Operation and R&D Status of SXR-HHG-Seeding at SCSS and HXR-Self-Seeding at SACLA

Hiromitsu TOMIZAWA, RIKEN XFEL Division

On behalf of all the staffs contributed to HHG-seeded EUV-FEL (SCSS) and improvements of SACLA

SSSFEL12, 10-12 Dec. 2012

Outline

- Status of SACLA Facility
- SXR-Seeding at SCSS Test Accelerator
 - Overview & History
 - Improvements and Recent Results
 - Future Perspective
- HXR-Self-Seeding Option at SACLA
 - Design Study
 - Current Status
- Summary

History of SACLA (1)

History of SACLA (2)

SACLA Commissioning (2011)

- Beam tuning started on 26th Feb.
- First spontaneous light on 31st March
- First lasing on 7th June 2012 (@0.12nm)
 SACLA Improvements (2011~2012)
- Further beam tuning (emittance, peak current, effective charge)

• Fixation of several acc. components

- Pulse energy (0.33 mJ@0.12nm)
- Stability (< 10%)

Image of the SASE and spontaneous radiation

Status of SACLA Facility (1)

Status of SACLA Facility (2)

Stability of SASE Beam

- Pulse energy fluctuation < 10%
- Pointing stability < 20% of σ_x , σ_y
- Energy (wavelength) stability < 0.1%</p>

Available XFEL performance:					
	Design	Achieved			
Photon energy & Intensity	<20 keV sub- mJ/pls	4~7 keV (>300uJ/pls) 7 7~12 keV (>100uJ/pls) ~ 12~15 keV (>10 uJ/pls) 15 keV以上 (~ 1uJ/pls) <	~ 8% 10% 20 %		
Peak power	>30 GW	~ 10 GW	270 240 280 280 300 320 340 360 380 490 420 440 440		
Pulse duration	6~30 fs	~ 20 fs ?			
Rep rate	60 Hz	10 Hz			

 \times Note that, the intrinsic SASE fluctuation is <u>7-8 % (σ)</u>.

Outline

- Status of SACLA Facility
- SXR-Seeding at SCSS Test Accelerator
 - Overview & History
 - Improvements and Recent Results
 - Future Perspective
- HXR-Self-Seeding Option at SACLA
 - Design Study
 - Current Status
- Summary

Seeding at SCSS Test Accelerator

- SCSS Test Accelerator
 - Constructed and operated to demonstrate the concept of SACLA (250MeV, 60nm)
 - Just in front of the undulator section, a chicane has been installed to inject a laser beam for seeding experiments

History of Seeding Experiments

Date	Event	Condition	Reference
June 2006	The first SASE amplification with our new machine concept	250 MeV, 49nm	
Dec. 2006	Seeding at 160 nm	150 MeV, HHG 5 th	G. Lambert et al., Nat. Physics 4, 296 (2008)
Sept. 2007	SASE saturation	250 MeV, 50~60nm	T. Shintake et al., Nat. Photonics. 2, 559 (2008)
Oct. 2010	Seeding at 61 nm	250 MeV, 300 fsec HHG 13 th	T. Togashi, et al., Opt. Exp. 19, 317 (2011)
March 2011	The first test of Arrival time monitor (relative timing btw. e-bunch and HHG with EO sampling)		H. Tomizawa, BIW2012, Newport News, VA (2012)
July 2012	Seeding at 61 nm (hit rate: ~30%)	250 MeV, 600 fsec HHG 13 th	H. Tomizawa, et al., LINAC2012, Tel-Aviv (2012)
July 2012	Experiments with stabilized seeded FEL at 61 nm		to be submitted

Task force in our collaboration for HHG-seeding

Supports for this projects: •RIKEN/JASRI XFEL project •SCSS test accelerator operation team (Engineers) Financial supports : •RIKEN extreme photonics (Dr. Midorikawa)

