

CBB Workshop at UoC, 27-28/10 2017, Chicago, IL

Benchmarking Coherent Synchrotron Radiation

S. Di Mitri, ELETTRA SINCROTRONE TRIESTE

INNOVATIONS IN BRIGHT BEAM SCIENCE

experimental evidences.

spread, microbunching). New paths of research on CSR instability could be identified.

CBB Workshop at UoC, 27-28/10 2017, Chicago, IL

Elettra Sincrotrone Trieste

- I will skip theoretical derivations and computational algorithms.
- □ I will report about a selection of case studies for **linac-driven FELs**.

□ This is a review with an accent on **analytical modelling**, and **accuracy of predictions** relative to

\Box CSR will be analysed in terms of transverse (\rightarrow emittance) and longitudinal instability (\rightarrow energy)

Two particles on same circular path (1-D model), • $\gamma^3 s/R \gg 1$ (steady-state approximation),

р

ENERGY CHANGE ALONG BUNCH, per METER:

Current spikes or fast rises enhance the z-CSR field.

CBB Workshop at UoC, 27-28/10 2017, Chicago, IL

CSR Tail-Head Interaction

P receives photons (test particle in the bunch head)

Curved path in a dipole magnet

O The longitudinal E-field comes from geometrical considerations.

effect.

D Effect on transverse emittance can be described through linear optics.

CSR instability is primarily a **chromatic**

Arc (TBA or Bates cell) 0.1 GeV, 0.1 nC, < 1 kA

Energy Loss

- Example: Gaussian bunch in steady-state emission: $U_{tot} = -0.028 \times e^2 Z_0 c N \frac{\theta R^{1/3}}{\sigma_a^{4/3}} = -0.16 \text{ MeV} \text{ Total energy loss}$

C. Hall et al., PRST-AB 18, 030706 (2015)

 $\sigma_z = 50 \mu m$ Q = 300 p C $L_B = 1 m$ $\theta_B = 10^{o}$ R = 5.7m $I_{pk} = 715 A$ E = 700 MeV

• Particle coordinates transform according to:

CBB Workshop at UoC, 27-28/10 2017, Chicago, IL

Collapsing the Physics onto RMS Values

Change of longitudinal momentum

Is this simplified picture good enough? At which level of accuracy?

RMS EMITTANCE

 $\mathcal{E}_{x} = \sqrt{\left\langle x_{\beta}^{2} \right\rangle \left\langle x_{\beta}^{2} \right\rangle - \left\langle x_{\beta} x_{\beta}^{\prime} \right\rangle^{2}}$

 $\varepsilon_x^2 = \varepsilon_{x,0}^2 + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle + \gamma_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle + 2\alpha_x \left\langle \Delta x \Delta x' \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0} \left(\beta_x \left\langle \Delta x'^2 \right\rangle \right) + \varepsilon_{x,0}$

Since Δx and $\Delta x'$ from CSR field are correlated, this goes to 0.

Horizontal Emittance

S. Di Mitri et al., PRL 110, 014801 (2013) T. Hara @ FEL'17 and NOCE'17

lengths $L_t \simeq (24R^2\sigma_z)^{1/3} \simeq 0.1 - 1 \text{ m}$

Transient Effects

Steady-state model doesn't account for transient effects, which are relevant over

Y. Jiao et al., PRST-AB 17, 060701 (2014) S. Di Mitri, NIM A 806 (2016)

CSR kicks are calculated

CBB Workshop at UoC, 27-28/10 2017, Chicayo, IL

I. Akkermans et al., PRST-AB 20, 080705 (2017) **Example: Compact ERL – UV FEL**

1-D Codes

S. Di Mitri et al., NIM A 608 (2009) K. Bane et al., PRST-AB 12, 030704 (2009)

> FERMI Team, P. Williams, A. Brynes & ASML, in progress

1-D codes agree at full compression even (??). 1-D approx. still seems to be good for $\sigma_1 \approx (R\sigma_z^2)^3$

0.3 GeV, 0.7 nC, < 3 kA

CBB Workshop at UoC, 27-28/10 2017, Chicago, IL

2,3-D Codes

□ 1-D model doesn't account for CSR field radial dependence: • Forcing $\theta_1 \cong \theta_2$ leads to the so-called Derbenev criterion: transverse effects become important when $\sigma_{\perp} \gg (R \sigma_z^2)^{1/3}$

3-D model

H. Owen et al. for NLS (2008) C. Prokop et al., NIM A 719 (2013)

1-D approximation

- □ Slice emittance growth becomes noticeable in ultra-low emittance beams. 3-D effects are weakened in "pencil" beams... In the second Slice linear optics mismatch Chromatic aberrations

0.2 GeV, 0.2 nC, < 0.2

CBB Workshop at UoC, 27-28/10 2017, Chicago, IL

Sincrotrone Trieste

0.2

-ĭ.5

-0.5

s (m)

0.5

 $x 10^{-4}$

S. Bettoni et al., PRAB 19, 034402 (2016)

□ Shielding of CSR field would require pipe gap as small as < 2 mm or so.

J. Esberg et al. for CERN (2015)

CBB Workshop at UoC, 27-28/10 2017, Chicago, IL

Shielding

FIG. 14. (Color) Realistic magnets: Parameter set E (JLab TH2) magnet) line (top), set F (CESR analyzer magnet) (bottom). Bmad agrees with the CSR-wake formula Eq. (53) better than the other codes at the bunch tail.

V. Yakimenko et al. @ ATF (2012) Model Exp. Plates gap [mm] Plates gap [mm]

Energy spectrum [KeV]

Bunching is proportional to this parameter when CSR only is considered.

CSR-Microbunching: Theory

dipole line, CSR can even dominate the instability gain. □ Theoretical prescriptions on beam optics were found for minimizing both the CSR-induced

C.-Y. Tsai et al., PRAB 20, 024401 (2017)

- CSR amplifies microbunching gain typically driven by longitudinal space charge force. In a multi
 - emittance growth and microbunching gain (local isochronicity, π -phase advance, small betas, ecc.).

- - Picture is unclear to me yet

D Proposal of research lines:

CBB Workshop at UoC, 27-28/10 2017, Chicago, IL

Final Remarks

□ 1-D steady-state analytical formulas guide to the design of e-beam lines (chicanes, transfer lines, arcs). • $\sigma_{\delta} \sim 0.1\%$, $\Delta \varepsilon_{n,x} \sim 0.1 \ \mu m$ accuracy of prediction for E > 300 MeV, $\sigma_{z} > 10s \ \mu m$, Q < 0.5 nC (I < kAs) Control of CSR-induced emittance growth through beam optics is well-established Predictions get worse at lower beam energies, and with multiple bends in long beam lines

1-D approximation seems to be ok for a relaxed Derbenev criterion even 3-D effects are expected to raise at full compression

Systematic investigation of 1-D vs. 3-D effects (codes benchmarking, experimental accuracy) Validation of the CSR-driven microbunching gain vs. beam optics Direct characterization of CSR-induced distortions in (z,E), (z,x) and (z,x') phase space.

CBB Workshop at UoC, 27-28/10 2017, Chicago, IL

Thank you for Your attention