

Mitigation of Microbunching Instability for Improved FEL Spectral Brightness

S. Di Mitri, elettra sincrotrone trieste university of trieste, physics dept.

IPAC 2020, Caen, France, 10-15 May 2020

simone.dimitri@elettra.eu

- Focused on experimental tests, conducted at/in collaboration with: LCLS (SLAC), ATF (BNL), SwissFEL (PSI), SXFEL (SINAP), ASTeC (STFC), ASML, FERMI (Elettra),...
- Instability control through e-beam optics an open path of research.

Contributions, guidance and support from: D. Ratner, G. Marcus, S. Bettoni, C. Feng, A. Gover, W. Fawley, M. Venturini, R. Li, P. H. Williams, A. Wolski, I. Setija, E. Roussel, L. Giannessi, S. Spampinati, and the FERMI team.

Special thanks to: C.-Y. Tsai (JLAB/HUST), A. Brynes (STFC, Univ. Liverpool), G. Perosa (Univ. Trieste)

Longitudinal coherence in FELs

The radiation "slips" over the electrons of a distance $N\lambda_0$

b. Miciven, IV. Thompson, Ivan Thom 4 (

IPAC 2020, Caen, France, 10-15 May 2020

Motivations

Femtosecond-resolved **RIXS**:

probe the evolution of low energy electronic excitations in **correlated materials.**

Nonlinear X-ray optics:

measuring **disordered systems** with higher **sensitivity** than conventional linear spectroscopy

X-ray attosecond science:

coherent phase control to build

attosecond pulse trains

GW's peak power at the Fourier limit

ISO 900 OHSAS BUREA

IPAC 2020, Caen, France, 10-15 May 2020

Longitudinal coherence **Existing and planned** UV & X FEL user facilities First modulator First chicane Second modulator Second chicane First see FLASH SwissFEL **IGHG & EEHG** DAL HGHG CIS SASE Go US Dept of State Geograp Goo 31.8 32.2 32.4 32.6 32.8 32 33

Spectral broadening in seeded FELs

FEL spectrum at LCLS: SX-SS

FEL spectrum at FERMI: HGHG, EEHG

G. Marcus et al., PRAB 22 (2019)

IPAC 2020, Caen, France, 10-15 May 2020

Laser heater

FEL optimization

IPAC 2020, Caen, France, 10-15 May 2020

The laser heater maximizes the spectral brightness

> Compromise intensity *vs.* bandwidth at shorter λ

Large beam envelope

\Box_{3} -D effects are expected at $\lambda \leq 4\pi r_{b}/\gamma \approx 2 \,\mu m \Rightarrow$ within gain bandwidth !

 \Box LSC effects are reduced at $r_b \ge \lambda \gamma / 4\pi \approx 150 \,\mu m \implies effective at E \le 1 \,GeV$

Beating the shot-noise limit

Elettra Sincrotrone

Trieste

Large R₅₆ washes the phase space out, without addition of energy spread

IPAC 2020, Caen, France, 10-15 May 2020

Conclusions & outlook

- Now 20 years of instability studies. Show-stopper to stable, full longitudinal coherence – *few µm's* modulations harmful to soft x-rays.
- 2. Laser heater most powerful tool for damping. However, not a conclusive solution for soft x-rays / high harmonic jumps: $\sigma_{\delta} \leq \rho_{FEL}/h$.
- **3. Smooth and quiet** electron beams from photo-injectors get (almost) rid of the LH, but shot-noise driven modulations survive.
- 4. Linear optics control of the sideband instability (large beam envelope, isochronicity, phase mixing) needs additional validation.
 → complementary knob to the LH, with no addition of energy spread.

Thank you for your attention, stay healthy!

IPAC20

www.elettra.eu