•RIKEN extreme photonics (Dr. Midorikawa)
•MEXT X-ray free electron laser utilization research (Prof. Kaoru Yamanouchi, The University of Tokyo), "Pump and probe experiment of atom, molecule and cluster by XFEL light and advanced laser light"

Japan Atomic Energy Agency, Quantum Beam Science Directorate M. Aoyama, K. Yamakawa, Synchrotron SOLEIL

Marie E. Couprie

Experimental setup: HHG and injection

Seeding results at 61 nm in 2010 (2)

Improvement of Hit Rate (~2012) (1)

- Bunch length stretched (0.3⇔0.6 psec)
- Arrival time monitor by means of EOsampling implemented

Improvement of Hit Rate (~2012) (2) Relative-timing EOS locking system Ti:sa lase hire EOS arrivel timing monitor Loosely-focusing lens DAZZLER AO-modulator Glass block stretcher Half wave & Polarize Polarizer Fiber spectrometer Delay OTR & Fundamental HHG driver Streak camera Gas monitor detector To Experimental station harmonic arator mirror Spectrometer OTR Screens MCP Gas cell Undurator 2 Electron Undurator 1 EQ Pair of concave (R = 8)t-coated rror Spectrometer 8 m SiC harmonic separator C band accelerator OTR &HH rror Electron MCP MCP EUV CCD camera CCD camera CCD camera Magnetic chicane 61nm-2nJ HHG@Undulator

Principle of EOS (Electro-optic Sampling)

Timing feedback with EO

Improvement of Hit Rate (~2012) (3)

Seeded FEL Performances (2012) (1)

Seeded FEL Performances (2012) (3)

The correlation data plot between the normalized intensity and central wavelength for 10000 shot data

Future Perspective

- SCSS test accelerator is going to be decommissioned in June 2013
- Accelerator components moving to BL1@SACLA (SCSS+)
 - Dedicated beamline to EVU & SXR regions
 - Start with 400 MeV & 30~50 nm, to be extended to 1.4 GeV & 3 nm
- Seeding method under exploration (self seed, HHG, HGHG,..)

Outline

- Status of SACLA Facility
- SXR-Seeding at SCSS Test Accelerator
 - Overview & History
 - Improvements and Recent Results
 - Future Perspective
- HXR-Self-Seeding Option at SACLA
 - Design Study
 - Current Status
- Summary

Seeding Option at SACLA

- Upgrade program at SACLA for HXRseeding in progress
- Successful demonstration of the selfseeding scheme at LCLS urges us to go ahead with the same (?) scheme
- Numerical study to optimize the selfseeding configuration finished (preliminary)

Numerical Technique for Optimization

 Introduction of "Mode Energy" as a figure of merit for seeded FEL

> $E_{mode} = \frac{E_{pulse}}{M_T}$ (pulse energy) (# temporal modes)

- Numerical operation for smoothing the spiky SASE spectrum
 - Simulate the averaged seed power after the monochromator
 - Apply LPF on the complex amplitude of radiation with the phase kept unchanged

What to Optimize?

- Monochromator configuration
 - -C (400): transmission (as in LCLS)
 - -C (400): reflection
 - Si (111): reflection
- Position of SS chicane (to be replaced with an undulator)
- Undulator taper and extra undulators to be added

Segment for Chicane Insertion

Current Status toward Self-Seeding

Pulse Length Estimation with Chicane*

Outline

- Status of SACLA Facility
- SXR-Seeding at SCSS Test Accelerator
 - Overview & History
 - Improvements and Recent Results
 - Future Perspective
- HXR-Self-Seeding Option at SACLA
 - Design Study
 - Current Status
- Summary

Summary

• In SACLA, two seeding options have been explored intensively :

– EUV and SXR-region: HHG Seeding– HXR-region: Self seeding

- Recent R&D to improve the hit rate at the SCSS test accelerator has proven the capability of HHG seeding
- Commissioning for HXR-self seeding is scheduled next September, after installation of the monochromator

SSSFEL12, 10-12 Dec. 2012

Seeding results with EO-Timing feedback

