High pressure study of Pentaerythritol: a synchrotron infrared study S.K. Deb¹, Ankita Banerji¹, R.J. Kshirsagar¹ and S.M. Sharma¹ ¹Synchrotron Radiation Section, BARC, Mumbai 400085 P. Dumas², T. Marin², J.C. Chervin³ and B. Canny³. ²LURE, Centre Universitaire Paris Sud, F91898 Orsay, France ³Université Pierre et Marie Curie, Paris 75006 France Pentaerythritol (PET) is a simple molecule, which crystallizes as a solid in tetragonal I4 space group under ambient condition. The crystal has a layered structure with the PET molecules in the a-b plane connected by hydrogen bonding whereas the interlayer coupling is through weak Van der Waals force. Here we report a synchrotron radiation infrared high-pressure study upto a pressure of ≈ 11 GPa. The high-pressure experiments were carried out on 6% PET mixed with KBr powder in a membrane DAC with 450 μ m culet. The IR radiation from the Mirage beamline at LURE synchrotron was focused on a 100 μ m x 100 μ m spot in the DAC using a NicPlan IR microscope coupled to a FTIR spectrometer (Thermo Nicolet Magma 560). The figure shows the changes in the IR spectra with increasing pressure over the ranges 650 – 600 cm⁻¹ and 2300 – 4000 cm⁻¹ covering the internal modes of PET. The qualitative features of the spectra remain unchanged till ≈ 4.7 GPa beyond which the C-C skeletal stretch mode at 1131 cm⁻¹ and the O-H deformation mode at 1410 cm⁻¹ split into two modes. The changes in the frequencies of the bending, twist, deformation etc modes with increasing pressure shows that the modes at 662cm⁻¹, 1375 cm⁻¹, 1384 cm⁻¹ and 1410 cm⁻¹ modes exhibit sudden decrease in the slope beyond 4.7 GPa. The O-H mode at 3227 cm⁻¹ shows anomalous shift with the frequency decreasing at the rate of 27 cm⁻¹/GPa till 4.7 GPa and then much more slowly with 3.7 cm⁻¹/GPa. All these changes occurring at 4.7 GPa indicate that the crystal undergoes a phase transition beyond this pressure. On reducing the pressure, the spectrum changes to the ambient phase below \approx 4.6 GPa showing that the transition is completely reversible. The transition pressure is close to the prediction made based on steric hindrance between the non-bonded hydrogen atoms.