t) = A cos (wot + 6)
b(t) = B cos (wot + ¢)
The cross correlation function is

AB
h(7) = 5 cos (woT + 6 — @)
The peak of this correlation function is periodic and the location of the
maximum allows the determination of the relative phase difference between
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a(t) and b(t), i.e., how much a(t) leads or lags b(t). This result is the mathe-
matical representation of an optical interference experiment.

In summary, the peak value of a correlation function as well as the
value of the relative displacement 7 measure the degree of similarity and the
relative temporal position of the functions.

One of the properties of the Fourier transform is that the correlation
integral is given by the Fourier transform of the product of the Fourier
transforms of the two functions

h(7) = a(t) ® b(t) = F{ A(w)B" ()} (6-34)

Another class of integrals we will find useful is called convolution integrals

glr) = alt) ®b(t) = j a(t)b(r—t)dt (6-35)
In German, this integral is called the faltung or folding integral because the
function b(t) is folded over the ordinate before the integral is performed. The
weighting function b(7 — t), called the convolution kernel, can be thought of
as a window that moves in time and through which we observe the function
a(t). The convolution is the time average of the temporal function a(t) viewed
through this window.

The convolution function is easily confused with the correlation function
(6-33), but they are not the same. In general, the correlation operation does
not commute

a(t) @ b(t) # b(t) Dalt)
while the convolution does (see Appendix 6A)
a(t) ®b(t) = b(t)  a(t)

There is a simple relationship between the convolution and correlation func-
tions

a(t) @ b(t) = a(t) ® b*(—1) (6-36)

We see that the correlation and convolution functions are identical if the
weighting function b(t) is a real, even function. If we look back at (6-12) we
can now recognize it as a convolution integral.

We will evaluate the convolution of the two functions in Figures 6-16a
and b. Figures 6-16¢ and d display graphically the evaluation of the integral.
The convolution and correlation for the two functions shown in Figures 6-16a
and b are listed in Table 6.2. The differences between the convolution and
correlation for these two functions are not large even though the functions are

| TABLE 6.2 Comparison of Correlation and Convolution

-

Correlation h(7) Convolution g(7)

0 T7< =3 0 < —1
1B)(r + 3)2 —3<7<0 (1/3)(7 + 1) “l<r<?2
‘g 0<r<1 3 2<71<3
= (113)(r—1)2 1<r<4 3 — (1/3)(r — 3)2 3<r<6
“E_O >4 0 T>6
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The two functions in Figures
6-16a and b are called functions with
compact support. This means that
both are identically zero outside some
finite interval. For this type of func-
tion, the width of the convolution is
equal to the sum of the widths of the
two functions, of compact support,
being convolved. Figures 6-16 and
6-17 verify this statement. For func-
tions that do not have compact sup-
port, the relationship between the
widths is only approximate.
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atr) b(1)
2 2
3 —1 3
(a) (b)
a (1) b (=1) a (1) b (4-1)
-3 3 -1 3 5)
(c) (d)

FIGURE 6-16. The calculation of the convolution integral involving the functions a(7) and

b(7), shown in (a) and (b), respectively, is obtained by the operation shown in (c) and (d). We
reflect b(7) through the ordinate and then slide the reflected b(—t) over a(t), respectively, as
we did for the correlation function.

not symmetric about the origin; one of the problems at the end of the chapter
involves two functions that.produce larger differences in the correlation and
convolution.

Figure 6-17 displays a plot of the convolution and correlation functions
for our example. Note that the convolution operation is a smoothing oper-
ation, i.e., sharp peaks are rounded and steep slopes are reduced. Because
of the smoothing process, the convolution is often referred to as filtering.
The amount of smoothing depends on the nature of the two functions. For
example, if we replaced b(t) in the above example with a delta function,
then the convolution of a(t) with 8(t) would be

=@= (Correlation

== Convolution

FIGURE 6-17. Convolution and correlation functions for the two functions shown in Figure
6-16.
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al) ® 8 (t) = J_-_ a(t) (t—t)dt = a(7) (6-37)

Thus, the convolution of an arbitrary function a(t) with a delta function
reproduces the value of the function a(t) at the delta function position. If
we move the delta function over a(t), the convolution function produced is
identical to the original function. If the function b(t) is allowed to change
from the delta function to a rectangular pulse of increasing width, then the
resulting convolution becomes an increasingly smoothed version of a(t). The
amount of smoothing is directly proportional to the width of the rectangular
pulse.

