Recent Work on Insertion Devices at the ALS

Soren Prestemon, Steve Marks, Ross Schlueter, M. Coleman

Input from:

ALS Accelerator Physics group D. Robin, C. Steier, W. Wan

AFRD Supercon D. Dietderich, A. Godeke, H. Higley, N. Liggins, and others

Lawrence Berkeley National Laboratory

Outline

- 1. Review of existing insertion devices at the ALS
 - Planned insertion devices applications and specifications
 - Near term (reasonably well known)
 - Longer term (likely to change...)
- 2. Details of a device under construction MERLIN
 - Quasi-periodic magnetic structure
 - Anticipated spectral performance
- 3. EPU modifications to accommodate top-off operation
 - Dynamic multipoles and compensating shims
- 4. R&D results on superconducting undulator prototypes

1234 Review of existing IDs...

ALS beamline diagram

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

1234 Review of existing IDs...

Review of existing and *future* insertion devices at the ALS

Wave 1* Wave 2** Wave 3: SCU's, ultra-fast,...

Beamline	Application	Туре	Period, Length	Energy range*	Status
4.0.1	MERLIN - meV resolution spectroscopy	QEPU	90mm; 1.8m	8-300eV	Being fabricated
4.0.2	Magnetic spectroscopy (MCD, MLD)	EPU	50mm; 1.8m	50-1900eV	1998
5.0.1	Protein crys.; femto modulator	Wiggler	110mm; 3.5m		2004
6.0.1,2	Femto radiator – ultrafast science	IVID	30mm; 1.5m	200-1800 (U) 2keV-10keV (W)	2005
7.0.1	Surface & materials science	Undulator	50mm; 4.5m	60-1200eV	1993
7.0.1*	COSMIC – coh. scattering & imaging	EPU	34mm, 1.8m	250-1300eV	~2008
7.0.2*	MAESTRO – microscopy & elect. Struct.	EPU	70mm, 1.8m	20-600eV	~2008
8.0.1	Imaging, x-ray fluorescence	Undulator	50mm; 4.5m	65-1400eV	1993
9.0.1,2	Coh. Scattering; Chem. Dynamics	Undulator	100mm, 4.5m	5-800eV	1995
10.0.1	Photoemission	Undulator	100mm, 4.5m	17-340eV	1997
11.0.1	PEEM	EPU	50mm, 1.8m	100-2000eV	2003
11.0.2	Molecular environmental science	EPU	50mm, 1.8m	95-2000eV	2001
12.0.1,2	EUV, ARPES, Coherent x-ray science	Undulator	80mm, 4.5	60-1000eV	1993
10.0.1**	Photoemission HERS	EPU		1.19日本語	
10.1.1**	Atomic / molecular physics	EPU		de la companya de la	
2.?**	QUERLIN – Q-res.Inelastic scattering	SCU		~1keV	
12.0.1,2**	ARPES; coherent science	Undulator	80mm, 3m		* Typically reflects beamline, not ID, energy range

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

1234 Review of existing IDs...

ALS storage ring parameters

(Thanks to David Robin)

Present Operation

- Injection at 1.5 GeV and then ramp
- Inject with insertion devices open
- Average beam current is 250 mA
- Vertical emittance is 150 pm rad
- Lifetime is 8 hours at 400 mA
- Injection period every 2 to 8 hours
 - 1 Hz injection for 4 minutes
 - From 200 to 400 mA
- Photon shutters are closed during injection

After Top-Off

- Full energy injection (1.9 GeV)
- Inject with insertion devices closed
- Average beam current is 500 mA
- Vertical emittance is 30 pm rad
- Lifetime is about 3 hours at 500 mA
- Injection period about every 30 seconds
 - 1 pulse
 - From 498.5 to 500 mA
- Photon shutters remain open during injection

Top-Off upgrade and ID's linked

- Can no longer open ID's for injection
 - Inject every ~30s
 - Beam dynamics concerns
 - Injection efficiency limitations imposed by EPU's
- Minimum aperture must be set by scrapers
 - Avoid radiation damage to ID's
 - Safety considerations
 - Possible fault scenario of electrons sent down beamlines must be eliminated

Installed EPUs

- Three EPU50s of same Design:
- 4.0.2: MCD, 1998
 - First in a 3rd Gen. ring!
- 11.0.2: MES, 2002
- 11.0.1: PEEM3, 2005

W11: Femto-Slicing Modulator

- Installed 2004
- Replaces W16
- Meets ongoing PX needs
- ~790nm fundamental for femto-slicing
- Re-uses W16 structure and vacuum chamber designs

