

Development of Cryogenic Permanent Magnet Undulators at ESRF

In vacuum undulator

Cryogenic Permanent Magnet undulators

ESRF ID group: Vacuum group **J** Chavanne R. Kersevan B. Cottin M. Hahn A .Flaven-Bois

C.Kitegi

C.Penel, F.Revol

F. Taoutaou

D.Cognie M Garrec

Exp. Division

M.Rossat

Support on cryogenic systems

Higher field shorter period

Demagnetization of p.m material by electron beam for IVUs at small gap

Many studies carried by Spring 8 (T.Bizen & al.)

- magnet blocks exposed to a 2 Gev electron beam
- NdFeB & Sm2Co17

Very high coercivity NdFeB material is comparable to Sm2Co17

- needs a coercivity higher than 2800 kA/m
- thermal stabilization

But

The remanence is low:

 \approx 1.05 T at R.T. (similar to Sm2Co17)

Data taken from various suppliers R.T values for NdFeB materials

Cryogenic Permanent Magnet Undulators

SPRING 8 proposal : Phys. Rev. Sp. Top. - Acc. & Beam, V0 7, 050702 (2004)

Target:

- high coercivity at low temperature (limited demagnetization risk)
- Increase the peak field with NdFeB p.m. material (≈ 25 %)

Detailed studies needed

1- Magnetic material

-full characterization of NdFeb at low temp

- 2- Mechanical deformation at low temperature
 - gap parallelism
- 3- Magnetic Measurements
 - reliable local measurements
 - phase error vs temperature

NdFeB material at low temperature

Earlier studies on SRT

SRT: change in easy axis direction

Non linear property

Mostly investigated in fundamental magnetism

but

Need for macroscopic material models for (sintered) NdFeB materials as used in undulators

NdFeB material at low temperature in 2nd quadrant

Temperatures for maximum undulator field and maximum Br are different

- The transverse permeability increases while decreasing temperature - non linear when close to SRT

ESRF C.P.M.U

Liquid nitrogen loop for CPMU

Cooling pipes (water in standard IVUs)

Temperature measurements

CPMU design considerations

Mechanics & thermal transfer

Stainless steel girder -> Aluminium girder

Thermal connection to cooling pipes with calibrated spacers (≈ 80 units)

Modified tension mechanism of Cu-Ni sheet

NdFeB material

Coercivity \geq 2000 kA/m, Br \approx 1.2 -1.25 T

- baking at 120 deg. C maintained
- no significant cryo_pumping expected at 150 K

Magnetic structure

Hybrid

Undulator field quality vs. temperature

Local measurements (phase error)

+ Integral measurements

In vacuum measurements - 10^-6 mbar

CPMU local field measurements

Longitudinal motion: magnetically coupled with an external axe (old hall probe bench) -> fast scans

Presently under assembly

Assembly of CPMU measuring bench

Interface with stretched wire parts

Window for laser interferometer

Hall probe guiding assembly

Permanent magnet module (3 magnets) Magnetic coupling with external motion (actuation force > 40 N@ magnetic gap 8 mm)

Hall probe guide rail

- Hall probe keeper

CPMU field integral measurements

Stretched wire assembly

Wire stretching mechanism

Status of ESRF CPMU

Undulator (U18):

- period 18 mm
- hybrid structure
- L= 2m
- K=1.5 @ gap 6 mm (150 K) -presently under magnetic measurements at room temperature

Magnetic measurements

- -final assembly
- control and test of motion
- measurement at room temperature
- measurements at cryogenic temperature

Stainless steel rods with reduced cross section

The development Cryogenic permanent magnet IVUs is mostly a technological effort.

- magnetic field performance vs cost is an issue

Field measurements

- field correction applied at room temperature should (must) remains valid at cryogenic temperature