A Fourier transform property allows us to write the Fourier transform of
the convolution as the product of the Fourier transforms of the two functions
involved in the convolution

F{alt) ® b(t)} :?U a(b(r — ) dt} = A(w)B(w) (6-38)

Why are we interested in the convolution? It is an important function in the
theory of linear systems and we will find it useful to treat optical systems as
linear systems. To define a linear system, we use an operational definition.
We then use the operational definition to rrove that we can characterize
a linear system by determining its response to a delta function input. The
output of the linear system to an arbitrary input function will be shown to
be the convolution of the input function and the delta function response.

To define a linear system, assume that the system is a black box that
may contain an optical, electrical, or mechanical system. The black box
uniquely maps any input onto an output but not necessarily in a one-
to-one manner. We will represent the operation of the black box by the
mathematical operator T, which maps the input function f (t) onto the output
function g(t)

T{A1)} = a1(d),
The box (system) has the homogeneous property if
T{afi(t)} = ag(t)
It has linearity if it obeys the principle of superposition
T{afi(t) + bf2(t)} = agi(t) + bga(t)

It has stationarity or is shift invariant if

T{Alt—to)} > alt - to)

If the box is linear and stationary (invariant), then we will be able to
develop a number of useful relationships between the input and output of
the system that form the foundation of linear system theory. The relationships
are based on the principle of superposition that allows the decomposition of
a complex input into a linear combination of simple functions. Theory allows
the calculation of the effect of the linear system on the simple functions. The
modified versions of the simple functions are then recombined to form the
'®Sponse to the complex input.

LINEAR SYSTEM THEORY 239

LINEAR SYSTEM
THEORY



240 FOURIER ANALYSIS

The simple functions selected for characterization of a system are the eigen-
functions of the linear, invariant system. These eigenfunctions are exponentials
of the form e The linear system modifies the phase and amplitude of the
eigenfunctions but the eigenfunctions retain their form, i.e., if f(t) + ig(t) is an
eigenfunction of the linear system, then the output will be cyf(t) + icog(t). The
constants ¢; and cp are called eigenvalues of the system. The problem of find-
ing the output of a linear system to a complex input is therefore reduced to a
problem of properly decomposing the input into a set of eigenfunctions, then
modifying and recombining these eigenfunctions into the output function.

To prove that the exponential e/ is an eigenfunction, we denote the
operation of the system on the exponential by

T{eia’t} = elt)
Since the system is invariant
elt+1t]) = rf{eiw(tﬂl)} - T{eiwteiwtl}
Because the system is homogeneous, this can be written
q-{ eiw(t+21)} = ,T{eiwt} ol = i®H o(f)

At t =0, we have

but #; is arbitrary so we can replace t; by t and rewrite this result as
elt) = e(0)e'®*

The multiplier of the exponent e(0) is a constant, possibly complex, demon-
strating that the exponential is an eigenfunction.

When we put an impulse function (a delta function) into the input of
the linear system, we obtain

T{8(t)} = sl(t)

where s(t) is called the impulse response [in mathematics, s(t) is called the
Green'’s function and in opiics, itis called the point spread function]. Because
of the assumed properties of linearity and stationarity,

T{f(t)6(t—t1) + f(t2)6(t — t2)} = f(t1)s(t — t1) + f(t2)s(t — t2)
where f (t;) and f (t2) are eigenfunctions of the linear operation 7. For a large

set of impulse responses,

(6-39)

We can extrapolate the result given by (6-39) to a continuous distribu-
tion by using the sifting property of the delta function
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to decompose the input function

TU]’(t) (t—t)dt}

We now use the linearity of the system and the fact that f(t') is an eigen-
function of 7 to write

T{Jf( t')é (t—t)dt}iJf(t)T{ (t—t)}dt -;»jf( t)s(t—t')dt
The integral

j flt)s(t—t)dt (6-40)

is a convolution integral (sometimes, this integral is called the superposition
integral and the result just obtained explains why). Our result demonstrates
the fact that a linear system is completely characterized by its response to an
impulse. To obtain the output from a linear system for a complex input, we
need only convolve the input with the impulse response of the system.