IVID30: Femto-Slicing Radiator

- Installed 2005
- Purchased from Neomax (formerly Sumitomo Special Metals)
- Collaboration with Spring8

Permanent Magnet Chicane J. Y. Jung et al., PAC03

- Installed in center of chicaned ID straights
- Objective: eliminate magnetic hysteresis characteristic of iron-core electro-magnets
- Design based upon PM corrector ring concept
- Uses PM rotors to set main field
- Uses air-core coils for fast horizontal and vertical dipole correction

Concept proposed in: R. Schlueter et al, NIM Phys Res. A, Vol 395, 1997

Merlin EPU

- To be installed Spring 2007
- Longer period
 - Higher forces
 - Increased impact on beam dynamics
 - Larger photon fan, increased power
- Quasi periodic
 - Reduce flux from higher harmonics
- New Design Features
 - Stiffer/stronger structure to deal with higher forces
 - New drive system to improve performance
 - Modified magnetic mounting to eliminate systematic relative motion with quadrant shifts

1234 Review of existing IDs...

EPU34: Concept for Cosmic

Full Polarization Control $E_p > 250 \text{ eV}$

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

EPU70: Concept for Maestro

- Horizontal Polarization $E_p > 20 \text{ eV}$
- Vacuum chamber heating limitation:
 - Vertical Polarization $E_{\rho} > 60 \text{ eV}$
 - Circular Polarization $E_p > 80 \text{ eV}$

Some details of the MERLIN EPU

Quasi periodic EPU

- S. Sasaki, NIM Phys. Res. A, 1994; B. Diviacco et al, epac98; J. Chavanne et al, EPAC 1998
- Optimized spectral properties by varying parameters
 - (e.g. interlattice ratio, block strength)
- Varying vertical blocks rather than horizontal
 - More effective at generating anharmonic spectrum
 - Individual block perturbations are not self-compensating (steering)
- Blocks mounted on individual keepers
 - Avoid ALS experience with modules (Marks et al, "Shift-dependent Skew Quadrupole...", MT19, 2005)
- Ends optimized for minimal shift-dependent first integrals
 - Schlueter et al, MT19, 2005; Chavanne et al, PAC 1999

1234 Details of MERLIN QEPU...

Quasi-periodic synchrotron radiation

- Idea (introduced by Sasaki): by breaking the periodic magnetic structure in a specific manner, the harmonic structure of the undulator radiation can be modified, yielding "harmonics" at non-integer multiples of the fundamental which are then stopped by the monochrometer
 - Should be particularly useful for low photon energies, where harmonics can excite unwanted electron states;
 - Has been tested on linear undulators at the ESRF, EPU at ELETTRA
 - Currently being investigated by others (Soleil, ...) in the case of EPUs

Polarization	EPU90 Fundamental [eV]	QEPU90 Fundamental [eV]
Linear horizontal	8	9
Linear vertical	13	14.7
circular	10.7	12.2

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

1234 Details of MERLIN QEPU...

Flux density in horizontal polarization Comparison with baseline EPU90

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

1234 Details of MERLIN QEPU...

Radiation spectra on axis

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

1234 Details of MERLIN QEPU...

Radiation spectra for a (0.6mrad x 0.6mrad) aperture

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

~Circularly polarized radiation (ds= 0.3λ)

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

Dynamic compensation shims for top-off operation

- Insertion devices typically exhibit natural vertical focusing
 - "Dynamic", i.e. due to particle trajectory coupled to off-axis longitudinal fields (not seen with multipole measurements on the bench)
 - Further "dynamic" defocusing due to field roll-off (see Safranek et al., PAC 2000)
- EPU's have special characteristics:
 - Focus/defocus depending on polarization mode
 - Exhibit strong nonlinear behavior, i.e. (de)focus strength varies with offset
 - Introduces focus/defocus in horizontal plane, where beam dynamics are typically more sensitive
- ⇒ Serious impact on lifetime / injection efficiency tune shift scales with $(\lambda/E)^2$, so problem is worst for low energy rings and long-period EPU's
- ⇒ Nonlinear effects cannot be compensated with other optics; have significant impact on dynamic aperture

Idea (Chavanne et al., EPAC 2000.;): introduce magnetic shims to compensate for nonlinearity Currently implemented at Bessy (J. Barhdt et al

Shim perturbation By(x,y=0)

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

Integrated shim fields and effective focusing

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

Berkeley Lab Baseline EPU90

1234 EPU modifications for top-off...

Note: p1 controls variable linear polarization modes, p2 controls variable elliptical modes (p2=0.3~circular)

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

1234 EPU modifications for top-off...

Shimmed EPU90 (Calculated with Radia)