The Fourier transform of s(t) is S(w) and is called the transfer function
frequency response. The frequency spectrum of the system’s output is the
product of the input spectrum (the Fourier transform of the input function)
and the transfer function S(w)F(w). The output of the system is the Fourier
transform of this product, as stated mathematically by (6-38).

Another interpretation of the impulse response s(t) emphasizes its role as
a weighting function in the convolution integral (6-40) . The impulse response
can be viewed as a measure of the ability of the system to remember past
events. This is in keeping with the earlier interpretation of the weighting
function as a window through which a time average is performed. The
window determines how much of the past history of the function can be

it of seen when the time average is performed.

. the We have limited our discussion to one-dimensional temporal functions but FOURIER

juse in optics, we will need to perform transforms of functions with two spatial TRANSFORMS IN
coordinates. We can define a two-dimensional Fourier transform by making TWO DIMENSIONS
a simple extension of the one-dimensional definition (6-13)

arge Flem = | | _ftx vle o axay
Ffix v)is separable in x and v, we can write

»-39)

ribu-

F¢n) = J_If(x)e"‘fx dx J_' g(v)e ™™ dy (6-41)

=F()G(n) (6-42)
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For separable functions, our previous discussions are easily extended tq
two dimensions; however, performing the integration of the two-dimensiona|
transform can become very difficult if the function is not separable.

In optics, most of the functions we wish to consider have circular sym-
metry, and it is appropriate to make a change of variables to polar format

x=rcosf, y=rsind
E=pcos®, mn=psinO

In polar coordinate, the circularly symmetric function is not only separable
but because it has circular symmetry, it is independent of ; thus,

flx, vy = f(r, 6) = f(r)g(8) = f(r)
F{f(r, )} = Flp, ®) = F(p)

r2m =

F(p, @) _ JO de JO f(r)e—ipr(cos(icos(“)+sin6sin@)rdr

% 2
= JO firyrdr f e redg (6-43)

The second integral belongs to a class of functions called the Bessel function
defined by the integral

2
dnlrp) = Jo g lrp sin(6=ndl] ;g

The integral in (6-43) corresponds to the n = 0, zero-order Bessel function.
Using this definition, we can write (6-43) as

Flp) = JO f(r) dolrp)rdr (6-44)

This transform is called the Fourier—Bessel transform or the Hankel zero-
order transform. We now apply {6-44) to a simple circular symmetric func-
tion, sometimes called the top-hat function

1, r=1
0, all other r

1, +v2=1

f(x,y)=[ ]=f(r, 0):f(r)=[

0, all otherx, v

The transform of the top-hat function is

1
Flp) = J'O Jo(rp)rdr

We use the identity

to obtain

Flp) = (6-45)
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The Bessel functions are important in optics because most optical sys-
tems have circular symmetry. A whole family of Bessel functions exist, and
as in the case for sines and cosines, they may be calculated using a series
expansion. The series expansion is

(_l)kpn+2k

dnte) = ;;Za 2n+2kKl(n + K)! (6-46)

The values of Bessel functions have been tabulated and are found in most
collections of mathematical tables. We will discuss the Bessel function of
order 1 when we discuss diffraction by a circular aperture.

In this chapter, we have introduced a number of mathematical tools that will be
needed to interpret the optical observations presented in later chapters.