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

Shimmed Merlin, vertical polarization (calculated, before and after shimming)

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

Soren Prestemon, LBNL

26

Shimmed Merlin, circular polarization (calculated)

1234 EPU modifications for top-off...

Shimmed Merlin, linear (~45degrees) polarization (calculated)

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

Other scenarios evaluated

- Tracking performed at g=14, nominal minimum gap
- Checked that the dynamic aperture remains acceptable at g=18, 22
 - Tracking was performed for linear horizontal and linear vertical
 - Tracking also performed for elliptical mode, g=22
 - Kick map evaluated for g=18, elliptical mode appears OK

1234 EPU modifications for top-off...

Combining dynamic multipole correction shims and quasi-periodicity

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

LBNL Nb₃Sn superconductor Undulator R&D

Collaboration of AFRD & Engineering Div.

Considered for ALS applications:

- Radiator for femto-slicing experiment
- Source for protein crystallography

LDRD results (2003-04):

- Two prototypes using 6-strand cable
- 30mm period prototype; 80% of Jc
- 14.5mm period prototype: ~75% Jc

WFO (2005-06, for Argonne Nat. Lab):

- Test single strand conductor
- Design and fabrication improvements
- Reached short sample Jc in 4 quenches

Synchrotron Radiation News January/February 2004 • Vol. 17, No. 1

Focus on Next Generation of Insertion Devices

1234 Superconducting undulator R&D...

Low-temperature superconductors of interest: Nb₃Sn, NbTi with Artificial Pinning (APC)

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

Superconducting undulator R&D at LBNL

• Issues addressed:

- Conductor stability and magnet protection under extremely high current operation
- Demonstrated ability to provide field kick for phase-error correction
- Demonstrated fabrication techniques to yield peak conductor performance in a real magnet configuration

Remaining issues

- Field measurement system for phase-error determination
- Full phase-error correction scheme
- Calorimetric measurements of beam-based heating on real rings
- For SC-EPU:
 - demonstrate reasonable ramp-rates for field (photon energy) variation
 - Demonstrate switching network for period-doubling operation

Prototype III undulator quench performance

- Five quenches:
 - 585A, 585A, 635A, 717A, 714A
 - At 717A:
 - Jsc=8250A/mm2
 - Jcu (quench)=7600A (self-protected)
 - Jav = 1760A/mm2 (using full pocket size)

Jc (12T, 4.2K) Old generation ~2000A/mm² (This was used for all of the LBL prototypes) New generation ~3000A/mm² (just need to get the filament size down...)

Record performance

Magnetic gaps and lengths for future insertion devices at the ALS

- Gaps, assuming 5mm vacuum aperture:
 - PM, PM-EPU: 7.3mm (1mm wall thickness, existing controls spacings; could be reduced, but risk increases – no hard stops, chance of hitting chamber...)
 - IV, IV-EPU: 5.4mm (0.4mm needed for controls, RF foil)
 - SCU, SC-EPU: 6.6mm (0.75mm wall thickness)
- Lengths:
 - PM: 2m (extend devices from current 1.85m by eliminating end chicanes & chambers)
 - IV: 1.62m (lose 360mm compared to PM on each side due to RF transitions)
 - SCU, SC-EPU: 1.6m ("cold-bore" operation; RF transitions do not move, but need space for thermal transitions; this is a reasonable estimate)
 - IV-EPU: 1.55m (RF transitions are a definite concern; this is an optimistic guess)
- To avoid heating vacuum chamber/magnets with SR, the estimated peak vertical K value for a 2m device is ~4.5. For PM, PM-EPU one could consider cooling the vacuum chamber, but the risks/issues have not been evaluated.

Review of LBNL interest/effort in superconducting undulators

Papers:

- Prestemon, S. et al. Proceedings, PAC2003
- M. A. Green, D. R. Dietderich, S. Marks, S. O. Prestemon, Advances in Cryogenic Engineering, AIP, Vol. 49, p 783-790., 2004
- Prestemon, S.; Dietderich, D.;Marks, S.; Schlueter, R. Synchrotron Radiation Instrumentation, AIP, vol. 705, p 294, 2004.
- Ross Schlueter, Steve Marks, Soren Prestemon, and Daniel Dietderich, Synchrotron Radiation News, January/February 2004, Vol. 17, No. 1.
- S. O. Prestemon et al., IEEE Transactions on Applied Superconductivity, June 2005
- S. Prestemon, R. Schlueter, S. Marks, D. Dietderich, presented at MT19, Sep. 18-23, 2005, Genoa, Italy
- D. R. Dietderich et al., Presented at ASC2006, Seattle, Wa.