Fourier Series To describe a periodic function f(t), the series

flt) = +Za/ cos /wt+Zb/ sin /ot
(=1 /=1

can be used. The coefficients of the two summations are obtained by carrying out
the integrals

Tlw
a, = E)J f(t) cos nwtdt

) —7mlw
Tlw
w .
b, = ~J f(t) sin nwtdt
mJ —mlw

Fourier Transform A nonperiodic function can be represented by the integral

which transforms f (t) from a temporal representation to the frequency representation
Flw). The inverse transform can also be performed

Il Correlation The correlation function is a useful integral for comparing the sim-
ilarity between two functions

h(7) = a(t) ®b(t) = J a(t)b™(t — 7)dt

It can be thought of as the calculation of the area of overlap of two functions as
one of the functions slides over the other. We suggested that optical interference was
_ telated to this mathematical function. )
The Fourier transform provides another way of calculating the correlation
function. The correlation function is the Fourier transform of the product of the Fourier
transforms of the two functions to be correlated

his) = alt) @ blt) = F [ Alw)B" )}
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Convolution A second integral of use in linear system theory is the convolution
integral. It is sometimes called the smoothing operation because if the function af(t)
has any sharp peaks, they will be rounded, or if a(t) has any steep slopes, they will
be reduced. The amount of smoothing depends on the nature of a(t) and b(t). The
convolution integral of a(t) and b(t) is defined as

%

a(t)b(r — t) dt

gl7) = a(t) ®b(t) = J

As was the case with the correlation, the Fourier transform can be used in the
calculation of the convolution. The Fourier transform of the convolution is the product
of the Fourier transforms of the two functions to be convolved

F{alt)®blt)} = Alw)B(w)
Linear Systems In the discussion of linear systems, the delta function was

found to be useful in the description of the response of a linear system. The delta
function is defined by the integral

if the delta function is the input function to the linear system, then the output is s(t),
the impulse response of the linear system. The impulse response can be used in the
convolution integral to predict the output of the linear system. For an arbitrary input
f(t). the output of a linear system is given by

Jf(t’)s (t—t')dt

Again, the Fourier transform can be used to calculate this information. The Fourier
transform of the impulse response is called the transfer function of the linear system
S(w). If F(w) is the frequency spectrum (Fourier transform) of the input function f (1),
then the output frequency spectrum of the linear system is given by S(w)*F(w).

sional Fourier “‘ransforms If the two-dimensional function
under study h(x, y) is separable in its dependence on the spatial coordinates h(x, y) =
f(x)g(y), then the two-dimensional Fourier transform is

For circularly symmetric functions,

flx, v) > f(r. 6) = f(Nal6) = f(r)

the Fourier transform is

F{10r, 8)} = Flp, ) = Flp)

and is given by the Hankel transform

Flp) = JO f(r) dolrp)rdr

Sampling Theorem The sampling theorem states that if the Fourier transform
Flw) of the function f(t) is zero above some cut-off frequency
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Flw) =0,
l)l then f(t) is uniquely determined by the values of f(f) measured at a set of times
o calculated using the formula
t=nty= ni
= n 0 - wc
This means that we must take two sample points in every period tg, where 1/t is the
highest frequency contained in the function f/(t).
e
ct
6-1. Prove the linearity theorem of Fourier transforms PROBLEMS
F{aglx) + bh(x)} =aF{glx)| + bF| hx)}
o =aGlk) + bHIK)
where
‘(l'tl)» 6-2. Prove the similarity theorem of Fourier transforms if
the
put F{alx)} = Glk)
then
1 [k
Fglax)} = HG(—)
irier ’
tem 6-3. Prove the shift theorem of Fourier transforms if
t),
i F{gi} = Gk
then
tion .
) = Flglx=al} = Glkle™*
6-4. Prove the convolution theorem of Fourier transforms if
Flalx)} = Glk)
and
F{hixl} = Hik
then
> F ] gl&)hlx — & dép = GlkHlk)
! B
i B
J - 65. Prove the autocorrelation theorem of Fourier transforms
' 7 J 9103 (€=x) dg} = |Gk
sform 6 :
-6. .
»6. Find the Fourier series for the function f(x) = xZ over the range —0 < x < a.
! J.'-.
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6-8.