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

1234 Superconducting undulator R&D...

ALS performance enhancement, Application Protein Crystallography

Figure of merit: flux at 12.6keV accepted into 50µm x 50 µm x .25mrad x .25mrad phase space [photons/sec/0.1% bw].
Undulator values assume 4.5m lengths.

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

21

Polarization control Generating variable linear polarization

 A coil as shown generates antisymmetric B_x and B_y field profiles in z about the coil. The fields are largely on a plane of angle ψ that is a function of the coil gap and xoffset.

• A series of such coils in z, separated by $\lambda/2$ with alternating current directions, generates $B_x(z)$ and $B_y(z)$ fields that are periodic with equal phase shift.

1234 Superconducting undulator R&D...

Polarization control Generating variable linear polarization

- Consider a 4-quadrant array of such coil-series.
 - If I_C=-I_A, Coils A and C generate additive fields.
 - Set $I_C = -I_A$, $I_D = -I_B$; Independent control of I_A and I_B provides full linear polarization control.

For
$$I_A = I_B = I_C = I_D$$
:
 $\overrightarrow{B}_B \qquad \overrightarrow{B}_A$
 $\overrightarrow{B}_C \qquad \overrightarrow{B}_D$

 $\mathbf{B}_{\mathbf{A}}$

Independent control of I_A and I_B provides variable linear polarization control

- If $I_A = I_B$, vertical field, horizontal polarization
- If $I_A = -I_B$, horizontal field, vertical polarization

Berkeley Lab1234 Superconducting undulator R&D...Polarization controlGenerating variable elliptic polarization

- Add a second 4-quadrant array of such coilseries, offset in z by λ/4 (coil series α and β)
- With the following constraints the eight currents are reduced to four independent degrees of freedom:

$$I_C^{\alpha} = -I_A^{\alpha}, \quad I_D^{\alpha} = -I_B^{\alpha}$$
$$I_C^{\beta} = -I_A^{\beta}, \quad I_D^{\beta} = -I_B^{\beta}$$

• The α and β fields are 90° phase shifted, providing full elliptic polarization control via

$$\vec{B}^{\alpha}(I^{\alpha}_{A}, I^{\alpha}_{B}; z), \quad \vec{B}^{\beta}(I^{\beta}_{A}, I^{\beta}_{B}; z):$$

$$\begin{pmatrix}B^{\alpha}_{x}\\B^{\alpha}_{y}\end{pmatrix} = \eta \left\{ \begin{pmatrix}\cos(\psi) & -\cos(\psi)\\\sin(\psi) & \sin(\psi)\end{pmatrix} \begin{pmatrix}I^{\alpha}_{A}\\I^{\alpha}_{B}\end{pmatrix} \right\} \sin\left(\frac{2\pi z}{\lambda}\right)$$

$$\begin{pmatrix} B_x^{\beta} \\ B_y^{\beta} \end{pmatrix} = \eta \left\{ \begin{pmatrix} \cos(\psi) & -\cos(\psi) \\ \sin(\psi) & \sin(\psi) \end{pmatrix} \begin{pmatrix} I_A^{\alpha} \\ I_B^{\alpha} \end{pmatrix} \right\} \\ \sin\left(\frac{2\pi z}{\lambda} - \frac{\pi}{2}\right)$$
Note: $B_{x,y}^{\alpha} = \sum_n a_{n;x,y} \sin\left(\frac{2\pi nx}{\lambda}\right);$ typically $\frac{a_3}{a_1} < 2\%$

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

40

-1

Spectral range and Brightness of example SC-EPU λ =28mm device and PM-EPU λ =32mm

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

A conceptual design for the LBNL SC-EPU with minimal joints

- Four-quadrant, iron-free design
- Cryocooled using heat-pipe approach
- Performance limited by AC losses (dB/dt-induced heating) of coil
- Period halving/doubling requires "switchyard" superconducting switch needs to be demonstrated

Nb₃Sn superconductors

Highest (Jc, Tc) of all commercially available superconductors in the field range of interest to SCU's

- These are intermetallic compounds, in an A15 structure; A15 is a brittle crystal structure
- Requires a fabrication process providing the appropriate composition and A15 development
- Process must not jeopardize quality of stabilizer in conductor (typically Cu)
- Requires heat treatment to ~650C

=> Have significant impact on magnet design and fabrication!

1234 Superconducting undulator R&D...

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices

1234 Details of MERLIN QEPU...

Comparison of QEPU and EPU

Nov. 21, 2006 Elettra: New Frontiers in Insertion Devices