6-9.

6-12.
5-13.

. Find the Fourier series representation of the periodic function

T

<t< =

‘ 1, O<t 5

flt) = .
=1, §<t<T
Find the Fourier transform of
( e ™ x>0
flx) =
l 0, x<0

Compare the convolution and correlation of the following two functions:

z
alt) :{ .
0, 0>t>1

- _ -t -
Mﬂ:[Mﬂ et t=0
0, t<0

. We can perform repeated convolutions, and as we do, the final convolution

will tend toward a Gaussian function. To demonstrate this fact, calculate the
convolutions of

[1, |7] = 7,

fn(t) = 10

all other t
for

n=1 m=2 73:%,
Plot the results for each convolution

4

. Assume that the function

t
fa-|
0. all othert

is periodic and find the Fourier series over the interval -1 <t < 1.
Evaluate the infinite series derived in Problem 6-11 when t = «/3.

Using the results of Problem 6-11. write a computer program to verify Figure
5-13.

. Show that

wlw
[ cosim —njwt dt = 0

J—Flw

unless m = n.

. Show that

alw
0, = (-
J f(t)dt:[ flty=—f(-1t)

-l nonzero, f(t) = f(—t)

. Assume that the Fourier transform of f(t) is F(w). What is the Fourier transform

of f(t +t') + f(t—1t)?



e

6-17.

6-18.

6-19.

6-20.

6-21.

PROBLEMS

Assume that the Fourier transform of f (t) is F(w). What is the Fourier transform
of f(t) sin(w'/2)t?

The Dirac delta function is the unit operator for convolutions, just as zero is for
addition and one is for multiplication. Prove that this statement is true.

Find the Fourier transform of the function

1 + cos wpt,

flty=
0, all other t

Use the shifting property of the Fourier transform (6A-5) to rewrite (6-29) into
the form shown in (6-30).

Use (6-34) to find the Fourier transform of

1-

It = to

to

flt) =
0, >t

247



Appendix 6-A

FOURIER TRANSFORM Some of the important properties of the Fourier transform are given below.
Their proof is left to the reader as problems. We use the following definitions:

PROPERTIES

248

=)

Flo) =7 {f(t)} = J f(ne ™ dr

—00

G((U) =.7"{Q(t)} = J_wg(T)e_in dr

We also let a and b be constants.

Linearity
F{af(t) + bg(t)} = aF(w) + bG(w)
Scaling
Shifting
Conjugation
FI )} = F(-w)
Differentiation
#{ 210} — e
Convolution

(6A-1)

(6A-2)

(6A-3)

(6A-4)

(6A-5)

(6A-6)

(6A-7)

(6A-8)
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Parseval's Theorem

f_ f(tg" (Hdt = f_ Flw)G(w) dw (6A-9)

Correlation

—cc

7“ fg (t— 1 dt} = Fw)G (0) (6A-10)

A few common Fourier transform pairs are listed below. Some of these
have been derived in the chapter and others are the subject of problems at
the end of Chapter 6. See A. Papoulis?®® for a more complete listing, as well
as more details on the subject of Fourier transforms.

J®) Fo)
1 —tp=t= i
{ > 0 to sin wtg (6A-11)
0, all other t wto
—_|L —
{1 ‘fo ’ b=t=to sinc? wtg (6A-12)
l 0, all other t
et ! (6A-13)
1+ w?
comb t comb w (6A-14)
Commutative
fx) ®g(x) = glx) ®f(x) (6A-15)
Distributive

[af(x) + bg(x)] ® w(x) = al f(x) ®w(x)] + b[ glx) ® w(x)] (6A-16)

Associative
[f(x) ® g(x)] ® w(x) = f(x) ® [g(x) ® w(x)] (6A-17)
ldentity
f(x) ® 8(x) = f(x) (6A-18)
Shift-Invariant
flx — x0) ® g(x) = f(x) ® g(x — x0q) (6A-19)

T

CONVOLUTION
PROPERTIES



